4-Axial Members, Beams & Frames (1) (1).pdf

abdullahshaukat0444 12 views 34 slides Mar 09, 2025
Slide 1
Slide 1 of 34
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34

About This Presentation

vbv


Slide Content

4. Axial Members, Beams & Frames
ME 411
Introduction to FEA
1

4. Axial Members, Beams & Frames
2
Introduction

4. Axial Members, Beams & Frames
3
Introduction

4. Axial Members, Beams & Frames
4
Interpolation function

4. Axial Members, Beams & Frames
5
Interpolation function

4. Axial Members, Beams & Frames
6
Shape functions

4. Axial Members, Beams & Frames
7
Shape functionsx
x
1 x
2
El #112
2
1
xx
x-x
(x)N

= 12
1
2
xx
x-x
(x)N

=
1 1

4. Axial Members, Beams & Frames
8
Shape functionsx
x
1 x
2
El #12x
12
1
1x
12
2(1)
d
xx
x-x
d
xx
x-x
(x)w

+

= 3x
23
2
2x
23
3(2)
d
xx
x-x
d
xx
x-x
(x)w

+

= x
3El #2

4. Axial Members, Beams & Frames
9
Shape functions

4. Axial Members, Beams & Frames
Problem
•In the accompanying figure, the deflection of nodes 2 and 3 are 0.02 mm
and 0.025 mm, respectively. What are the deflections at point A and point
B, provided that linear elements were used in the analysis?
10

4. Axial Members, Beams & Frames
Problem
11

4. Axial Members, Beams & Frames
12
Beam Introduction

4. Axial Members, Beams & Frames
13
Beam Introduction

4. Axial Members, Beams & Frames
Beam Introduction
14

4. Axial Members, Beams & Frames
15
Beam Element

4. Axial Members, Beams & Frames
16
Shape Functions

4. Axial Members, Beams & Frames
17
Shape Functions

4. Axial Members, Beams & Frames
18

4. Axial Members, Beams & Frames
19
Quadratic Form U dkd
T
= m atrixsquarek
v ectord
=
= 





=






=
2221
1211
2
1
kk
kk
k
d
d
d  
 
2
2222112
2
111
22211222121111
222112
212111
21
2
1
2212
1211
21
2
)()(
U
dkddkdk
dkdkddkdkd
dkdk
dkdk
dd
d
d
kk
kk
dddkd
T
++=
+++=






+
+
=












==

4. Axial Members, Beams & Frames
20
Quadratic Form212111
1
22
U
dkdk
d
+=

 222112
2
22
U
dkdk
d
+=

 dk
d
d
kk
kk
d
d
d
2
2
U
U
U
2
1
2212
1211
2
1
=












=




















4. Axial Members, Beams & Frames
21
Stiffness Matrix

4. Axial Members, Beams & Frames
22
Load Matrix

4. Axial Members, Beams & Frames
23
Load Matrix

4. Axial Members, Beams & Frames
Problem
•Compare the finite element solution to the exact classical beam theory
solution for the cantilever beam shown. Let ??????= 210 GPa,
??????= 4 ×10
−5
m
4
, ??????= 2.5 m, and uniform load ??????= 4 kN/m.
24

4. Axial Members, Beams & Frames
Problem
25

4. Axial Members, Beams & Frames
Problem
26

4. Axial Members, Beams & Frames
Problem
27

4. Axial Members, Beams & Frames
28
Frame Introduction

4. Axial Members, Beams & Frames
29
Frame Element

4. Axial Members, Beams & Frames
30
Transformation matrix

4. Axial Members, Beams & Frames
31
Stiffness matrix

4. Axial Members, Beams & Frames
32
Stiffness matrix

4. Axial Members, Beams & Frames
33
Stiffness matrix

4. Axial Members, Beams & Frames
Problem
34
Tags