7.pdf Go Classes gateoverflow Linear Algebra

meghalsem5 22 views 149 slides May 06, 2024
Slide 1
Slide 1 of 149
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149

About This Presentation

7/15


Slide Content

Chapter J Solving px =b

\

Aron

a E) Linear Algebra coclases

Chapter 2:
Determinant, Inverses, Eigenvalues and
| _— a - 9-7
Eigenvectors
In this chapter all matrices are square matrices] Ayn n
Ann a
We

©...

CEM

Determinants

Os

E calat

det CA) frank ( A)

f.M—OR


pa l

CEM

Property 1
The determinant of the n by n identity matrix is 1.
nn. -
1
1 0
L 0 = i and =1
1

y E)
Property 2

The determinant changes sign when two rows ( or two columns) are
exchanged. ——

10 u 0 1 u
act | À =1 and det : o] =-1.
I ST

©...

# Ne) Line
Property 3

Linearity for one row at a time

ta tb mL b

6 ud yield

ata’ b+b a b| la y
; cd i e d

CE?

Gr

Ate we
4 m,
e
| a
= 7

il pas

+ A '

ef

ag he

L WA
gu

G CLASSES

o Lin

Tru e/ False Use only property 1, 2 or 3 to answer this question
See
ata’ b+b'|_|a db] lav
ete! dd led ce! d’
false

nl Lin

Tru e/ False Use only property 1, 2 or 3 to answer this questions

©...

de (oo det + dette)

A YO © > |
\ | © %6
pre = [ ]

CEM

Tru e/ False Use only property 1, 2 or 3 to answer this question

Ë
E

oo»
oO m 00
mm 00
ll
>
oor
oar NN
rr N

Os

CEM

Tru e/ False Use only property 1, 2 or 3 to answer this question

ta tb} _,|a@ 6
te dl le a

pS

Os

o Lin

Tru e/Fa Ise Use only property 1, 2 or 3 to answer this question

CEM

Tru e/ False Use only property 1, 2 or 3 to answer this question

_

If two rows of A are equal, then det(A) =0.

i)
b
yp RR, 11

Gr

) u

Tru e/Fa Ise Use only property 1, 2 or 3 to answer this question
_ —

Subtracting a multiple of one row from another row leaves det A unchanged.

ee

a a RN
c=la d-b| |c d
Se ABs

AS R 2 xi
(Ou ocissozin

N
5 AM

Tru e/ False Use only property 1, 2 or 3 to answer this question

Subtracting a multiple of one row from another row leaves det A unchanged.

a Deia 1D
c-la d=tb| le d

Determinant is unchanged when we have R; > R¡ + KR;

©...

“Lines

Tru e/ False Use only property 1, 2 or 3 to answer this questions
—__ 7

A matrix with a row of zeros has det A = 0.

©...

$

wi“ A
0 0
® d =0
> a:

|. A —

BI
2 so so
pe

CEM

Tru e/ False Use only property 1, 2 or 3 to answer this question

Determinant of diagonal Matrix is product of diagonal elements

det ra = (411) (422) +++ (Ann).

0 nn

N
e E)

Tru e/ False Use only property 1, 2 or 3 to answer this questions
=>

Determinant of upper/lower Matrix is product of diagonal elements

A A, 9% a, O O
‘a \
| à Le O a, INT
O . O as
o 0 E) Oo 9
RED RAE Ay 02083
wee eye NO

Jwww.goclassesin

14. [1 pt] Suppose

au
an
a31
Gat

A=

If det A = 3, what is det B?

a12
22
a32
az

13
023
Q33
Ga3

Qi
Qs
Q34
Gaa

and B=

au
an
a31
Qaı

013
03
Q33
043

au + 3013
G24 + 3093
Ga + 3033
Gas + 3043

14. [1 pt] Suppose
au

a
A= 21
a31

Gat

If det A = 3, what is det B?

Answer: —3

a12
22
a32
az

13
023
Q33
Ga3

Qi
Qs
Q34
Gaa

and B

a
a22

Ga2

au
an
a31
Qaı

013
03
Q33
043

au + 3013
G24 + 3093
Ga + 3033
Gas + 3043

Gi 2 41,3 CD

12. Suppose that |az1 dz2 @23| = —2. Calculate the following two determinants.
93,1 432 033

21 42,2 023
aıı @2 Q13[= 9

431 032 033

ar 2a12 013 — 201,1
ai 2092 2,3 — 2a2,1| = -Y
as1 2432 033 — 203,1

a2,ı
ai
43,1

a1
a2,1
as,

a, 2 41,3
12. Suppose that |az1 dz2 @23| = —2. Calculate the following two determinants.

23,1 43,2 43,3

a2 G23
az 44,3|= Solution: 2
43,2 3,3

201,2 013 — 201,1
2a22 0233 — 2021] = Solution: —4
2a32 033 — 243,1

4. If det |az a2 = 3, what is det |2a3ı 2a9 209 |?

Qu 412 an 31 432 03
a31 432 an Qu a12 Qı3

Answer:

~b
it~”

Qu G2 3 Ga 43 03
4. If det |a21 as» Qa23| = 3, what is det |2a7, 2a9 2a23|?
31 G32 033 aı 1 013

Answer: -6

Example 12.5. Suppose that A is a 4 x 4 matrix and suppose that det A = 11. If B is
obtained from A by interchanging rows 2 and 4, what is det B? —

S -4



Example 12.5. Suppose that A is a 4 x 4 matrix and suppose that det A = 11. If B is
obtained from A by interchanging rows 2 and 4, what is det B?

Solution. Interchanging (or swapping) rows changes the sign of the determinant. Therefore,

det B = —11

Example 12.6. Suppose that A is a 4 x 4 matrix and suppose that det A = 11. Let
a,, az, az, ay denote the rows of A. If B is obtained from A by replacing row az by 3a; + a3,
what is det B?

A Ay > 4443
_ A2 TKK<—K<<
n= Gs

An

Example 12.6. Suppose that A is a 4 x 4 matrix and suppose that det A = 11. Let
a,, &, az, ay denote the rows of A. If B is obtained from A by replacing row az by 3a; + a3,
what is det B?

Solution. This is a Type 3 elementary row operation, which preserves the value of the de-
terminant. Therefore,
det B = 11.

==
=> q =

Example 12.7. Suppose that A is a 4 x 4 matrix and suppose that det A = 11. Let

a

A), &, az, ay denote the rows of A. If B is obtained from A by replacing row ay by 3a; +7ay,
what is det B? —
" >
Ri RULERS
[ei 2, ZZ (TR Lu 3 a, A) L
— rn
Ki a y
— a, = a
4, a
CA a, 31% TAg

as
a

| g. — kK RL KBs
t
k \A)

ie Ry
O

Example 12.7. Suppose that A is a 4 x 4 matrix and suppose that det A = 11. Let
a,, Ag, az, ay denote the rows of A. If B is obtained from A by replacing row ag by 3a) +7a3,
what is det B?

a

Solution. This is not quite a Type 3 elementary row operation because ag is multiplied by
7. The third row of B is bs = 3a; + 7az. Therefore, expanding det B along the third row

det B = (3a; + 7a3) cl
= 3a, cl +72, cl
= 7(as- ci)
= 7det A

=77

nl

Example 12.8. Suppose that A is a 4 x 4 matrix and suppose that det A = 11. Let
1, 42, as, a4 denote the rows of A. If B is obtained from A by replacing row az by 4a, +5a2,
what is det B?

454%
ar a
N à t

a,
a % =
a +54,
+
<—

=;
Ay
=—

A —_
a, —
a)

=
i
bn

=>

a

— ae


SA,

— Ñ

CE :

Example 12.8. Suppose that A is a 4 x 4 matrix and suppose that det A = 11. Let
a;, 42, az, ay denote the rows of A. If B is obtained from A by replacing row az by 4a, +5a2,
what is det B?

Solution. Again, this is not a Type 3 elementary row operation. The third row of B is
bs = 4a; + 5a2. Therefore, expanding det B along the third row

det B = (4a; + 5a2) - cy,
= 4a, «cl +5ag-cF

=0+0

CEM

1.) If A

Il
sae
ree

c a -c b
fl'andB=|d -f el then det(A) = det(B).
i g — h

FALSE

3

CE :

aa
mo
on

a -c b
1) FA= adB=|d -f e| then det(A) = det(B).

g -ih

o
en

TRUE FALSE

Solution: This is true. The matrix B results from the matrix A by swapping one column
and then multiplying column 2 by —1. As det(A) = det(47) and a row swap changes the
determinant by a factor of —1, so does a column swap. The same is true for multiplying a
column by —1. So in total det(A) = (—1)(—1) det(B) = det(B).

©...

CEM

(b) Let A = [ai a, as] and B = [b, by bs] be two 3 x 3-matrices. Suppose that det(A) = 5
and b; = aj, b = a; + 2a2, b3 = az. What is det(B)?

ea

(b) Let A = [ai a, as] and B = [b, by bs] be two 3 x 3-matrices. Suppose that det(A) = 5
and b; = aj, b = a; + 2a2, b3 = az. What is det(B)?

(b) We have:
A 2220202001, q

The first column operation multiplies the determinant by 2, and the second column
operation does not change the value of the determinant. Hence,

det(B) = 2det(A) = 10.

