6666a92d8fdd2Week13.pdf digital image processing

haidersheraz99 13 views 41 slides Jul 12, 2024
Slide 1
Slide 1 of 41
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41

About This Presentation

Digital image processing


Slide Content

Digital Signal Processing
Spring 2024
1Zulaikha Kiran, 2024

Week 13
Material taken from:
Discrete time Signal Processing by Oppenheim and Schafer –3
rd
Edition
Zulaikha Kiran, 2024 2

Filter Design
Zulaikha Kiran, 2024 3

•The design of filters involves the following stages:
•the specification of the desired properties of the system
•Dependent on application
•the approximation of the specifications using a causal discrete timesystem
•the realization of the system.
•Dependent on available technologies
Zulaikha Kiran, 2024 4

•Inapracticalsetting,thedesiredfilterisgenerallyimplementedwith
digitalhardwareandoftenusedtofilterasignalthatisderivedfroma
continuous-timesignalbymeansofperiodicsamplingfollowedby
A/Dconversion.
Zulaikha Kiran, 2024 5

Low pass filter tolerance scheme
Zulaikha Kiran, 2024 6

Discrete Time IIR Filters from
Continuous Time Filters
Zulaikha Kiran, 2024 7

Why use continuous time filter as starting
point?
•The art of continuous-time filter design is highly advanced
•Many designs are simple
•Approximations that work for continuous time, do not directly work
for discrete time design, since frequency response is periodic
Zulaikha Kiran, 2024 8

Design Procedure
•Thedesignprocedureforthediscrete-timesystembeginsfromasetof
discrete-timespecifications.
•Weassumethatthesespecificationshavebeenappropriatelydetermined.
•Thespecificationsforthecontinuous-timefilterareobtainedbya
transformationofthespecificationsforthedesireddiscrete-timefilter.
•ThesystemfunctionHc(s)orimpulseresponsehc(t)ofthecontinuous-time
filteristhenobtainedthroughoneoftheestablishedapproximation
methodsusedforcontinuous-timefilterdesign.
•Next,thesystemfunctionH(z)orimpulseresponseh[n]forthediscrete-
timefilterisobtainedbyapplyingatransformationtoHc(s)orhc(t)
Zulaikha Kiran, 2024 9

•Intransformations,wegenerallyrequirethattheessentialproperties
ofthecontinuous-timefrequencyresponsebepreservedinthe
frequencyresponseoftheresultingdiscrete-timefilter.
•Wewanttheimaginaryaxisofthes-planetomapontotheunitcircleofthez-
plane.
•Astablecontinuous-timefiltershouldbetransformedtoastablediscrete-
timefilter.
•Ifthecontinuous-timesystemhaspolesonlyinthelefthalfofthes-plane,thenthe
discrete-timefiltermusthavepolesonlyinsidetheunitcircleinthez-plane
Zulaikha Kiran, 2024 10

Impulse Invariance
•Intheconceptofimpulseinvariance,adiscrete-timesystemis
definedbysamplingtheimpulseresponseofacontinuous-time
system
•providesadirectmeansofcomputingsamplesoftheoutputofabandlimited
continuous-timesystemforbandlimitedinputsignals
•iftheoverallobjectiveistosimulateacontinuous-timesystemina
discrete-timesetting,wemightdesignthediscrete-timesystemsuch
thatitsimpulseresponsecorrespondstosamplesofthecontinuous-
time
•ORitmightbedesirabletomaintain,inadiscretetimesetting,certain
time-domaincharacteristicsofwell-developedcontinuous-timefilters
Zulaikha Kiran, 2024 11

•in the context of filter design,
•impulseinvarianceisamethodforobtainingadiscrete-timesystemwhose
frequencyresponseisdeterminedbythefrequencyresponseofa
continuous-timesystem.
Zulaikha Kiran, 2024 12

