EXPERIMENT AND RESULT EXPERIMENT – BASELINE [1] Yu, B., Yin, H., & Zhu, Z. (2017). Spatio -temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875. [2] Wu, Z., Pan, S., Long, G., Jiang, J., & Zhang, C. (2019). Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121. [3] Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., & Zhang, C. (2020, August). Connecting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 753-763). [4] Xu, M., Dai, W., Liu, C., Gao, X., Lin, W., Qi, G. J., & Xiong, H. (2020). Spatial-temporal transformer networks for traffic flow forecasting. arXiv preprint arXiv:2001.02908. [5] Zheng, C., Fan, X., Wang, C., & Qi, J. (2020, April). Gman : A graph multi-attention network for traffic prediction. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 01, pp. 1234-1241). [6] Li, Y., Yu, R., Shahabi , C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926.. [7] Cao, D.; Wang, Y.; Duan, J.; Zhang, C.; Zhu, X.; Huang, C.;Tong , Y.; Xu, B.; Bai, J.; Tong, J.; et al. 2020. Spectral temporal graph neural network for multivariate time-series forecasting. Advances in Neural Information Processing Systems, 33: 17766–17778. [8] Bai, L., Yao, L., Li, C., Wang, X., & Wang, C. (2020). Adaptive graph convolutional recurrent network for traffic forecasting. Advances in neural information processing systems, 33, 17804-17815. [9] Ye, J., Sun, L., Du, B., Fu, Y., & Xiong, H. (2021, May). Coupled layer-wise graph convolution for transportation demand prediction. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 5, pp. 4617-4625). [10] Shang, C., Chen, J., & Bi, J. (2021). Discrete graph structure learning for forecasting multiple time series. arXiv preprint arXiv:2101.06861. [11] Lee, H., Jin, S., Chu, H., Lim, H., & Ko, S. (2021). Learning to remember patterns: pattern matching memory networks for traffic forecasting. arXiv preprint arXiv:2110.10380. SOTA model : Naive : Historical Average. Fully Convolutional : STGCN[1], GraphWaveNet [2], MTGNN[3]. Transformer-based : STTN[4], GMAN[5]. GCRN-based : DCRNN[6], StemGNN [7], AGCRN[8], CCRNN[9], GTS[10], PM- MemNet [11]. Graph Structure learner: Adaptive : GraphWaveNet , MTGNN, CCRNN, GTS. Momentary : StemGNN .