1. Numerical Integration | Trapezoidal, Simpson's 1/3 an

MudassarAhmed39 11 views 21 slides Aug 30, 2024
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

1. Numerical Integration | Trapezoidal, Simpson's 1/3 an1. Numerical Integration | Trapezoidal, Simpson's 1/3 an1. Numerical Integration | Trapezoidal, Simpson's 1/3 an


Slide Content

16.360 Lecture 19
Maxwell equations
,
v
D

,
t
B
E





,0B

,
t
D
JH





,ED

 ,HB

 : electrical permittivity; :magnetic permativity
v: electric charge density per unit volume; J: current density per unit area.
,
v
D

,0E

,0B

,JH


Electrostatics Magnetostatics
E: electric field intensity
D: electric flux intensity
H: magnetic field intensity
B: magnetic flux intensity

16.360 Lecture 19
,
vD

,0E

Electrostatics
Volume charge density
,lim
0 dv
dq
v
q
v
v 





Surface charge density
,lim
0 ds
dq
s
q
s
s






Line charge density
,lim
0 dl
dq
l
q
l
l 





,dvQ
v
v


16.360 Lecture 19
,tsuq
v



,su
t
q
I
v




 
Current density J
,uJ
v


,sdJI
s



16.360 Lecture 19
,
4
2
R
q
RE



,'EqF


Coulomb’s law
,
4
)(
3
1
11
1
RR
RRq
E 






,
4
)(
3
2
22
2
RR
RRq
E 






],
)()(
[
4
1
3
2
22
3
1
11
21
RR
RRq
RR
RRq
EEE 











,
)(
4
1
1
3
1

 


N
i
i
i
RR
RRq
E 




16.360 Lecture 19
Electric field due to a charge distribution
,
'4
'
ˆ
2
R
dq
REd



,
'
'
ˆ
4
1
'
2

v
v
R
dv
REdE



,
'
'
'
ˆ
4
1
2

s
s
R
ds
REdE



,
'
'
'
ˆ
4
1
2

l
l
R
dl
REdE




16.360 Lecture 19
Gauss’s law
,
vD

,QdvdvD
v
v
v
 


,

sv
sdDdvD

,QsdD
s


Gauss’s law

16.360 Lecture 19
Electrical scalar potential
,ldEdV


,ldEqldFdW
e


,qdVdW
,
2
1
2
1
1221 

P
P
P
P
ldEdVVVV

,00  
CC
ldEdV

,0)(  
Cs
ldEsdE


16.360 Lecture 19
Electrical potential due to point charge
,'
'4
1
)(
'
'
dv
RR
RV
v
v


 
 

,
4
2
R
q
RE



,
4
ˆ
4
ˆ
2
R
q
dRR
R
q
RldEV
RR

 





R
ldEV

Electrical potential due to continuous distributions
,
4
)(
1RR
q
RV 




,'
'4
1
)(
'
'
ds
RR
RV
s
s


 
 

,'
'4
1
)(
'
'
dl
RR
RV
l
l


 
 


16.360 Lecture 19
Electric field as a function of Electrical potential
Poison’s equation
,ldEdV

 ,ldVdV


,VE

,
v
D

,


v
E

,


v
V ,
2


v
V Poison’s equation
,0
2
V Laplace’s equation

16.360 Lecture 19
Electrical properties of material
• conductor
• dielectric
• semiconductor

16.360 Lecture 20
Conductors
Electron drift velocityEu
ee


Hole drift velocity Eu
hh


Conducting current
,)( EuuJJJ
hvhevehvhevehe

 
,
hvheve
 
,EJ


Point form of Ohm’s law

16.360 Lecture 20
Resistance
,
1
2
21
lEldEVVV
x
x
x
 

General form
,AEsdEsdJI
x
AA
  

,
A
l
I
V
R


,
1
2
1
2










A
x
x
A
x
x
sdE
ldE
sdJ
ldE
I
V
R 




16.360 Lecture 20
Joule’s law
,
hhee
lFlFW 
General form
,
)(
vEJ
vEuEuuFuF
t
l
F
t
l
F
t
W
P
hvhevehhee
h
h
e
e
















v
dvEJP ,


16.360 Lecture 20
Dielectrics
Electrical field induced polarization

16.360 Lecture 20
Dielectrics
,
0
PED


P: electric polarization field
For homogeneous material:
,
0
EP
e


,
000
EEEPED
e

 
),1(
0 e
 
),1(
0
er



 Relative permittivity:
Electric susceptibility
Dielectric breakdown

16.360 Lecture 20
Electric boundary condition
;0][
12
0
lim
 

ldEldEldE
d
c
b
a
h
C

,
111 ntEEE


,
222 nt
EEE


,0
21  lElE
tt

,
21 tt
EE


the tangential component is continuous
across the boundary of two media.

16.360 Lecture 20
Electric boundary condition
;][lim
0
ssdDsdDsdD
s
bottomtop
h
C
 



,
21 ssDsD
snn  

the normal component of D changes, the
amount of change is equal to the surface
Charge density.
,
21 snnDD 


16.360 Lecture 20
Dielectric-Conductor boundary
,
1 snD

,0
21 
ttEE


16.360 Lecture 20
Conductor-Conductor boundary
,
221121 snnnn EEDD  

,
21 ttEE


,
2
2
1
1

ttJJ

 ,
2
2
2
1
1
1 s
nn JJ




 

,)(
2
2
1
1
1 sn
J 






16.360 Lecture 20
Capacitance
,

s
sdEQ


,
V
Q
C


l
ldEV

,


RC
,





l
s
ldE
sdE
C 


,
1
2
1
2










A
x
x
A
x
x
sdE
ldE
sdJ
ldE
I
V
R 




16.360 Lecture 20
Electrostatic Potential Energy
,ldWldFdW
ee

,
2
1
EDW
e


,
eWF

Image Method
Any given charge above an infinite, perfect conducting plane is electrically
equivalent to the combination of the give charge and it’s image with conducting
plane removed.
Tags