Classification of Control Systems
•Considertheunity-feedbackcontrolsystemwiththefollowingopen-loop
transferfunction
•Itinvolvestheterms
N
inthedenominator,
representingNpolesattheorigin.
•Asystemiscalledtype0,type1,type2,...,if
N=0,N=1,N=2,...,respectively.
Classification of Control Systems
•Asthetypenumberisincreased,accuracyisimproved.
•However,increasingthetypenumberaggravatesthestabilityproblem.
•Acompromisebetweensteady-stateaccuracyandrelativestabilityis
alwaysnecessary.
Steady State Error of Unity Feedback Systems
•Consider the system shown in following figure.
•The closed-loop transfer function is
Steady State Error of Unity Feedback Systems
•ThetransferfunctionbetweentheerrorsignalE(s)andthe
inputsignalR(s)is)()(
)(
sGsR
sE
1
1
•Thefinal-valuetheoremprovidesaconvenientwaytofind
thesteady-stateperformanceofastablesystem.
•SinceE(s)is
•Thesteadystateerroris
Static Position Error Constant (K
p)
•The steady-state error of the system for a unit-step input is
•The static position error constant K
pis defined by
•Thus, the steady-state error in terms of the static position
error constant K
pis given by
Static Position Error Constant (K
p)
•For a Type 0system
•For Type 1or higher systems
•For a unit step input the steady state error e
ssis
Static Velocity Error Constant (K
v)
•The steady-state error of the system for a unit-ramp input is
•The static position error constant K
vis defined by
•Thus, the steady-state error in terms of the static velocity
error constant K
vis given by
Static Velocity Error Constant (K
v)
•For a Type 0system
•For Type 1systems
•For type 2 or higher systems
Static Velocity Error Constant (K
v)
•For a ramp input the steady state error e
ssis
Static Acceleration Error Constant (K
a)
•The steady-state error of the system for parabolic input is
•The static acceleration error constant K
ais defined by
•Thus,thesteady-stateerrorintermsofthestaticaccelerationerror
constantK
aisgivenby
Static Acceleration Error Constant (K
a)
•For a Type 0system
•For Type 1systems
•For type 2systems
•For type 3or higher systems
Static Acceleration Error Constant (K
a)
•For a parabolic input the steady state error e
ssis
Summary
Example
•Forthesystemshowninfigurebelowevaluatethestatic
errorconstantsandfindtheexpectedsteadystateerrors
forthestandardstep,rampandparabolicinputs.
C(S)R(S)
-))((
))((
128
52100
2
sss
ss
Example (Steady Sate Errors)
p
K
v
K 410.
a
K 0 0 090.
Example (evaluation of Static Error Constants)))((
))((
)(
128
52100
2
sss
ss
sG )(limsGK
s
p
0
))((
))((
lim
128
52100
2
0 sss
ss
K
s
p
p
K )(limssGK
s
v
0
))((
))((
lim
128
52100
2
0 sss
sss
K
s
v
v
K )(lim sGsK
s
a
2
0
))((
))((
lim
128
52100
2
2
0 sss
sss
K
s
a 410
12080
5020100
.
))((
))((
a
K