EXPERIMENT AND RESULT EXPERIMENT SETTINGs Dataset: Traffic dataset PeMS in California . Baselines: Retraining learning: TCN, STGCN[1], STNN[2], ST-GAM[3], and DSTG+AD (DSTG with all available data). Continuous learning: DSTG+SK(STKEC)[4], DSTG+TS(Traffic Stream)[5], and DSTG+NN(new nodes with N-hop neighbors to fine-tune all parameters. Online learning: DSTG-Static(no fine-tuning). [1] Yu, B., Yin, H., & Zhu, Z. (2017). Spatio -temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875. [2] Yang, S., Liu, J., & Zhao, K. (2021, December). Space meets time: Local spacetime neural network for traffic flow forecasting. In 2021 IEEE International Conference on Data Mining (ICDM) (pp. 817-826). IEEE. [3] Wang, P., Zhu, C., Wang, X., Zhou, Z., Wang, G., & Wang, Y. (2022). Inferring intersection traffic patterns with sparse video surveillance information: An st-gan method. IEEE Transactions on Vehicular Technology, 71(9), 9840-9852. [4] Wang, B., Zhang, Y., Wang, P., Wang, X., Bai, L., & Wang, Y. (2023, April). A Knowledge-Driven Memory System for Traffic Flow Prediction. In International Conference on Database Systems for Advanced Applications (pp. 192-207). Cham: Springer Nature Switzerland. [5] Chen, X., Wang, J., & Xie, K. (2021). TrafficStream : A streaming traffic flow forecasting framework based on graph neural networks and continual learning. arXiv preprint arXiv:2106.06273. Measurement : Mean Absolute Error(MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE).