4. Relativity and its use in real life with applications

AryanAwasthi13 70 views 86 slides Jul 08, 2024
Slide 1
Slide 1 of 86
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86

About This Presentation

Physics topic relativity for engineering subject physics-1


Slide Content

1,000,000 ms
-1
1,000,000
ms
-1
■HowfastisSpaceshipAapproaching
SpaceshipB?
■BothSpaceshipsseetheotherapproachingat
2,000,000ms
-1
.
■ThisisClassicalRelativity.

Einstein’s Special Relativity
1,000,000 ms
-1
0 ms
-1
300,000,000
ms
-1
Both spacemen measure the speed of the approaching ray of light.
How fast do they measure the speed of light to be?
•Stationary man 300,000,000 ms
-1
•Man travelling at 1,000,000 ms
-1
–301,000,000 ms
-1
?
–Wrong!
TheSpeedofLightis
thesameforallobservers

Observer in car
Observer on earth
Here we can see the Effect of Reference frame on the
Observations taken by the observer.

SPECIAL THEORY OF
RELATIVITY

“……..Undoubtedly mechanics was a
snapshot of slow and real motions, while
new physics is a snapshot of fabulously
swift and real motions……..”
V.I.Lenin

Fundamentals of Physics~ R.Resnick,
D.Halliday,
Fifth Edition~ John Wiley & Sons,
Inc.~ Singapore.
Fundamentals of Modern Physics~
Arthur Beiser ~ Fifth Edition ~1995

Special Relativity
•Special Relativity
–Galilean transformation
–Basic Postulates.
–Lorentz transformation
•Length contraction
•Time dilation
•Rest mass is least, relativistic mass.
•Energy mass equivalence.

•SpecialRelativity:Allmotionisrelative;thespeed
oflightinfreespaceisthesameforanobserver.
(Einstein1905)
•Framesofreferences;SandS’
–Inertialframeofreference;Newton’slaw’sofmotion
hold.
–Nouniversalframeofreference.“absolutemotion”
Generalrelativity:Describestherelationshipbetween
gravityandthegeometricalstructure.(notinsyllabus)

What is an inertial frame of reference?
A frame of reference is a system of
co-ordinates. An inertialframe is one
that’s not accelerating.

Frames of Reference

2 Simple Postulates
•“Thelawsofphysicsarethesamein
everyinertialframeofreference”
–ThePrincipleofRelativity
•“Thespeedoflightinvacuumisthe
sameinallinertialframesofreference,
andisindependentofthemotionofthe
source”
–Invarianceofthespeedoflight

First Postulate
“The laws of physics are the same in
every inertial frame of reference”

Spot the Difference?

Newtonian Principle of Relativity
•IfNewton’slawsarevalidinonereferenceframe,then
theyarealsovalidinanotherreferenceframemovingata
uniformvelocityrelativetothefirstsystem.
•ThisisreferredtoastheNewtonianprincipleof
relativityorGalileaninvariance.
x
z
y
If the axes are also parallel, these frames are said to be Inertial
Coordinate Systems
O
S

Galilean-Newtonian Relativity

Experiment at rest
Experiment in moving frame
Same result. Ball rises and ends up in the thrower’s hand. Ball in
the air the same length of time.
Experiment looks different from ground observer (parabolic
trajectory, speed as a function of time) and observer on the truck.
However, they both agree on the validity of Newton’s laws.

Second Postulate
“The speed of light in vacuum is the same
in all inertial frames of reference, and is
independent of the motion of the source”
(Speed of light c= 3 x 10
8
metres/second
= 670,616,629 mph)

v

v
uu-v

v
c

Galilean transformation:
•Theequationrelatingthecoordinatesofa
particleintwoinertialframes(whose
relativevelocityisnegligibleincomparison
tothespeedoflight)arecalled
GALILEANTRANSFORMATION .

The Galilean Transformation
•For a point P:
–In one frame S: P = (x, y, z, t)
–In another frame S’:P = (x’, y’, z’, t’)
x
z
yS
P = (x, y, z, t)
P = (x’, y’, z’, t’)

Inertial Frames S and S’
•SisatrestandS’ismovingwithvelocity‘v’
•Axesareparallel
•SandS’aresaidtobeINERTIALCOORDINATE
SYSTEMS
24
S
S’

The Galilean Transformation
For a point P
In system S: P = (x, y, z, t)
In system S’: P = (x’, y’, z’, t’)
25
x
K
P
K’
x’-axis
x-axis
S
S’
vt X’

Conditions of the Galilean
Transformation
•Parallel axes
•K’ has a constant relative velocity in the x-direction
with respect to K
•Time(t) for all observers is a Fundamental invariant,
i.e., the same for all inertial observers
26
S S’

The Inverse Relations
Step 1. Replace with .
Step 2. Replace “primed” quantities with
“unprimed” and “unprimed” with “primed.”
27x x vt
S S’

Anobserverinthelaboratoryseestwoparticlescollidingat
x=20.5m,y=0,z=0andt=7.2s.Whataretheco
ordinatesofthiseventinaframemovingat30.5m/swith
respecttothelaboratoryframe?
Ans:x’=-199.1m,y’=0,z’=0andt’=7.2s.
x
z
yK
P = (x, y, z, t)
P = (x’, y’, z’, t’)
Numerical

The constancy of the speed of light
ConsiderthefixedsystemSandthemovingsystemS’.
Att=0,theoriginsandaxesofbothsystemsare
coincidentwithsystemS’movingtotherightalongthex
axis.
Aflashbulbgoesoffatbothoriginswhent=0.
Accordingtopostulate2,thespeedoflightwillbecinboth
systemsandthewavefrontsobservedinbothsystems
mustbespherical.S

The constancy of the speed of light is not
compatible with Galilean transformations.
Spherical wavefronts in S:
Spherical wavefronts in S’:
Note that this cannot occur
in Galilean transformations:
There are a couple
of extra terms (-
2xvt + v
2
t
2
) in the
primed frame.vx x t
yy
zz
tt



 2 2 2 2 2 2 2 2 2 2
( 2 v v )x y z x x t t y z c t          

The Lorentz Transformations
The special set of linear transformations that:
preservetheconstancyofthespeedoflight(c)
betweeninertialobservers;withtheassumption
thatthetimeisnotanabsolutequantity
Therefore t t
known as the Lorentz transformation equations
32

Derivation
33


Consider a system of two inertial frames of references S and S .
S: is at rest and S : is a moving frame with constant velocity v relative to S
(x,y,z,t) coordinates of event P for an observer O in
     

the stationary frame S
(x ,y ,z ,t ) coordinates of event P for an observer O in the moving frame S
Let x = (x-vt) ....(1) γ : proportionality constant.
According to first
  


postulate of Special Theory of Relativity
Therefore x= (x +vt ) ....(2) where t t
According to second postulate of Special Theory of Relativity
The wavefront along x, x axis must sa




tisfy
x=ct and x =ct
Thus substitute the value of x and x in eq (1)and (2) respectively.
ct = (c-v)t and ct= (c+v)t
Multiply these equations and solve it for 22
1
1 v / c


2
x
x [ (x - vt) vt ] (x - vt) vt
x x x 1
t t (1 )
v v v
x = (x-vt) ....(1) x= (x +vt ) ....(2)
From eq(1) and eq(2)
or
t = or t =
similarly t
  
      


      

2
x1
t (1 )
v
=

  
 Derivation2
2
2
xv
t
c
t
v
1
c


 2
2
2
xv
t
c
t
v
1
c



Properties of γ22
1
1 v / c


Lorentz Transformation Equations

22
v
1 v /
xt
x
c


 2
22
v/
1 v /
t x c
t
c


 yy zz The complete Lorentz
Transformation
If v << c, i.e., v/c≈0 and ≈ 1, yielding the familiar Galilean transformation.
Space and time are now linked, and the frame velocity cannot exceed c.22
v
1 v /
xt
x
c


 2
22
v/
1 v /
t x c
t
c


 yy zz
Length
contraction
Simultaneity
problems
Time
dilation

Consequence of Relativity
The Major Consequences To This Theory are:-
Length Contraction
Time Dilation
Mass Expansion

Lorentz Contraction
A fast-
moving
plane at
different
speeds.
v = 10% c
v = 80% c
v = 99.9% c
v = 99% c

Length contraction
Z
X
Y
Z’
Y’
X’
S
S’v2
o 2 1
1
0
22
22
22
oo 22
xx L
L
vv
11
cc
vv
or L L 1 , 1 1, So L L
cc







    

A rod is lying along the x axis of the moving frame S
In S frame, real length
L =x -x
Using Larentz Transformation
L is observed lenthe gth
Motion produces elastic froces which in turn
produce contra
(apparent le
ction in ato
of the rod
in S
mic constitution
ngth)
of m
fra
at
me.
ter.

2 2 2 2 2 2 2 2 2 2
y z c t x y z c t
Imp: Prove that
x
under Lorentz Transformation
          22
o
1 v / c
o
Therefore L=L
The length (L ) of an object in motion with respect
to an observer (in S Frame) appears to be shorter,
this phenomenon is knownLorentz FitzGerald
contraction or Length
as
Cont
o
.
Case I : if v=0, L= ?
Case II: if v=c, L=?
Exercise : Find L when L =1m
and v
ract
=0
ion
.9c. Length contraction

•Time between ‘ticks’ = distance / speed of light
•Light in the moving clock covers more
distance…
–…but the speed of light is constant…
–…so the clock ticks slower!
•Moving clocks run more slowly!
V
Time Travel!

Time Dilation
2L
o
L
o

The time interval required for the
pulse to travel from O ' to mirror
back is
2distance traveled
speed
  
o
p
L
t
c Time DilationThe proper timeintervalisthetime interval
betweentwoeventsmeasuredbyanobserver
who seestheeventsoccuratthesame point
inspace.
L
o
2L
o

Time Dilation
2L
o

22
2
2
2
2
2
1
1;
2
2
2
p
p
2
c t v t
22
22
Solve for t=
c
1
c
UsingEquation Where
1
t
tt
1
cc







o
oo
L
LL
t
v v
c
vv
 
   

   
   






 According to the second postulate of the special theory of relativity, both
observers must measure c for the speed of light. Because the light travels
farther according to O, the time interval measured by O is longer than
the time interval measured by O'. To obtain a relationship between these
two time intervals, we use this figure p
thetimeintervalΔtmeasuredby
anobservermovingwithrespecttoaclockislongerthantheti
Be
meintervalΔt
measuredbyanob
causeγ isalwaysgreaterthanun
serveratrestwithrespecttoth
ity
ecl
,thus
ock. Time Dilation
L
o

Time Dilation

Let us see the effect of Time dilationon a Radio active mass.
When the Disintegrating Mass is at Restw.r.t. the Observer.
Here Each Dot in the radioactive atom represents an atom
OOOO……..
So in 10 seconds 2out of 10
atoms are left.

When the Disintegrating Mass is at Movingw.r.t. the Observer.
Here Each Dot in the radioactive atom represents an atom
Impossible!!!!
Howinthesametimei.e.
10s,5atomsareleftoutof
10atoms.
Here the active mass is movingat an velocity comparable to c.

Aparticlewithaproperlifetimeof1µsmoves
at0.9c.Whatisitslifetimeasmeasuredby
observersinthelaboratory?
Ans:2.294μs.
Numerical

OnEarth,mostnaturallyoccurringmuonsarecreatedbycosmicrays,
whichconsistmostlyofprotons,manyarrivingfromdeepspaceatvery
highenergy
.
About10,000muonsreacheverysquaremeteroftheearth'ssurfacea
minute;thesechargedparticlesformasby-productsofcosmicrays
collidingwithmoleculesintheupperatmosphere.
Travelingatrelativisticspeeds,muonscanpenetratetensofmetersinto
rocksandothermatterbeforeattenuatingasaresultofabsorptionor
deflectionbyotheratoms.
What is muons?

Example of Time Dilation
6.610
2
m
Muon is created
Muon decays
Thelifetimeofμmesonsis2.2μsandtheir
speed0.998c,sothattheycancoveronlya
distanceof0.998cx2.2μsor0.66kmin
theirlifetime,andyettheyarefoundin
profusionatsealevel,i.e.,atadepthof10.4
kmfromtheupperatmospherewherethey
areproduced.Howmaythisbeexplainedon
thebasisof(i)lengthcontraction(ii)time
dilation?

Example of Time Dilation
Muon is created
Muon decays22
(i) Length contraction:
t 2.2 , L =2.2 0.998 0.66
Distance on the earth,
L L 1 / L 10.42 10
p
oo
s s c km
v c km km
  
     22
(ii) Time Dilation
t
t= 34.8
1/
distance travelled on the earth
34.8 0.998 10.42 10
p
ts
vc
s c km km





   

Twin paradox

Twin paradoxQuestion: Twins A and B are 20 years each. Twin A travels towards a star 30 light years
away at a speed 0.8c. He thenreturns home. Twin B remains at the home. What are the
two observations different? A. In B's frame of reference, The time spent in journey is 75
o
2l
t= years
0.8c
 75 0.6 45


p
t
The time spent by A t years   
 Hence in B's frame of reference, Age of A=20+45=65 years
Age of B=20+75=95 years B. From A's point of view, In his moving frame of reference, length appears to be contracted 
2
2
30 1 0.8 18
o 2
v
L L 1 light years
c
     18
22.5
0.8
L
Thustimetakeninthe outward trip is year
v
 Similarly time taken in the return trip is 22.5 years. 
p
Therefore time lapsed in A frame of reference t =45 years. 45 0.6 75
p
For B on the ground t= t years    Hence in A's frame of reference, Age of A=20+45=65 years
Age of B=20+75=95 years

Consider two lights which can be switched on at the
same time.
IfDobsonisexactlythesamedistancefrombulbA
asbulbB,andisnotmoving,hewillseeboth
lightsgoonatthesametime.
The eventof the lights turning on appears to
Dobson to be simultaneous.
NowsupposeDobsonismovingtotheright.Atthe
instantheisatthecenter,thelightsare
switchedon.WhatwillDobsonsee?
A B
A B
The relativity of simultaneity:
"Events which are simultaneous in one reference
frame may not be simultaneous in another."
Relativity of Simultaneity

Lorentz Consequence of Simultaneity of Events Consider two inertial frames S and S'. S' moving with velocity v relative to S
along positive direction of x-axis. If t is the time of an event at position x in
frame S, time t' in frame S' is gi
2
'
2
2
1
ven by
vx
t
c
t
v
c


 12
1 2 1 2 1 2
Suppose two events occurs simultaneously at instant (t = t ) at different positions
x and x (x x ) in reference frame S. The corresponding times t ' and t '
in frame S' are given by
 12
12 22
12
22
22
' & ' ;
11
vx vx
tt
cc
tt
vv
cc


 Will the two events occurring
simultaneously in S appea
Since space and time are relative, the question arises;
r simultaneously in S' or vi

The answece-ve r isrsa? No. Therefore   
2 1 1 2 2
21
2
2
''
1
  


v
t t x x
c
tt
v
c

 
 
   
122
1 2 1 2 2 1 2 1
2
2
1 2 1 2
& ' ' 0; ' '
1
v
xx
c
Butt t x x t t t t
v
c
That is two events simultaneously t t at different positions x x
in frame S are, in general, not simultaneously in another reference frame
Thus t
S'.
h

       


e two events do not appear simultaneous in S'.
Or
Simultaneity is not absolute. Thereisnothinglike“absolutetime”whichissameforallobserver.
Timeisrelativeandisdifferentforobserversinrelativemotion.

Velocity Addition
Letusconsider,somethingismovingalongXaxis
relativetobothS(rest)andS’(movingwithvelocityv).
AnobserverinSmeasuresthreecomponentofvelocityto
be
ToanobserverinS’theyare
BydifferentiatingtheLorentztransformequationsforx’,
y’,z’andt’,weobtain   
2
2 2 2 2
dx-vdt dt-vdx/c
dx = , dy =dy, dz =dz, dt =
1-v /c 1-v /c x y z
dx dy dz
u = , u = , u =
dt dt dt   
  
  
x y z
dx dy dz
u = , u = , u =
dt dt dt ˆˆˆ
x y z
u=iu +ju +ku ˆˆˆ' ' '
x y z
u'=iu +ju +ku

 
x
x 2 2 2
x
Now we can write
u -vdx dx-vdt dx/dt-v
u = = = =
dt dt-vdx/c 1-v/c dx/dt 1-vu /c
This is relativistic velocity transformation equation.
Its Inverse transformation equation v = -v is


 Velocity Addition

x
x 2
x
u +v
u=
1+vu /c

Velocity Addition



yz
22
y 2
22
2
22
y
y 2
x
By applying the same technique we can
obtain transformation for u and u as
dy 1-v /cdy
u = =
dt 1-vdx/c
dy/dt 1-v /c
=
1-v/c dx/dt
u 1-v /c
u=
1-vu /c 
22
z
z 2
x
Similarly,
u 1-v /c
u=
1-vu /c

Example
Try more numerical
1.Twophotonsapproacheachother.Whatistheirrelative
velocity?
2.Onephotonandoneelectron(0.9c)approacheachother.
3.Twoelectrons(0.7c)approacheachother.x
x
x 2
x
uc
uv cv
u
1 vu / c 1 v
Let , means if a ray of light is emitted in the moving reference
frame S’ in the opposite direction of motion relative to S, an observer
in frame S will measure the velocity

 


2
c(c v)
c
c / c (c v)



Relativity of Mass
AccordingtoNewtonianmechanicsthe
massofabodyisunaffectedwithchangein
velocity.
Butspaceandtimechange……..
Therefore“mass”ofabodyisnolongerbe
unaffected

Herewewillseehowmasschangeswithvelocity.
ConsidertwoframesSandS’.
Consideranelasticcollisionbetweentwoperfectlyelastic
sphericalballsAandBinS’andviewitfromframeS.
Relativity of Mass

Relativity of Mass
Lettwoballshavingmassm
1andm
2aretravelingwithvelocitiesu’
and–u’paralleltox-axisinsystemS’.
Supposetwobodiescollideandcollapseintoone
AftercollisiontheyareatrestinsystemS’(asthevelocityoftwo
wasequalandopposite).

Relativity of Mass
LetusseethiscollisionfromframeS.
Asperlawofadditionofvelocities,thevelocitiesu
1andu
2inframe
Scorrespondingtou’and–u’inS’are12
22
u ' v u ' v
u u ...(2)
u 'v u 'v
11
cc
...(1) and
  


Applyingtheprincipleofconservationof
momentum:
m
1u
1+ m
2u
2= (m
1+m
2) v

Aftercollisionthetwobodiescollapseintooneandmovewith
velocityvasS’ismovingwithvelocityvw.r.t.S.(Thisisobserved
fromS) 
1 1 2 2 1 2
12
1 2 1 2 22
12 22
2
1
2
2
m u m u (m m )v (3)
u ' v u ' v
m m (m m )v
1 (u ' v / c ) 1 (u ' v / c )
u ' vu ' v
m v m v
1 (u ' v / c ) 1 (u ' v / c )
m1 (u ' v / c )
m 1 (u ' v / c )
  
  
  


  
 



....
substituting the value of u and u

2
2
1 2
....(4)
u ' v
1 (u ' v / c )




Now squaring eq(1)
u
Relativity of Mass

  
 
  
  
2 2 2 2
2
1
22
2
2 2 2 2
2
22
1
2 2 2 2
2
22
2
1
2
1 v / c 1 u / c
c
1 (u ' v / c )
1 v / c 1 u / c
1 (u ' v / c )
1 (u / c )
1 v / c 1 u / c
1- (u ' v / c )
1 (u / c )
m1 (u ' v / c
m











u
1-
or
Similarly,
Substituting these values in eq (4), we get
222
2
2 2 2
1
2
2o
o
1
2
1
1 (u / c ))
1- (u ' v / c ) 1 (u / c )
0, m
m
m
1 (u / c






If the body of mass m is at rest or moving with zero velocity, in
stationary frame S that is u before collision , the rest mass
of the body ,
2
) Relativity of Mass

This is the relative formula for variation of mass with
velocity.
m
0is called the rest mass and m is the effective mass.   
1 2 1
2 2 2 2
In commonly used notation m , m and u
1
or m
1 / 1 /
o
o
o
m m v
mm
m
v c v c
  


Relativity of Mass

Whenvissmallascomparedtoc,v
2
/c
2
<<<1
m=m
0i.e.atvelocitiesmuchsmallerthancthe
massofthemovingobjectissameasthemassat
rest.
Whenviscomparabletoc,the1-v
2
/c
2
<1,m>m
0
massofthemovingobjectisgreaterthanatrest.
Whenvc,v
2
/c
2
1,som=orimaginary.Thisisnon
senseconcept. 
22
m
1/
o
m
vc


Relativity of Mass

KineticEnergy=TotalEnergy-Rest massEnergy Relation between Mass and Energy
Limiting Case: When v << c2
2 2 2 0
00
22
1/
mc
K mc m c m c
vc
   
 2
0
1
Show that .
2
K E m v
Limiting Case: When v c
K.E. tends to infinity. to accelerate the particle to the speed
of light infinite amount of work would be needed to be done .

0 0 0
()
()
Integrating by parts ( )
s s mv
o
o
d m v
KE Fds ds vd m v
dt
xdy xy ydx

  

  
 o
o
o
o
o
o
o o o

Relativistic mass
Mass at rest.
Note:
1.Length contraction,
2.Time Dilation
3.Rest mass is least
Numerical:Astationarybodyexplodesintotwofragments
eachofmass1kgthatmoveapartatspeedsof0.6crelative
totheoriginalbody.Findthemassoftheoriginalbody.
Ans:2.5kg
Proof: do it yourself 
22
m
1/
o
m
vc

 2
2 0
22
2
0
TotalEnergy
1/
Rest mass energy or Potential energy
mc
E mc
vc
mc
  


Relativity of Mass

(1)PairProduction:whenaphotonofenergyequaltoorgreater
than1.02MeVpassesclosetoanatomicnucleus,itdisappears
andapairofelectronandpositroniscreatedi.e.
(GammaPhoton)=e
-
(electron)+e
+
(positron)
Positronisaparticleofsamemassaselectronbutequaland
oppositecharge.
(2)PairAnnihilation:whenanelectronandpositroncomeclose
together,theyannihilateeachotherandequalamountofenergy
isproducedintheformofapairof-rayphotons.
e
-
(electron)+e
+
(positron)=+
Examples of mass-energy equivalence

(1)PairProduction:whenaphotonofenergyequaltoorgreater
than1.02MeVpassesclosetoanatomicnucleus,itdisappears
andapairofelectronandpositroniscreatedi.e.
(GammaPhoton)=e
-
(electron)+e
+
(positron)
Positronisaparticleofsamemassaselectronbutequaland
oppositecharge.
(2)PairAnnihilation:whenanelectronandpositroncomeclose
together,theyannihilateeachotherandequalamountofenergy
isproducedintheformofaapirof-rayphotons.
e
-
(electron)+e
+
(positron)=+
Examples of mass-energy equivalence

Relation between Total energy (E) and momentum(p)  
 
 
2 2 4
22 00
2222
2 2 2
2200
2222
2 4 2 2 2
2 2 2 00
2 2 2 2
2 4 2 2
2 4 2 2 2
02 2 2 00
2 2 2 2
2 2 2 2 4
0
Now we have
1/1/

1/1/
(1 / ) (1 / )
1/
(1 / ) (1 / )
m c m c
E mc E
vcvc
m v m c v
and p mv p c
vcvc
m c m v c
E p c
v c v c
m c v cm c m v c
E p c
v c v c
E p c m c
   

   

   


  

