3D-Printing of Three-Dimensional Graphene Aerogels with Periodic Macropores for Supercapacitor Electrodes

TianyuLiu9 593 views 28 slides Nov 29, 2018
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

2018 Fall MRS oral presentation, ET07.05.03


Slide Content

3D-Printing of Three-Dimensional Graphene
Aerogels with Periodic Macroporesfor
Supercapacitor Electrodes
Dr. TianyuLIU
YatLi Lab
Department of Chemistry and Biochemistry
University of California, Santa Cruz
11/2018
ET07.05.03

Outline
Background of Supercapacitors
Motivation –The Desirable Architecture?
3D Printed Periodic Macro-porous Graphene
Aerogels
Sequels
Summary

Background of Supercapacitors
Motivation –The Desirable Architecture?
3D Printed Periodic Macro-porous Graphene
Aerogels
Sequels
Summary
Outline

Supercapacitors
Electrochemical energy storage devices
Charging Time
Liu T. et al., J. Mater. Chem. A, 2017, 5, 17705-17733
< 1s to ~100 s
~ hours
(Supercapacitors)
(Batteries)
vs.

Capacitance
??????????????????????????????????????????????????????????????????(??????)=
Capacity(C)
PotentialWindow(V)
A measure of the
amount of charge (energy) stored
➢A figure-of-meritof supercapacitors and their electrodes

Mechanisms
Electrical Double
Layer Capacitance
Pseudo-
capacitance
Activated Carbon,
CNT, Grapheneetc.
Conjugated polymers,
metal oxides etc.
ET03.10.07
Th, 10:30 am –10:45 am
Hynes, Level 3, Room 302
Capacitance

Background of Supercapacitors
Motivation –The Desirable Architecture?
3D Printed Periodical Macro-porous Graphene
Aerogels
Sequels
Summary
Outline

Desirable Architecture?
Thin Film
Thick Electrode
✓Large amount of active materials –high
capacitance and energy density
Sluggish ion diffusion –low power density
✓Facile ion diffusion –high power density
Small amount of active material –low
capacitance and energy density

Thick Electrode
✓Large amount of active materials –high
capacitance and energy density
Sluggish ion diffusion –low power density
✓Large amount of active materials –high
capacitance and energy density
✓Facile ion diffusion –high power density
Porous Thick Electrode
Desirable Architecture?
Pore structure?

Ion Diffusioneff
D
D

= eff
D
D






Diffusion coefficient diffusing
through a porous structure
Diffusion coefficient within
pores
Porosity
Tortuosity
-Rate Capability
Keywords: thick; pores; straightforward ion-diffusion

Outline
Background of Supercapacitors
Motivation –The Desirable Architecture?
3D Printed Periodic Macro-porous Graphene
Aerogels
Sequels
Summary
Zhuand Liu et al. Nano Lett., 2016, 16, 3448-3456

Direct Ink Writing
Nano Lett., 2016, 16, 3448-3456

Synthesis Protocol
1 mm
d = 0.2 mm
L = 0.7 mm

Rate Capability

Electrochemical Impedance Spectroscopy

Ink Compositions
Sample
GO
(wt%)
GNP
(wt%)
SiO
2
(wt%)
SA
BET(m
2
∙g
-1
)
Resistance
(Ω∙sq
-1
)
(a) GO-SiO
2 3.3 0.0 16.7 739 61.1
(b) GO-GNP-SiO
2-13.3 4.2 12.5 302 10.3
(c) GO-GNP-SiO
2-2 3.3 12.5 4.2 418 0.96
(d) GO-GNP 3.3 16.7 0.0 436 2.22
1 µm
The scale bar of the inset is 250 µm.

Electrochemical Performance
3D-printed electrodes
GO-GNP-SiO
2-2
~90%

Background of Supercapacitors
Motivation –The Desirable Architecture?
3D Printed Periodic Macro-porous Graphene
Aerogels
Sequels
Summary
Outline

Rate Capability

#1-Ion Intercalation Capacitance Boosting
ChemNanoMat, 2016,2, 635-641
  

#1-Ion Intercalation Capacitance Boosting
ChemNanoMat, 2016,2, 635-641

C
G+ Li
+
+e
-
→ C
G
-
-Li
+

[surface roughening and exfoliation]

#1-Ion Intercalation Capacitance Boosting
ChemNanoMat, 2016,2, 635-641
  
C
G+ Li
+
+e
-
→ C
G
-
-Li
+

[surface roughening and exfoliation]
C
G+ ClO
4
-
→ C
G
+
-ClO
4
-
+e
-

C
G
+
-ClO
4
-
+ H
2O → C
G-OH + HClO
4
4C
G
+
-ClO
4
-
+ 2H
2O → 4C
G+ O
2+4H
+
+4ClO
4
-
[surface functionalization with oxygen-functionalities]

Morphological Evolution
Untreated
Treated
C-OH
C=O
~90%
~84%250 µm
250 µm
1 µm
1 µm

#2-MnO
2Pseudocapacitors
Joule, 2018,DOI: 10.1016/j.joule.2018.09.020

Outline
Background of Supercapacitors
Motivation –The Desirable Architecture?
3D Printed Periodic Macro-porous Graphene
Aerogels
Sequels
Summary

Summary
Direct Ink Writing
❑Ink preparation
Periodic Macropores
❑Facilitate ion diffusion
❑Improve rate capability
Sequels
❑Ion-intercalation modification
❑Support for high-mass-loading MnO
2

Acknowledgements
Prof. YatLi Group, UCSC
Christopher
Spadaccini
Our Collaborators
Cheng Zhu Marcus
Worsley
Eric
Duoss
Chancellor’s Dissertation-year Fellowship

ET03.10.07
10:30 am –10:45 am, 11/29
Hynes, Level 3, Room 302
Ostwald Ripening of MnO
2for Pseudocapacitors