6 FPM Gabungan Kontinu.pdf7n3bb3a7n36ti,t8

WyPasaribu 0 views 15 slides Oct 05, 2025
Slide 1
Slide 1 of 15
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15

About This Presentation

sdfyna7mm


Slide Content

STATISTIKA MATEMATIKA
PERTEMUAN 6
Program StudiPendidikan Matematika
Universitas IndraprastaPGRI

MateriPertemuan6
Fungsi
Pembangkit
Momen
Turunandari
FPM
Koefisien
Korelasi

FungsiPembangkitMomen
JikaXdanYmerupakanpeubahacakkontinu,�(�,�)merupakan
fungsipeluanggabungandariXdanY.Fungsipembangkitmomen
gabungandidefinisikansebagaiberikut:
??????�
�,�
�=න
−∞


−∞

�
�
��+�
��
�(�,�)����

Contoh6.1:
Diberikan fungsi densitas sebagai berikut:
��,�=�
−??????
,0<&#3627408485;<&#3627408486;<∞
Tentukan ??????&#3627408481;
1,&#3627408481;
2
Catatan:
0<&#3627408485;<&#3627408486;<∞
Jikadipecahmenjadi
0<&#3627408485;<&#3627408486;, 0<&#3627408486;<∞

Penyelesaian:
??????&#3627408533;
&#3627409359;,&#3627408533;
&#3627409360;=׬
−∞

׬
−∞

&#3627408518;
&#3627408533;&#3627409359;&#3627408537;+&#3627408533;&#3627409360;&#3627408538;
&#3627408519;(&#3627408537;,&#3627408538;)&#3627408517;&#3627408537;&#3627408517;&#3627408538;
=න
&#3627409358;


&#3627409358;
&#3627408538;
(&#3627408518;
&#3627408533;&#3627409359;&#3627408537;+&#3627408533;&#3627409360;&#3627408538;
)&#3627408466;
−??????
&#3627408517;&#3627408537;&#3627408517;&#3627408538;
=න
&#3627409358;


&#3627409358;
&#3627408538;
(&#3627408518;
&#3627408533;&#3627409359;&#3627408537;
)(&#3627408518;
&#3627408533;&#3627409360;&#3627408538;
)&#3627408466;
−??????
&#3627408517;&#3627408537;&#3627408517;&#3627408538;
=න
&#3627409358;


&#3627409358;
&#3627408538;
(&#3627408518;
&#3627408533;&#3627409359;&#3627408537;
.&#3627408518;
&#3627408533;&#3627409360;&#3627408538;
.&#3627408518;
−&#3627408538;
)&#3627408517;&#3627408537;&#3627408517;&#3627408538;
=න
&#3627409358;


&#3627409358;
&#3627408538;
(&#3627408518;
&#3627408533;&#3627409359;&#3627408537;
.&#3627408518;
&#3627408533;&#3627409360;&#3627408538;−&#3627408538;
)&#3627408517;&#3627408537;&#3627408517;&#3627408538;
=න
&#3627409358;


&#3627409358;
&#3627408538;
&#3627408518;
&#3627408533;&#3627409359;&#3627408537;
.&#3627408518;
−&#3627408538;(&#3627409359;−&#3627408533;&#3627409360;)
&#3627408517;&#3627408537;&#3627408517;&#3627408538;
=න
&#3627409358;

&#3627408518;
−&#3627408538;(&#3627409359;−&#3627408533;&#3627409360;)

&#3627409358;
&#3627408538;
&#3627408518;
&#3627408533;&#3627409359;&#3627408537;
.&#3627408517;&#3627408537;&#3627408517;&#3627408538;
=න
&#3627409358;

&#3627408518;
−&#3627408538;(&#3627409359;−&#3627408533;&#3627409360;)
&#3627409359;
&#3627408533;
&#3627409359;
&#3627408518;
&#3627408533;&#3627409359;&#3627408537;
&#3627408538;
&#3627409358;
&#3627408517;&#3627408538;
=න
&#3627409358;

&#3627408518;
−&#3627408538;(&#3627409359;−&#3627408533;&#3627409360;)
&#3627409359;
&#3627408533;
&#3627409359;
&#3627408518;
&#3627408533;&#3627409359;&#3627408538;

