5th_SEM_EM_DVS_Unit_1.pdf5th sem Electrical machine notes 1st unit

rakeshmeenar5151 132 views 26 slides Sep 16, 2024
Slide 1
Slide 1 of 26
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26

About This Presentation

5th sem Electrical machine notes 1st unit


Slide Content

Subject Name: Electrical Materials
Subject Code: 5EE3-01
Credit: 2 Max. Marks: 100(IA:30, ETE:70)
2L+0T+0P End Term Exam: 3 Hours
SubjectTeacherName: Dr.VirendraSharma
Name of Department: Electrical Engineering
UNIT-1

SyllabusofEM:SubjectName:5EE3-01:ELECTRICALMATERIALS
Credit:2;2L+0T+0P; Max.Marks:100(IA:30,ETE:70); EndTermExam:3Hours
Sr. No. Contents Hours
1. Introduction:Objective,scopeandoutcomeofthecourse. 01
2. ElementaryMaterialsScienceConceptsBondingandtypesofsolids,Crystallinestateandtheir
defects,Classicaltheoryofelectricalandthermalconductioninsolids,temperature
dependenceofresistivity,skineffect,Halleffect.
05
3. DielectricPropertiesofInsulatorsinStaticandAlternatingfield:Dielectricconstantofmono-
atomicgases,poly-atomicmoleculesandsolids,Internalfieldinsolidsandliquids,Propertiesof
Ferro-Electricmaterials,Polarization,Piezoelectricity,FrequencydependenceofElectronicand
IonicPolarizability,Complexdielectricconstantofnon-dipolarsolids,dielectriclosses.
08
4. MagneticPropertiesandSuperconductivityMagnetizationofmatter,MagneticMaterial
Classification,FerromagneticOrigin,Curie-WeissLaw,SoftandHardMagneticMaterials,
Superconductivityanditsorigin,ZeroresistanceandMeissnerEffect,criticalcurrentdensity.
05
5. ConductivityofmetalsOhm’slawandrelaxationtimeofelectrons,collisiontimeandmeanfree
path,electronscatteringandresistivityofmetals.
04
6. SemiconductorMaterials:Classificationofsemiconductors,semiconductorconductivity,
temperaturedependence,Carrierdensityandenergygap,TrendsinmaterialsusedinElectrical
Equipment.
04
Total27

SyllabusofEM:SubjectName:5EE3-01:ELECTRICALMATERIALS
1.ElectricalandElectronicsEngineeringMaterials,JBGupta
2.A Course in Electrical Engineering Materials
Author :R.K. Rajput, Edition :First Edition, 2009, ISBN
:9788131807040, JBA Book Code :52675
3.C S Indulkar, S. Chand Publishing, 2008 -Technology & Engineering-
468 pages
A Textbook for the students of B.Sc.(Engg.), B.E., B.Tech., AMIE and
Diploma Courses. A new chapter on ""Semiconductor Fabrication
Technology and Miscellaneous Semiconductor Devices"" had been
included and additional self-assessment questions with answers and
additional worked examples had been provided at the end of the
BOOK.
Total27

ElementaryMaterialsScienceConcepts:(1)
ElementaryMaterialsSciencefocusesonunderstandingthefundamental
propertiesandbehaviorsofmaterials.Herearesomekeyconcepts:
1.AtomicStructureandBonding:
AtomsandElements:Thebasicbuildingblocksofmaterials,eachelement
havingauniqueatomicstructure.
BondingTypes:
IonicBonding:Transferofelectronsbetweenatoms.
CovalentBonding:Sharingofelectronsbetweenatoms.
MetallicBonding:Electronsarefreetomovewithinametallattice.
VanderWaalsForces:Weakattractionsbetweenmolecules.
2.CrystallineandAmorphousStructures:
CrystalLattices:Regular,repeatingarrangementofatomsinamaterial,
formingstructureslikeBody-CenteredCubic(BCC),Face-CenteredCubic(FCC),
andHexagonalClose-Packed(HCP).
AmorphousMaterials:Lackalong-rangeorderintheiratomicarrangement,
likeglassandsomepolymers.
UNIT-1

ElementaryMaterialsScienceConcepts:
3.DefectsinSolids:
PointDefects:Vacancies(missingatoms),interstitials(extraatomsinthelattice),and
substitutionaldefects(foreignatomsreplacinghostatoms).
LineDefects(Dislocations):Imperfectionsinthecrystalstructurethataffect
mechanicalproperties.
SurfaceDefects:Grainboundaries,wheredifferentcrystallineregionsmeet.
4.PhaseDiagrams:
Phases:Differentformsofamaterial,suchassolid,liquid,andgas.
PhaseDiagrams:Graphsshowingthestablephasesofamaterialatdifferent
temperaturesandpressures.
Eutectic,Peritectic,andSolidSolutions:Commonfeaturesinphasediagramsthat
describehowdifferentphasescoexistortransform.
5.MechanicalProperties:
StressandStrain:Stressistheforceappliedperunitarea,andstrainisthe
deformationcausedbystress.
ElasticityandPlasticity:Elasticmaterialsreturntotheiroriginalshapeafterstressis
removed;plasticmaterialsdonot.

ElementaryMaterialsScienceConcepts:
Hardness,Toughness,andDuctility:Measuresofamaterial'sresistanceto
deformation,fracture,andabilitytostretch.
6.ThermalProperties:
HeatCapacity:Theamountofheatrequiredtoraisethetemperatureofamaterial.
ThermalExpansion:Howmuchamaterialexpandswhenheated.
ThermalConductivity:Theabilityofamaterialtoconductheat.
7.ElectricalandMagneticProperties:
Conductivity:Theabilityofamaterialtoconductelectricity.
Semiconductors,Insulators,andConductors:Materialsclassifiedbasedontheir
abilitytoconductelectricity.
MagneticProperties:Howmaterialsrespondtomagneticfields,including
ferromagnetism,Paramagnetism,anddiamagnetism.
8.OpticalProperties:
RefractiveIndex:Ameasureofhowmuchlightisbentwhenenteringamaterial.
AbsorptionandTransmission:Howmaterialsabsorbandtransmitlight.
Luminescence:Emissionoflightbyamaterial,suchasfluorescenceand
phosphorescence.

ElementaryMaterialsScienceConcepts:
9.CorrosionandDegradation:
Oxidation:Acommonformofcorrosionwherematerials
reactwithoxygen.
ElectrochemicalCorrosion:
Degradationofmaterialsthroughelectrochemicalreactions,
ofteninvolvingwaterandsalts.
Theseconceptsformthefoundationofmaterialsscience
andareessentialforunderstandinghowmaterialsbehave
andhowtheycanbemanipulatedforvariousapplications.

BondingandTypesofSolids:(Topic-2)
Thepropertiesofsolidsarelargelydeterminedbythetypesofbondsthatholdtheir
atomsormoleculestogether.Thereareseveraltypesofbondinginsolids:
1.IonicBonding:
Mechanism:Ionicbondsformbetweenatomswithsignificantlydifferent
electronegativities,typicallybetweenmetalsandnon-metals.Themetalatom
donatesoneormoreelectronstothenon-metalatom,resultinginpositively
chargedcationsandnegativelychargedanions.
Characteristics:
Strongelectrostaticattractionbetweenions.
Highmeltingandboilingpoints.
Generally,poorelectricalconductivityinthesolidstatebutgoodconductivityin
moltenordissolvedstates.
Examples:Sodiumchloride(NaCl),magnesiumoxide(MgO).
2.CovalentBonding:
Mechanism:Covalentbondsformwhentwoatomsshareoneormorepairsof
electrons.Thistypeofbondingoccursprimarilybetweennon-metalatoms.
Characteristics:

BondingandTypesofSolids:
Characteristics:
Strongdirectionalbonds.
Highmeltingandboilingpoints,thoughlowerthanioniccompounds.
Poorelectricalconductivity,astherearenofreeelectronsorions.
Examples:Diamond(C),siliconcarbide(SiC),water(H₂O).
3.MetallicBonding:
Mechanism:Inmetallicbonding,atomsinametallatticereleasesomeoftheir
electronstoforma"seaofelectrons"thatarefreetomovethroughoutthe
structure.Thesedelocalizedelectronsallowmetalstoconductelectricity.
Characteristics:
Highelectricalandthermalconductivity.
Malleabilityandductility.
Generallyhighmeltingandboilingpoints.
Examples:Iron(Fe),aluminum(Al),copper(Cu).
4.VanderWaalsBonding(LondonDispersionForces):
Mechanism:VanderWaalsforcesareweak,non-covalentinteractionsbetween
molecules.Theyariseduetotemporarydipolescreatedbyfluctuationsinelectron
distribution.

BondingandTypesofSolids:
Characteristics:
Verylowmeltingandboilingpoints.
Usuallyfoundinmolecularsolidsandinertgases.
Weakandeasilydisruptedbythermalenergy.
Examples:Solidnoblegases(e.g.,Argon,Ar),molecularsolidslikeiodine(I₂).
5.HydrogenBonding:
Mechanism:Hydrogenbondingisaspecifictypeofdipole-dipoleinteractionthat
occurswhenhydrogeniscovalentlybondedtoahighlyelectronegativeatom(e.g.,
oxygen,nitrogen,orfluorine)andisattractedtoanotherelectronegativeatomina
neighboringmolecule.
Characteristics:
HighermeltingandboilingpointscomparedtoothervanderWaalsinteractions.
Significantinbiologicalmolecules(e.g.,DNA,proteins)andwater.
Examples:Water(H₂O),ammonia(NH₃),hydrogenfluoride(HF).
TypesofSolids
Basedonthebondingandstructuralorganizationoftheirconstituentparticles,
solidscanbeclassifiedintodifferenttypes:

BondingandTypesofSolids:
1.IonicSolids:
Constituents:Ions(cationsandanions).
Bonding:Ionicbonding.
Properties:
Hardandbrittle.
Highmeltingandboilingpoints.
Poorelectricalconductivityinthesolidstatebutconductivewhenmoltenor
dissolved.
Examples:Sodiumchloride(NaCl),calciumfluoride(CaF₂).
2.Covalent(Network)Solids:
Constituents:Atoms.
Bonding:Covalentbondingthroughouttheentirestructure.
Properties:
Veryhardandstrong.
Highmeltingpoints.
Poorelectricalconductivity.
Examples:Diamond(C),silicondioxide(SiO₂).

BondingandTypesofSolids:
3.MetallicSolids:
Constituents:Metalatoms.
Bonding:Metallicbonding.
Properties:
Goodelectricalandthermalconductivity.
Malleableandductile.
Rangeofmeltingpoints,generallyhigh.
Examples:Iron(Fe),copper(Cu),aluminum(Al).
4.MolecularSolids:
Constituents:Molecules.
Bonding:VanderWaalsforcesorhydrogenbonding.
Properties:
Lowmeltingandboilingpoints.
Usuallysoftandbrittle.
Poorelectricalconductivity.
Examples:Ice(H₂O),dryice(solidCO₂),iodine(I₂).

BondingandTypesofSolids:
5.AmorphousSolids:
Constituents:Atomsormoleculesnotarrangedinalong-range
order.
Bonding:Varies(canincludecovalent,ionic,metallic,orvander
Waalsbonding).
Properties:
Lackadefinitegeometricshape.
Donothaveasharpmeltingpoint.
Canbebrittle.
Examples:Glass,rubber,plastic.
Eachtypeofsolidhasdistinctphysicalpropertiesbasedonthe
natureofitsbondingandstructure,influencingitsapplications
andbehaviorunderdifferentconditions.

CrystallineStateandTheirDefects:(Topic-3)
Thecrystallinestatereferstothehighlyorderedstructureofamaterialinwhich
atoms,ions,ormoleculesarearrangedinarepeatingpatternextendinginallthree
spatialdimensions.Thisregulararrangementofparticlesresultsintheformationof
acrystallattice,whichisthefundamentalcharacteristicofacrystallinematerial.
KeyFeaturesoftheCrystallineState:
LatticeStructure:Theatomsormoleculesinacrystallinesolidarearrangedina
specificandrepeatingpatternknownasacrystallattice.Eachpointinthelattice,
calledalatticepoint,hasthesameenvironmentaseveryotherpoint.
UnitCell:Thesmallestrepeatingunitinacrystallatticeiscalledtheunitcell.The
entirecrystalstructurecanbegeneratedbyrepeatingtheunitcellinthree
dimensions.
Symmetry:Crystalsexhibitvarioustypesofsymmetry,suchasrotationalsymmetry,
reflectionsymmetry,andtranslationalsymmetry,whichcontributetotheiroverall
geometricregularity.
Anisotropy:Crystallinesolidsoftenexhibitanisotropicproperties,meaningthat
theirphysicalproperties,suchaselectricalconductivity,refractiveindex,and
thermalexpansion,varydependingonthedirectioninwhichtheyaremeasured.