Impulse Invariance
•the impulse response of the discrete-time filter is chosen
proportional to equally spaced samples of the impulse response of
the continuous-time filter
•where T
drepresents a sampling interval
•the parameter Td has no role whatsoever in the design process or the
resulting discrete-time filter
Zulaikha Kiran, 2024 13

•The frequency response of the discrete-time filter is related to the
frequency response of the continuous-time filter by
•If
•Then
•i.e., the discrete-time and continuous-time frequency responses are
related by a linear scaling of the frequency axis, namely, ω = ΩT
dfor
|ω| < π.
Zulaikha Kiran, 2024 14

•anypracticalcontinuous-timefiltercannotbeexactlybandlimited,and
consequently,interferencebetweensuccessivespectraoccurs,causing
aliasing
•However,ifthecontinuous-timefilterapproacheszeroathighfrequencies,
thealiasingmaybenegligiblysmall,andausefuldiscrete-timefiltercan
resultfromsamplingtheimpulseresponseofacontinuous-timefilter
Zulaikha Kiran, 2024 15

Process
•forthedesignofadiscrete-timefilterwithgivenfrequencyresponse
specifications,thediscrete-timefilterspecificationsarefirst
transformedtocontinuous-timefilterspecificationsusing
•we obtain the specifications on Hc(jΩ) by applying the relation
•Afterobtainingacontinuous-timefilterthatmeetsthese
specifications,thecontinuoustimefilterwithsystemfunctionHc(s)is
transformedtothedesireddiscrete-timefilterwithsystemfunction
H(z)
Zulaikha Kiran, 2024 16

•in the transformation back to discrete-time frequency, H(e

) will be
related to H
c(jΩ) through
•which again applies the transformation to the frequency axis.
•As a consequence, the “sampling” parameter T
dcannot be used to
control aliasing
•if Td is made smaller, then the cutoff frequency of the continuous-
time filter must increase in proportion
Zulaikha Kiran, 2024 17

•consider the system function of a causal continuous-time filter
expressed in terms of a partial fraction expansion
•Corresponding impulse response is
Zulaikha Kiran, 2024 18

Zulaikha Kiran, 2024 19

•a pole at s = s
kin the s-plane transforms to a pole at z = e
SkTd
in the z-plane
and the coefficients in the partial fraction expansions of H
c(s) and H(z) are
equal, except for the scaling multiplier T
d
•If the continuous-time causal filter is stable (pole in the left half plane),
then the discrete-time causal filter is also stable (pole inside the unit circle)
•itisimportanttorecognizethattheimpulseinvariancedesignprocedure
doesnotcorrespondtoasimplemappingofthes-planetothez-plane
•thezerosinthediscrete-timesystemwillnotingeneralbemappedinthesameway
thepolesaremapped
•SeeExample2Chapter7Oppenheim
Zulaikha Kiran, 2024 20

•In the impulse invariance design procedure, the relationship between
continuous time and discrete-time frequency is linear; consequently,
except for aliasing, the shape of the frequency response is preserved.
•Theimpulseinvariancetechniqueisappropriateonlyforbandlimited
filters;highpassorbandstopcontinuous-timefilters,forexample,
wouldrequireadditionalbandlimitingtoavoidseverealiasing
distortionifimpulseinvariancedesignisused
Zulaikha Kiran, 2024 21

Zulaikha Kiran, 2024 22j  0
Im(z)
Re(z)
unit-circleT
 T

Zulaikha Kiran, 2024 23j  0
Im(z)
Re(z)
unit-circleT
 T

Zulaikha Kiran, 2024 24j  0
Re(z)
unit-circleT
 T

Bilinear Transformation
•Algebraic transformation b/w variables ‘s’and ‘z’
•One-one mapping between the s and z-planes
•Given a C.T. prototype filter H
c(s), the corresponding D.T. filter H(z) is
•TheparameterT
dhasnoinfluencewhatsoeverinthefilterdesign,itiscancelled
outaswestartwithdigitalspecsandreturntodigitalfilterwhilepassingby
analogfilter
Zulaikha Kiran, 2024 251
1
21
()
1
d
z
s
Tz