&#3627409359;
&#3627408533;
&#3627409359;
&#3627408518;
&#3627409358;
&#3627408517;&#3627408538;
=න
&#3627409358;

&#3627408518;
−&#3627408538;(&#3627409359;−&#3627408533;&#3627409360;)
&#3627409359;
&#3627408533;
&#3627409359;
&#3627408518;
&#3627408533;&#3627409359;&#3627408538;

&#3627409359;
&#3627408533;
&#3627409359;
&#3627408517;&#3627408538;
=න
&#3627409358;

&#3627408518;
−&#3627408538;(&#3627409359;−&#3627408533;&#3627409360;)
&#3627409359;
&#3627408533;
&#3627409359;
(&#3627408518;
&#3627408533;&#3627409359;&#3627408538;
−&#3627409359;)&#3627408517;&#3627408538;
=
&#3627409359;
&#3627408533;
&#3627409359;

&#3627409358;

&#3627408518;
−&#3627408538;(&#3627409359;−&#3627408533;&#3627409360;)
(&#3627408518;
&#3627408533;&#3627409359;&#3627408538;
−&#3627409359;)&#3627408517;&#3627408538;
=
&#3627409359;
&#3627408533;
&#3627409359;

&#3627409358;

&#3627408518;
−&#3627408538;&#3627409359;−&#3627408533;&#3627409360;−&#3627408533;&#3627409359;−&#3627408518;
−&#3627408538;(&#3627409359;−&#3627408533;&#3627409360;)
&#3627408517;&#3627408538;

=
&#3627409359;
&#3627408533;
&#3627409359;

&#3627409358;

&#3627408518;
−&#3627408538;&#3627409359;−&#3627408533;&#3627409360;−&#3627408533;&#3627409359;−&#3627408518;
−&#3627408538;(&#3627409359;−&#3627408533;&#3627409360;)
&#3627408517;&#3627408538;
=
&#3627409359;
&#3627408533;
&#3627409359;

&#3627409359;
&#3627409359;−&#3627408533;
&#3627409360;−&#3627408533;
&#3627409359;
&#3627408518;
−&#3627408538;&#3627409359;−&#3627408533;&#3627409360;−&#3627408533;&#3627409359;+
&#3627409359;
(&#3627409359;−&#3627408533;
&#3627409360;)
&#3627408518;
−&#3627408538;(&#3627409359;−&#3627408533;&#3627409360;)

&#3627409358;
=
&#3627409359;
&#3627408533;
&#3627409359;
&#3627409358;−−
&#3627409359;
&#3627409359;−&#3627408533;
&#3627409360;−&#3627408533;
&#3627409359;
&#3627408518;
&#3627409358;
+
&#3627409359;
(&#3627409359;−&#3627408533;
&#3627409360;)
&#3627408518;
&#3627409358;
=
&#3627409359;
&#3627408533;
&#3627409359;
&#3627409359;
&#3627409359;−&#3627408533;
&#3627409360;−&#3627408533;
&#3627409359;

&#3627409359;
(&#3627409359;−&#3627408533;
&#3627409360;)
=
&#3627409359;
&#3627408533;
&#3627409359;
&#3627409359;−&#3627408533;
&#3627409360;−(&#3627409359;−&#3627408533;
&#3627409360;−&#3627408533;
&#3627409359;)
&#3627409359;−&#3627408533;
&#3627409360;−&#3627408533;
&#3627409359;(&#3627409359;−&#3627408533;
&#3627409360;)
=
&#3627409359;
&#3627408533;
&#3627409359;
&#3627408533;
&#3627409359;
&#3627409359;−&#3627408533;
&#3627409360;−&#3627408533;
&#3627409359;(&#3627409359;−&#3627408533;
&#3627409360;)
=
&#3627409359;
&#3627409359;−&#3627408533;
&#3627409360;−&#3627408533;
&#3627409359;(&#3627409359;−&#3627408533;
&#3627409360;)
??????&#3627408533;
&#3627409359;,&#3627408533;
&#3627409360;=
&#3627409359;
&#3627409359;−&#3627408533;
&#3627409360;−&#3627408533;
&#3627409359;(&#3627409359;−&#3627408533;
&#3627409360;)

➢FPM Marginal dariX
DiperolehdariFPM gabungandenganmensubstitusikan&#3627408533;
&#3627409360;=&#3627409358;, sehingga:
??????&#3627408481;
1,0=??????&#3627408481;
1
Penentuanmomen-momendaripeubahacakX berdasarkanFPM, sbb:
??????&#3627408459;=
????????????(&#3627408481;
1,0)
??????&#3627408481;
1
]
??????1=0
??????&#3627408459;
2
=
??????
2
??????(&#3627408481;
1,0)
??????&#3627408481;
1
2
]
??????1=0
TurunandariFPM

➢FPM Marginal dariY
DiperolehdariFPM gabungandenganmensubstitusikan&#3627408533;
&#3627409359;=&#3627409358;, sehingga:
??????0,&#3627408481;
2=??????&#3627408481;
2
Penentuanmomen-momendaripeubahacakY berdasarkanFPM, sbb:
??????&#3627408460;=
????????????0,&#3627408481;
2
??????&#3627408481;
2
]
??????2=0
??????&#3627408460;
2
=
??????
2
??????0,&#3627408481;
2
??????&#3627408481;
2
2
]
??????2=0
Turunan dari FPM

Contoh6.2:
Diberikan fungsi densitas sebagai berikut:
&#3627408467;&#3627408485;,&#3627408486;=&#3627408466;
−??????
,0<&#3627408485;<&#3627408486;<∞
Tentukan ∶
a.FPM Marginal dariX, E(X) danVar(X)
b.FPM Marginal dariY, E(Y) danVar(Y)
Catatan:
0<&#3627408485;<&#3627408486;<∞
Jikadipecahmenjadi
0<&#3627408485;<&#3627408486;, 0<&#3627408486;<∞

Diketahui FMP Gabungan:
??????&#3627408533;
&#3627409359;,&#3627408533;
&#3627409360;=
&#3627409359;
(&#3627409359;−&#3627408533;
&#3627409359;−&#3627408533;
&#3627409360;)(&#3627409359;−&#3627408533;
&#3627409360;)
a. FPM Marginal dariX
??????&#3627408481;
1,0=
&#3627409359;
(&#3627409359;−&#3627408533;
&#3627409359;)
RataandariX atauE(X):
????????????(&#3627408481;
1,0)
??????&#3627408481;
1
]
??????1=0=
&#3627409359;
(&#3627409359;−&#3627408533;
&#3627409359;)
&#3627409360;

&#3627408481;
1=0
=&#3627409359;
??????&#3627408459;
2
=
??????
2
??????(&#3627408481;
1,0)
??????&#3627408481;
1
2
]
??????1=0=
&#3627409360;
(&#3627409359;−&#3627408533;
&#3627409359;)
&#3627409362;

&#3627408481;
1=0
=&#3627409360;
VariansX
????????????????????????=????????????
&#3627409360;
−????????????
&#3627409360;
=&#3627409360;−&#3627409359;=&#3627409359;
b. Cobasendiri
Misal:
&#3627408534;=&#3627409359;,&#3627408535;=&#3627409359;−&#3627408533;
&#3627409359;
&#3627408482;

=0,&#3627408483;

=−1
&#3627408482;
&#3627408483;
=
&#3627408482;

&#3627408483;−&#3627408482;&#3627408483;′
&#3627408483;
2
Misal:
&#3627408534;=&#3627409359;,&#3627408535;=(&#3627409359;−&#3627408533;&#3627409359;)
&#3627409360;
&#3627408482;

=0,&#3627408483;

=−2(&#3627409359;−&#3627408533;
&#3627409359;)
&#3627408482;
&#3627408483;
=
&#3627408482;

&#3627408483;−&#3627408482;&#3627408483;′
&#3627408483;
2

KoefisienKorelasi
Jika&#3627408459;dan&#3627408460;adalahduapeubahacak,baikdiskretmaupun
kontinu,makakoefisienkorelasi(dinotasikandengan??????)
didefinisikansebagai:
??????=
??????&#3627408511;&#3627408512;−??????&#3627408511;.??????(&#3627408512;)
??????&#3627408511;
&#3627409360;
−[??????&#3627408511;]
&#3627409360;
??????&#3627408512;
&#3627409360;
−[??????&#3627408512;]
&#3627409360;
Untukmencari KoefisienKorelasi,selaindengan
menggunakan rumusekspektasi,dapatmenggunakan
TurunandariFPM