CrystallineStateandTheirDefects:
TypesofCrystallineSolids:
IonicCrystals:Composedofionsarrangedinalatticestructure,heldtogetherby
strongelectrostaticforces(e.g.,sodiumchloride).
CovalentCrystals:Atomsareconnectedbycovalentbondsinanetworkextending
throughoutthematerial(e.g.,diamond,silicon).
MetallicCrystals:Consistofmetalatomssurroundedbyaseaofdelocalized
electrons,allowingforconductivityandmalleability(e.g.,copper,iron).
MolecularCrystals:Moleculesareheldtogetherbyweakerintermolecularforces
suchasvanderWaalsforcesorhydrogenbonds(e.g.,ice,solidCO2).
DefectsinCrystallineSolids:
Defectsinacrystallatticeareimperfectionsthatdisrupttheregulararrangementof
atoms,ions,ormolecules.Thesedefectscansignificantlyinfluencethephysical
propertiesofthematerial.
TypesofDefects:
PointDefects:
Vacancies:Occurwhenanatomorionismissingfromitslatticesite.
InterstitialDefects:Occurwhenanextraatomorionoccupiesaspaceinthe
latticethatisnotnormallyalatticepoint.

CrystallineStateandTheirDefects:
SubstitutionalDefects:Occurwhenanatomorioninthelatticeisreplacedbya
differentatomorion.
LineDefects:
Dislocations:Linedefectswhereatomsaremisalignedinthecrystalstructure.
Twomaintypesare:
EdgeDislocations:Extrahalf-planeofatomsisinsertedinthelattice.
ScrewDislocations:Thecrystalplanestwistaroundaline,formingahelical
structure.
SurfaceDefects:
GrainBoundaries:Theinterfaceswherecrystalsofdifferentorientationsmeet
withinamaterial.Theseboundariesdisruptthecontinuityofthelattice.
SurfaceSteps:Occuronthesurfaceofacrystalwhereonepartofthesurfaceis
raisedorloweredrelativetoanother,creatingastep.
VolumeDefects:
Voids:Largerregionswithinthecrystalwhereatomsorionsaremissing,
creatinganemptyspace.

CrystallineStateandTheirDefects:
ImpactofDefects:
MechanicalProperties:Defectscanweakenamaterialormakeitmore
ductile,dependingonthetypeandconcentrationofdefects.
ElectricalProperties:Defectscaninfluencetheelectricalconductivity
ofmaterials,particularlyinsemiconductorswherepointdefectscanact
aschargecarriers.
OpticalProperties:Defectscancausevariationsintherefractiveindex
andabsorbance,leadingtochangesincolorortransparency.
Understandingthecrystallinestateanditsdefectsiscrucialinmaterials
science,asitallowsforthemanipulationandenhancementofmaterial
propertiesforvariousapplications.

ClassicaltheoryofElectricalandThermalconductioninsolids:(Topic-4)
Theclassicaltheoryofelectricalandthermalconductioninsolidsis
primarilybasedontheDrudemodel,developedbyPaulDrudein1900.
Thismodeldescribesthebehaviorofelectronsinametalasaclassical
gasoffreeparticles,providingaframeworkforunderstandinghow
metalsconductelectricityandheat.
ElectricalConductioninSolids
1.DrudeModel:
ElectronGas:TheDrudemodeltreatstheelectronsinametalasagas
offree,non-interactingparticlesthatmovethroughthelatticeof
positiveions.
MeanFreePath:Electronsundergorandomcollisionswiththeionsin
thelattice.Theaveragedistanceanelectrontravelsbetweencollisions
iscalledthemeanfreepath.

ClassicaltheoryofElectricalandThermalconductioninsolids:
Ohm'sLaw:AccordingtotheDrudemodel,whenanelectricfieldisappliedtoa
metal,thefreeelectronsareacceleratedinthedirectionoppositetothefield.
ThisresultsinacurrentdensityJ,whichisproportionaltotheappliedelectricfieldE.
whereσistheelectricalconductivityofthematerial,definedas:
Here,nisthenumberdensityofelectrons,
eisthechargeofanelectron,
τ\tauτistheaveragetimebetweencollisions(relaxationtime),
andmisthemassofanelectron.
2.LimitationsoftheDrudeModel:
TemperatureDependence:TheDrudemodelpredictsthatelectricalconductivity
decreaseswithincreasingtemperatureduetoincreasedscattering,whichis
consistentwithexperimentalobservationsformetals.

ClassicaltheoryofElectricalandThermalconductioninsolids:
SpecificHeat:TheDrudemodeloverestimatestheelectronic
contributiontothespecificheatofmetalsbecauseitdoesn'tconsider
thequantumnatureofelectrons.
Electron-ElectronInteractions:Themodelignoresinteractions
betweenelectrons,whichcanbesignificantincertainmaterials.
ThermalConductioninSolids
1.ThermalConductivity(Fourier'sLaw):
HeatFlow:Inasolid,heatisconductedbythetransferofkineticenergy
fromhottertocoolerregions.AccordingtoFourier'slaw,theheatfluxq
isproportionaltothetemperaturegradient∇T.
wherekisthethermalconductivityofthematerial.