 1
1
21
( ) ( ( ))
1
c
d
z
H z H
Tz




1 ( / 2)
1 ( / 2)
d
d
Ts
z
Ts


 Substitute sj   1 2 2
1 2 2
dd
dd
T j T
z
T j T


  

  
//
// 
(1) If <0, then |z|<1 for any
similarly, if >0, then |z|>1 for all 
(2) If =0, then12

12
d
d
jT
z
jT



/
/ 1z 12

12
j d
d
jT
e
jT



/
/ 21
1
j
j
d
e
s
Te







  
 

/2
/2
2 sin / 222
tan / 2
2 cos / 2
j
j
dd
ej j
sj
T e T








    
 2
tan( )
2
d
T

 2arctan( / 2)
d
T
Since =0
Zulaikha Kiran, 2024 26

Zulaikha Kiran, 2024 272
tan( )
2
d
T

 2arctan( / 2)
d
T

•Whole of left-half s-plane mapped to inside the unit circle in z-plane
•The whole of imaginary axis on s-plane mapped to unit circle, no
aliasing problem
•0≤Ω≤∞maps to 0≤??????≤??????
Zulaikha Kiran, 2024 28

•The bilinear transformation
avoids the problem of
aliasing encountered with the
use of impulse invariance,
because it maps the entire
imaginary axis of the s-plane
onto the unit circle in the z-
plane.
•The price paid for this,
however, is the nonlinear
compression of the
frequency axis
Zulaikha Kiran, 2024 29

•the design of discrete-time
filters using the bilinear
transformation is useful only
when the nonlinear
compression of the frequency
axis can be tolerated or
compensated for
Zulaikha Kiran, 2024 30

Zulaikha Kiran, 2024 31

Filter Design Comparisons
Zulaikha Kiran, 2024 32

Butterworth Filter
•Monotonic in both passbandand stopband.
Zulaikha Kiran, 2024 33

ChebyshevType I
•Equiripplein passband, Monotonic in stopband
•Where the Chebyshevpolynomial is given by
Zulaikha Kiran, 2024 34)/(1
1
|)(|
22
2
cN
c
V
jH


 )coscos()(
1
xNxV
N

 c

11

ChebyshevType II
•Monotonic in passband, Equiripplein stopband
•Where the Chebyshevpolynomial is given by
Zulaikha Kiran, 2024 35)coscos()(
1
xNxV
N

 122
2
)]/([1
1
|)(|



cN
c
V
jH

1 c

Elliptic Filter
•Equiripplein both passbandand
stopband
•where U
N(Ω) is a Jacobianelliptic
function
Zulaikha Kiran, 2024 36)(1
1
|)(|
22
2


N
c
U
jH

•Equationsmaybeobtainedfordiscrete-timeChebyshevandelliptic
filters.However,thedetailsofthedesigncomputationsforthese
commonlyusedclassesoffiltersarebestcarriedoutbycomputer
programs.
Zulaikha Kiran, 2024 37

Ex: 7-4 Design Comparisons
Butterworth Design11
10
20log (1 ) 0 or equivalently 0
pp
   22
10
20log (1 ) 0.3 or equivalently 0.0339
pp
    10
20log ( ) 30 or equivalently 0.0316
ss
  
Zulaikha Kiran, 2024 38

Frequency Transformations of LowpassIIR Filters to Other Filters
•Design a frequency-normalized prototype LPF
•Use algebraic transformation to derive the desired filter from prototype LPF
Given a lowpasssystem function 
lp
HZ
Transform it to a new system function Hz 
11
Z G z

  

11lp
Z G z
H z H Z



Constraints on the transformation: 
1
Gz

must be a rational function of1
z

The inside of the unit circle of the Z-plane must map to the inside of the unit circle of the z-plane
The unit circle of the Z-plane must map onto the unit circle of the z-plane
Zulaikha Kiran, 2024 39

Zulaikha Kiran, 2024 40

End
41Zulaikha Kiran, 2024
Tags