2.4 mst prim’s algorithm

Krish_ver2 1,135 views 29 slides May 07, 2015
Slide 1
Slide 1 of 29
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29

About This Presentation

Data Structure-mst prim’s algorithm


Slide Content

Spanning Trees and Minimum Spaning
Trees
spanning tree: (for connected, undirected
graph)
minimal set of edges that connect all
vertices (no cycles)
Minimum spanning tree: (for connected,
undirected and weighted graph)
minimal set of edges that connect all
vertices such that the sum of weights is
minimum.

Prim’s Algorithm
Similar to Dijkstra’s Algorithm except that d
v
records edge
weights, not path lengths

Prim's Algorithm
MST=NULL;
Select an edge of min weight and add it to MST
Iteration:
repeat till n-1 edges are added to MST
1.select an edge (v1,v2) such that v1 is in MST and v2 is
not in MST
2.add it to MST
Initialization:

Prims Algorithm
Input:
A connected weighted graph G = {V, E}
Initialization:
VMST = EMST = null
Select an aribitrary vertex, x, from V
add x to VMST
Iteration:
for i = 1 to |V|-1
select an edge v1,v2 with minimum weight such that
v1 V

MST and v2 V \ V

MST
Add v1 to VMST
Add (v1,v2) to EMST
return EMST

Walk-Through
Initialize array
K d
v
p
v
A F ¥ -
B F ¥ -
C F ¥ -
D F ¥ -
E F ¥ -
F F ¥ -
G F ¥ -
H F ¥ -
4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
2

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Start with any node, say D
K d
v
p
v
A
B
C
D T 0 -
E
F
G
H
2

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Update distances of
adjacent, unselected nodes
K d
v
p
v
A
B
C 3D
D T 0 -
E 25D
F 18D
G 2 D
H
2

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Select node with minimum
distance
K d
v
p
v
A
B
C 3D
D T 0 -
E 25D
F 18D
G T 2 D
H
2

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Update distances of
adjacent, unselected nodes
K d
v
p
v
A
B
C 3D
D T 0 -
E 7 G
F 18D
G T 2 D
H 3 G
2

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Select node with minimum
distance
K d
v
p
v
A
B
C T 3D
D T 0 -
E 7 G
F 18D
G T 2 D
H 3 G
2

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Update distances of
adjacent, unselected nodes
K d
v
p
v
A
B 4 C
C T 3D
D T 0 -
E 7 G
F 3 C
G T 2 D
H 3 G
2

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Select node with minimum
distance
K d
v
p
v
A
B 4 C
C T 3D
D T 0 -
E 7 G
F T 3 C
G T 2 D
H 3 G
2

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Update distances of
adjacent, unselected nodes
K d
v
p
v
A 10F
B 4 C
C T 3D
D T 0 -
E 2 F
F T 3 C
G T 2 D
H 3 G
2

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Select node with minimum
distance
K d
v
p
v
A 10F
B 4 C
C T 3D
D T 0 -
E T 2 F
F T 3 C
G T 2 D
H 3 G
2

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Update distances of
adjacent, unselected nodes
K d
v
p
v
A 10F
B 4 C
C T 3D
D T 0 -
E T 2 F
F T 3 C
G T 2 D
H 3 G
2
Table entries unchanged

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Select node with minimum
distance
K d
v
p
v
A 10F
B 4 C
C T 3D
D T 0 -
E T 2 F
F T 3 C
G T 2 D
H T 3 G
2

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Update distances of
adjacent, unselected nodes
K d
v
p
v
A 4 H
B 4 C
C T 3D
D T 0 -
E T 2 F
F T 3 C
G T 2 D
H T 3 G
2

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Select node with minimum
distance
K d
v
p
v
A T 4 H
B 4 C
C T 3D
D T 0 -
E T 2 F
F T 3 C
G T 2 D
H T 3 G
2

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Update distances of
adjacent, unselected nodes
K d
v
p
v
A T 4 H
B 4 C
C T 3D
D T 0 -
E T 2 F
F T 3 C
G T 2 D
H T 3 G
2
Table entries unchanged

4
25
A
H
B
F
E
D
C
G
7
2
10
18
3
4
3
7
8
9
3
10
Select node with minimum
distance
K d
v
p
v
A T 4 H
B T 4 C
C T 3D
D T 0 -
E T 2 F
F T 3 C
G T 2 D
H T 3 G
2

4
A
H
B
F
E
D
C
G
2
3
4
3
3
Cost of Minimum Spanning
Tree = S d
v
= 21
K d
v
p
v
A T 4 H
B T 4 C
C T 3D
D T 0 -
E T 2 F
F T 3 C
G T 2 D
H T 3 G
2
Done

How many squares can you create in this figure by connecting any 4
dots (the corners of a square must lie upon a grid dot?
TRIANGLES:
How many triangles are located in the image below?

There are 11 squares total; 5 small, 4 medium, and 2 large.
27 triangles. There are 16 one-cell triangles, 7 four-cell triangles, 3 nine-cell
triangles, and 1 sixteen-cell triangle.

GUIDED READING

ASSESSMENT