ClassicaltheoryofElectricalandThermalconductioninsolids:
2.Wiedemann-FranzLaw:
RelationBetweenElectricalandThermalConductivity:TheDrude
modelpredictsarelationshipbetweentheelectricalconductivityσand
thethermalconductivitykofametal,givenbytheWiedemann-Franz
law:
whereListheLorenznumber,andTistheabsolutetemperature.This
lawimpliesthatmetalswithhighelectricalconductivityalsohavehigh
thermalconductivity.
3.LimitationsofClassicalTheory:
Phonons:Theclassicaltheoryonlyconsiderselectroncontributionsto
thermalconductivity.However,innon-metalsandeveninsomemetals
athightemperatures,heatisalsoconductedbylatticevibrations,
knownasphonons.

ClassicaltheoryofElectricalandThermalconductioninsolids:
QuantumEffects:Theclassicaltheoryfailstoexplaincertainlow-
temperaturephenomena,suchasthesharpdecreaseinthermal
conductivitywithdecreasingtemperature,whichrequiresquantum
mechanicalexplanations.
SummaryoftheClassicalTheory
ElectricalConduction:BasedontheDrudemodel,whichtreats
electronsasaclassicalgas,predictingelectricalconductivityusing
Ohm'slaw.
ThermalConduction:DescribedbyFourier'slawandrelatedto
electricalconductivitythroughtheWiedemann-Franzlaw.
Limitations:Theclassicaltheoryhassignificantlimitations,especiallyin
explaininglow-temperaturebehaviorandspecificheat,requiring
quantummechanicaltheorieslikethefreeelectronmodelandthe
Blochtheorytoprovideamoreaccuratedescription.

ClassicaltheoryofElectricalandThermalconductioninsolids:
Theclassicaltheorieslaidthegroundworkfortheunderstandingof
conductioninsolids,buttheyhavesincebeenrefinedandexpandedby
quantummechanicstomoreaccuratelydescribethebehaviorof
electronsandthermalconductioninmaterials.

Temperaturedependenceofresistivity,skineffect,Halleffect:(Topic-5)
1.TemperatureDependenceofResistivity:
Resistivity(ρ)referstoamaterial'sresistancetotheflowofelectric
current.It'sinfluencedbytemperature.
Inmetals:Astemperatureincreases,theatomicvibrationsintensify,
causingmorecollisionsbetweenconductionelectronsandatoms,
whichincreasesresistivity.
????????????=??????
0[1+????????????−??????
0]
Where,
??????
0istheresistivityattemperature??????
0and??????isthetemperature
coefficientofresistivity.
Insemiconductors:Resistivitydecreaseswithtemperature,as
morechargecarriersaregeneratedathighertemperatures.

Temperaturedependenceofresistivity,skineffect,Halleffect:
2.SkinEffect:
Skineffectreferstothetendencyofalternatingcurrent(AC)toflow
primarilynearthesurfaceofaconductor,ratherthanuniformly
throughoutitscross-section.
Thiseffectbecomesmorepronouncedathigherfrequenciesbecause
theinductivereactancewithintheconductorincreaseswithfrequency.
Theskindepth(δ),orthedepthatwhichthecurrentdensityfallsto
1/eofitsvalueatthesurface,isgivenby:
??????=
2??????
????????????
where:??????is the resistivity,
??????is the permeability of the material,
ω is the angular frequency of the AC current.

Temperaturedependenceofresistivity,skineffect,Halleffect:
3.HallEffect:
Halleffectoccurswhenacurrent-carryingconductorisplacedinamagneticfieldperpendicular
tothedirectionofthecurrent,resultinginatransverseelectricfield(theHallvoltage).
Thiseffectcanbeusedtomeasuremagneticfieldstrengthorthetype(positiveornegative)of
chargecarriersinamaterial.
The Hall voltage (??????
�)is given by:
??????
�=
��
????????????�
where:
Iis the current,
Bis the magnetic field,
nis the charge carrier density,
qis the charge of the carriers,
Ais the cross-sectional area of the conductor.
Eachoftheseconceptsplaysanimportantroleinunderstandingthebehaviorofelectrical
conductorsandsemiconductorsindifferentconditions.