6. steady state error

shurjeelamjad 13,965 views 19 slides Apr 13, 2018
Slide 1
Slide 1 of 19
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19

About This Presentation

simple how to find S.S.E


Slide Content

Steady State Error

Introduction
•Steady-stateerrorisdefinedasthedifferencebetweentheinput
(command)andtheoutputofasysteminthelimitastimegoestoinfinity
(i.e.whentheresponsehasreachedsteadystate).
•Anyphysicalcontrolsysteminherentlysufferssteady-stateerrorin
responsetocertaintypesofinputs.
•Asystemmayhavenosteady-stateerrortoastepinput,butthesame
systemmayexhibitnonzerosteady-stateerrortoarampinput.
•Whetheragivensystemwillexhibitsteady-stateerrorforagiventypeof
inputdependsonthetypeofopen-looptransferfunctionofthesystem.
•Controlsystemsmaybeclassifiedaccordingtotheirabilitytofollowstep
inputs,rampinputs,parabolicinputs,andsoon.
•Themagnitudesofthesteady-stateerrorsduetotheseindividualinputs
areindicativeofthegoodnessofthesystem.

Classification of Control Systems
•Considertheunity-feedbackcontrolsystemwiththefollowingopen-loop
transferfunction
•Itinvolvestheterms
N
inthedenominator,
representingNpolesattheorigin.
•Asystemiscalledtype0,type1,type2,...,if
N=0,N=1,N=2,...,respectively.

Classification of Control Systems
•Asthetypenumberisincreased,accuracyisimproved.
•However,increasingthetypenumberaggravatesthestabilityproblem.
•Acompromisebetweensteady-stateaccuracyandrelativestabilityis
alwaysnecessary.

Steady State Error of Unity Feedback Systems
•Consider the system shown in following figure.
•The closed-loop transfer function is

Steady State Error of Unity Feedback Systems
•ThetransferfunctionbetweentheerrorsignalE(s)andthe
inputsignalR(s)is)()(
)(
sGsR
sE


1
1
•Thefinal-valuetheoremprovidesaconvenientwaytofind
thesteady-stateperformanceofastablesystem.
•SinceE(s)is
•Thesteadystateerroris

Static Error Constants
•Thestaticerrorconstantsarefiguresofmeritofcontrolsystems.Thehigher
theconstants,thesmallerthesteady-stateerror.
•Inagivensystem,theoutputmaybetheposition,velocity,pressure,
temperature,orthelike.
•Therefore,inwhatfollows,weshallcalltheoutput“position,”therateof
changeoftheoutput“velocity,”andsoon.
•Thismeansthatinatemperaturecontrolsystem“position”representsthe
outputtemperature,“velocity”representstherateofchangeoftheoutput
temperature,andsoon.

Static Position Error Constant (K
p)
•The steady-state error of the system for a unit-step input is
•The static position error constant K
pis defined by
•Thus, the steady-state error in terms of the static position
error constant K
pis given by

Static Position Error Constant (K
p)
•For a Type 0system
•For Type 1or higher systems
•For a unit step input the steady state error e
ssis

Static Velocity Error Constant (K
v)
•The steady-state error of the system for a unit-ramp input is
•The static position error constant K
vis defined by
•Thus, the steady-state error in terms of the static velocity
error constant K
vis given by

Static Velocity Error Constant (K
v)
•For a Type 0system
•For Type 1systems
•For type 2 or higher systems

Static Velocity Error Constant (K
v)
•For a ramp input the steady state error e
ssis

Static Acceleration Error Constant (K
a)
•The steady-state error of the system for parabolic input is
•The static acceleration error constant K
ais defined by
•Thus,thesteady-stateerrorintermsofthestaticaccelerationerror
constantK
aisgivenby

Static Acceleration Error Constant (K
a)
•For a Type 0system
•For Type 1systems
•For type 2systems
•For type 3or higher systems

Static Acceleration Error Constant (K
a)
•For a parabolic input the steady state error e
ssis

Summary

Example
•Forthesystemshowninfigurebelowevaluatethestatic
errorconstantsandfindtheexpectedsteadystateerrors
forthestandardstep,rampandparabolicinputs.
C(S)R(S)
-))((
))((
128
52100
2


sss
ss

Example (Steady Sate Errors)
p
K 
v
K 410.
a
K 0 0 090.

Example (evaluation of Static Error Constants)))((
))((
)(
128
52100
2



sss
ss
sG )(limsGK
s
p
0
 










 ))((
))((
lim
128
52100
2
0 sss
ss
K
s
p 
p
K )(limssGK
s
v
0
 










 ))((
))((
lim
128
52100
2
0 sss
sss
K
s
v 
v
K )(lim sGsK
s
a
2
0
 










 ))((
))((
lim
128
52100
2
2
0 sss
sss
K
s
a 410
12080
5020100
.
))((
))((












a
K
Tags