16.360 Lecture 19
Maxwell equations
,
v
D
,
t
B
E
,0B
,
t
D
JH
,ED
,HB
: electrical permittivity; :magnetic permativity
v: electric charge density per unit volume; J: current density per unit area.
,
v
D
,0E
,0B
,JH
Electrostatics Magnetostatics
E: electric field intensity
D: electric flux intensity
H: magnetic field intensity
B: magnetic flux intensity
16.360 Lecture 19
,
vD
,0E
Electrostatics
Volume charge density
,lim
0 dv
dq
v
q
v
v
Surface charge density
,lim
0 ds
dq
s
q
s
s
Line charge density
,lim
0 dl
dq
l
q
l
l
,dvQ
v
v
16.360 Lecture 19
,tsuq
v
,su
t
q
I
v
Current density J
,uJ
v
,sdJI
s
16.360 Lecture 19
Electric field due to a charge distribution
,
'4
'
ˆ
2
R
dq
REd
,
'
'
ˆ
4
1
'
2
v
v
R
dv
REdE
,
'
'
'
ˆ
4
1
2
s
s
R
ds
REdE
,
'
'
'
ˆ
4
1
2
l
l
R
dl
REdE
16.360 Lecture 19
Gauss’s law
,
vD
,QdvdvD
v
v
v
,
sv
sdDdvD
,QsdD
s
Gauss’s law
16.360 Lecture 19
Electrical scalar potential
,ldEdV
,ldEqldFdW
e
,qdVdW
,
2
1
2
1
1221
P
P
P
P
ldEdVVVV
,00
CC
ldEdV
,0)(
Cs
ldEsdE
16.360 Lecture 19
Electrical potential due to point charge
,'
'4
1
)(
'
'
dv
RR
RV
v
v
,
4
2
R
q
RE
,
4
ˆ
4
ˆ
2
R
q
dRR
R
q
RldEV
RR
R
ldEV
Electrical potential due to continuous distributions
,
4
)(
1RR
q
RV
,'
'4
1
)(
'
'
ds
RR
RV
s
s
,'
'4
1
)(
'
'
dl
RR
RV
l
l
16.360 Lecture 19
Electric field as a function of Electrical potential
Poison’s equation
,ldEdV
,ldVdV
,VE
,
v
D
,
v
E
,
v
V ,
2
v
V Poison’s equation
,0
2
V Laplace’s equation
16.360 Lecture 19
Electrical properties of material
• conductor
• dielectric
• semiconductor
16.360 Lecture 20
Conductors
Electron drift velocityEu
ee
Hole drift velocity Eu
hh
Conducting current
,)( EuuJJJ
hvhevehvhevehe
,
hvheve
,EJ
Point form of Ohm’s law
16.360 Lecture 20
Resistance
,
1
2
21
lEldEVVV
x
x
x
General form
,AEsdEsdJI
x
AA
,
A
l
I
V
R
,
1
2
1
2
A
x
x
A
x
x
sdE
ldE
sdJ
ldE
I
V
R
16.360 Lecture 20
Joule’s law
,
hhee
lFlFW
General form
,
)(
vEJ
vEuEuuFuF
t
l
F
t
l
F
t
W
P
hvhevehhee
h
h
e
e
v
dvEJP ,
16.360 Lecture 20
Dielectrics
Electrical field induced polarization
16.360 Lecture 20
Dielectrics
,
0
PED
P: electric polarization field
For homogeneous material:
,
0
EP
e
,
000
EEEPED
e
),1(
0 e
),1(
0
er
Relative permittivity:
Electric susceptibility
Dielectric breakdown
16.360 Lecture 20
Electric boundary condition
;0][
12
0
lim
ldEldEldE
d
c
b
a
h
C
,
111 ntEEE
,
222 nt
EEE
,0
21 lElE
tt
,
21 tt
EE
the tangential component is continuous
across the boundary of two media.
16.360 Lecture 20
Electric boundary condition
;][lim
0
ssdDsdDsdD
s
bottomtop
h
C
,
21 ssDsD
snn
the normal component of D changes, the
amount of change is equal to the surface
Charge density.
,
21 snnDD
16.360 Lecture 20
Capacitance
,
s
sdEQ
,
V
Q
C
l
ldEV
,
RC
,
l
s
ldE
sdE
C
,
1
2
1
2
A
x
x
A
x
x
sdE
ldE
sdJ
ldE
I
V
R
16.360 Lecture 20
Electrostatic Potential Energy
,ldWldFdW
ee
,
2
1
EDW
e
,
eWF
Image Method
Any given charge above an infinite, perfect conducting plane is electrically
equivalent to the combination of the give charge and it’s image with conducting
plane removed.