EXPERIMENT AND RESULT EXPERIMENT SETTINGs Dataset: NYC- Bike and BJ- Bike . Baselines: Spatial-Temporal GNN: STGCN[1], STGODE[2], CCRNN[3], DMSTGCN[4], GMAN[5], ASTGNN[6], and DGCRN[7]. Measurement : Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error(MAPE) . [1] Yu, B., Yin, H., & Zhu, Z. (2017). Spatio -temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875. [2] Fang, Z., Long, Q., Song, G., & Xie, K. (2021, August). Spatial-temporal graph ode networks for traffic flow forecasting. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining (pp. 364-373). [3] Ye, J., Sun, L., Du, B., Fu, Y., & Xiong, H. (2021, May). Coupled layer-wise graph convolution for transportation demand prediction. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 5, pp. 4617-4625). [4] Han, L., Du, B., Sun, L., Fu, Y., Lv , Y., & Xiong, H. (2021, August). Dynamic and multi-faceted spatio -temporal deep learning for traffic speed forecasting. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining (pp. 547-555). [5] Zheng, C., Fan, X., Wang, C., & Qi, J. (2020, April). Gman : A graph multi-attention network for traffic prediction. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 01, pp. 1234-1241). [6] Guo, S., Lin, Y., Wan, H., Li, X., & Cong, G. (2021). Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Transactions on Knowledge and Data Engineering, 34(11), 5415-5428. [7] Li, F., Feng, J., Yan, H., Jin, G., Yang, F., Sun, F., ... & Li, Y. (2023). Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution. ACM Transactions on Knowledge Discovery from Data, 17(1), 1-21.