 2 4 2 2
0
E m c p c

Relation between Kinetic energy (K) and momentum (p)2
0
2 4 2 2
2 4 2 2 2
0
1/ 2
22
2
024
But, E=
K=
or, K= 1 1
o
o
o
K E m c
m c p c
m c p c m c
pc
mc
mc


  





If v<<c, that is , p<<m
oc
2
, then
Neglecting higher order terms of binomial expansion, we get 22
2
0 24
K 1 ... 1
2
o
pc
mc
mc

  
 2
2
K As v<<c, then m =m
2
K (Classical Expression)
2
o
o
p
m
p
m


Limiting value of
Relativistic Kinetic Energy

Limiting value of Relativistic kinetic energy
Relativistic kinetic energy is 22
0
1/2
2
2
02
K mc m c
v
1 1 m c
c




  

 24
2
024
1 v 3 v
K 1 ............. 1 m c
2 c 8 c

    


Expanding by Binomial theorem
If v<<c i.e. v/c<<1 So2
22
002
1 v 1
K m c m v
2 c 2

This is expression for kinetic energy in non relativistic case.

1) When m
0=o and v<c, E=0, p=0
2) When m
0=o and v=c, E=0/0, p=0/0
indeterminate form, hence must have E and p.
Mass less Particle? 2
2
2
2 0
2
0
2
mc
E mc and
v
1
c
mv
p mv
v
1
c
We have 



Mass less Particle? Answer : is Photon.2 4 2 2
0
22
2
(1)
For massless particle , m 0
or p= (2)
Since = / (3)
(2) (3)
i.e. the velocity of the massless particle is same as that of
light
o
E m c p c
E
E p c pc
c
p mv Ev c
From and v c
    

     
     

2
2
in free space.
The energy of the particle ,
Where m is the mass equivalent to energy E, that is , /
, , .:Examplesof mass Photon Nel ues trs par ions
E pc mc
m
Gravti it
Ec
on tes ccl se


A particle which has zero rest mass

Units of energy, mass and momentum
•Energy; eV, keV, MeV, GeV
•Mass; MeV/c
2
,
•Momentum: MeV/c
•Rest mass Energy of
–Electron: m
0c
2
=0.51MeV
–Proton: m
0c
2
=938 MeV
–Neutron: m
0c
2
=931 MeV
–Photon: m
0c
2
=0 as massless particle

Ex : Find the mass and speed of 2MeV electron.
m=3.55 10
-30
kg
v=2.90 10
8
ms
-1
Ex:Calculatethespeedofanelectronacceleratedthroughapotential
differenceof1.5310
6
volts.
Givenc=310
8
m/sec,m
o=9.110
-31
Kg,ande=1.610
-19
Coulomb
v=0.968c
Ex:Abodywhosespecificheatis0.2kcal/kg-
o
Cisheatedthrough
100
o
C.Findthe%increaseinitsmass.
%increase=9.3310
-11
%

Summary
•Special theory of relativity
–Basic Postulates
•Galilean transformation equations: v <<c
•Lorentz transformation equations: v ≈ c
•Length contraction:
•Time dilation:
•Addition of velocities
•Rest mass is least
•Energy –mass relationship
•Mass-less particle.2
2
1LL
0
c
v
 2
2
1
t
t
0
c
v

 2
2
1
m
m
0
c
v

 2242
0 cpcmE 

2
2 2 2 2
1 t xv / c
LTE(v c) x (x vt) y y z z t
1 v / c 1 v / c

         

; ; , ; Summary2
2
2
2
0
0
t
Length Contraction L L 1 Time Dilation t
1
v
c
v
c
    
 GTE (v<<c) : v ; ; ;x x t y y z z t t         


22 22
y zx
x y z 2 2 2
x x x
u 1-v /c u 1-v /cu +v
Velocity addition u = u = u =
1+vu /c 1-vu /c 1-vu /c 2
2
0
m
•Rest mass is least: m
1
v
c

 Postulates of STR : Newton’s laws hold good, Invariance of speed of light 2 4 2 2
0
Energy mass relationship:
for mass less particle
E m c p c
E pc
  