Contoh6.3:
Diberikan fungsi densitas sebagai berikut:
&#3627408467;&#3627408485;,&#3627408486;=&#3627408466;
−??????
,0<&#3627408485;<&#3627408486;<∞
TentukanKoefisienKorelasi!
Catatan:
0<&#3627408485;<&#3627408486;<∞
Jikadipecahmenjadi
0<&#3627408485;<&#3627408486;, 0<&#3627408486;<∞

??????&#3627408533;
&#3627409359;,&#3627408533;
&#3627409360;=
&#3627409359;
(&#3627409359;−&#3627408533;
&#3627409359;−&#3627408533;
&#3627409360;)(&#3627409359;−&#3627408533;
&#3627409360;)
??????&#3627408459;&#3627408460;=
??????
2
??????&#3627408533;
&#3627409359;,&#3627408533;
&#3627409360;
??????&#3627408481;
1??????&#3627408533;
&#3627409360;
ȁ&#3627408533;
&#3627409359;=&#3627408533;
&#3627409360;=&#3627409358;
Diturunkanterhadap&#3627408533;
&#3627409359;, maka
????????????&#3627408533;
&#3627409359;,&#3627408533;
&#3627409360;
??????&#3627408481;
1
=
1
(&#3627409359;−&#3627408533;
&#3627409359;)(&#3627409359;−&#3627408533;
&#3627409359;−&#3627408533;
&#3627409360;)
2
Diturunkankembaliterhadap&#3627408533;
&#3627409360;
??????
2
??????&#3627408533;
&#3627409359;,&#3627408533;
&#3627409360;
??????&#3627408481;
1??????&#3627408533;
&#3627409360;
=
0−(&#3627409359;−&#3627408533;
&#3627409359;−&#3627408533;
&#3627409360;)(−2&#3627409359;−&#3627408533;
&#3627409360;−&#3627409359;−&#3627408533;
&#3627409359;−&#3627408533;
&#3627409360;)
&#3627409359;−&#3627408533;
&#3627409359;−&#3627408533;
&#3627409360;
2
(&#3627409359;−&#3627408533;
&#3627409360;)
2
=
(&#3627409359;−&#3627408533;
&#3627409359;−&#3627408533;
&#3627409360;)(2−&#3627409359;−&#3627408533;
&#3627409360;−&#3627409359;−&#3627408533;
&#3627409359;−&#3627408533;
&#3627409360;)
&#3627409359;−&#3627408533;
&#3627409359;−&#3627408533;
&#3627409360;
4
(&#3627409359;−&#3627408533;
&#3627409360;)
2
=
3−&#3627408533;
&#3627409359;−3&#3627408533;
&#3627409360;
&#3627409359;−&#3627408533;
&#3627409359;−&#3627408533;
&#3627409360;
3
(&#3627409359;−&#3627408533;
&#3627409360;)
2
Jika
??????
2
??????&#3627408533;&#3627409359;,&#3627408533;&#3627409360;
????????????1??????&#3627408533;&#3627409360;
ȁ&#3627408533;
&#3627409359;=&#3627408533;
&#3627409360;=&#3627409358;, maka
3−&#3627409358;−&#3627409358;
&#3627409359;−&#3627409358;−&#3627409358;
3
(&#3627409359;−&#3627409358;)
2
=3

Jadi nilai??????&#3627408459;&#3627408460;=3
Berdasarkancontoh6.2, didapatkannilai–nilaiberikut
??????&#3627408459;=1
??????(&#3627408459;
2
)=2
??????&#3627408460;=2
??????(&#3627408460;
2
)=6
Var&#3627408459;=1
Var&#3627408460;=2
MakanilaiKoefisienKorelasinya
??????=
??????&#3627408511;&#3627408512;−??????&#3627408511;.??????(&#3627408512;)
??????&#3627408511;
&#3627409360;
−[??????&#3627408511;]
&#3627409360;
??????&#3627408512;
&#3627409360;
−[??????&#3627408512;]
&#3627409360;
=
&#3627409361;−&#3627409359;.&#3627409359;
&#3627409360;−&#3627409359;??????−&#3627409362;
=
&#3627409359;
&#3627409360;
&#3627409360;

LATIHAN
Tags