©...

au

8. Let A= |
as

ar

a
2
a32
Q42

a3
a23
a33
043

Qa
Q24
a3q
aa

and B =

341 341 3413 3414
431 432 433 a34
aa Q22 dag 94

41 — 2aıı 049 — 2012 043 — 2013 aga — 2014

If det(A) = 5 then what is the value of det(B)?

aı Gi2 013 ais 3411 3412 3413 3414

an dy da a as as as a:

8. Let A= [92 22 a 24) Gp 31 32 33 34
31 032 G33 G34 aa Q22 dag 94
a4 42 Qu Ga aa — 2a11 G42 — 2012 043 — 2a13 Qua — 2014

If det(A) = 5 then what is the value of det(B)?
Solution: det(B) = (—3) x 5 = -15.

CEM

abe a b c
6.LetA=|d e f|,B= 9 h i 2

ghi 2d-a 2e-b 2f-c
Find det(B) knowing that det(A) = 5.

(A) det(B) = -5.
(B) det(B) = 5.
(C) det(B) = 10.
(D) det(B) = -10.
(E) det(B) .
(E) det(B) = 2.

CE :

abe a b c
6.LetA=|d e f|,B= 9 h i 2

ghi 2d-a 2e-b 2f-c
Find det(B) knowing that det(A) = 5.

(A) det(B) = -5.
(B) det(B) = 5.
(C) det(B) = 10.
(D) det(B) = -10.
(E) det(B) = -2.
(E) det(B) = 2.

Solution: (D) det(B) = (-2) x 5 = -10.

aı 412 413
A= az an ax,
3 432 33

and det A = 3. If

An An da an Q
B= {a an a3}, and C= fan a»
31 G32 033 31 Qg

what are det B and det C?

413 — 3011
x3 — 3071
433 — 3031

and det A = 3. If

an
B= |an
a31

what are det B and det C?

a2
12
32

an
A= laa
azı
Q23
&3l, and
33

Answer: det B = —3, det C = 3

2
42 da

a32

Cc

13

a33

an

azı
a31

>

1
az
a32

a3 — 3011
x3 — 3071
433 — 3031

Calculate determinant of 2x2 matrix

KY Use only property 1, 2 or 3 to answer this questions

a 0 0 A
j AN ed
__ a — .
rare
Na,

c Ô
Qc

ue

e E)
Calculate determinant of 2x2 matrix

ao
ao |
a bl_fa 0| [o 6 [ls
ce di le d c d
a a 0 0 b 0
AEG
ad - bc g\ =?

sses NES

mal > a, © o O % ha oO © Ae
225 Gn Mee] ae te Ot E ay On Os
” Ass Gy In As Ay Gen ds
| m 6 2
ay © © 2 o
L pd 0 2 we Li o © =
31 Ag an 8
Az 0,43 a *

LS

© goetessesin

oo Ag
+] a, Qi Os
Au Uds

|

G CLASSES
3

S =
— each ro ms
aı 412 413 3 “nee choices at
an An of a 4 ot hich alement
3 n

YY 8 ‘ e pris 15% ¿houcd bo
he el ACCES pasert

4 a, 0 © ay © 0 00 42

d | Oo An 0 + oy 5 r a0 0

> a

Og, 0 0 a O Aged

_

an 412
a 42
431 432

f a ser) colamn we
ab erst One Non ZE

413 5 1 i
423 3 det wih Bus ve
3

433

722 aus) (O

a © O =?
oe © — 2

el —ı

ha vo

Amen Hot

Aer ms

comi un

N
WED 5
ml, aes

=)

nf we ex pond ”
a |

411 412 413 an 0 0 ay 0 0 0 ap 0
M1 42 43 = 0 ay 0!+| 0 O ag |+|an 0 0
431 432 43 0 0 az 0 ap 0 0 0 23
0 ay 0 0 0 ay 0 0 a3

+ 0 0 a3 |+| an 0 0 |+ 0 an 0

431 0 0 0 az 0 a31 0 0

Il

411422433 — 411423433 — 412421433
+412423431 + 413421432 — 413422431.

CEA

Ste
nen au Peermalectiong
£y
dé Lee Tan) yes

<<

5

0 1

0 1 \0 A+) =0

1 0 lo

1 0

= pet BAERS
Gar) —

a
NX G ER: ] Er elanentyy 70°
= — a

SRR N°
R: OER ul Hp ly

[= gear ST Dei LE

how fin der
kK

1287
cl

Problem 6. Let A be an 4 by 4 matrix with entries a;;. In the expression of the
determinant of A what is the sign of the product a13422034041 ?

Or:
x
a Y à
Go.
xy + b >
TZ
p

+C%4
cdl

- A249

Problem 6. Let A be an 4 by 4 matrix with entries a;;. In the expression of the
determinant of A what is the sign of the product a13a22a34@41 ?

Solution. The corresponding permutation is (3,2,4,1). One needs two switches to
get (1,2,3,4) from it: switch the first and the fourth numbers, then switch the third and
the fourth numbers. The number of switches is even, so the sign is +.

ses ES

Properties of determinant

* Determinant evaluated across any row or column is same.

+ If all the elements of a row (or column) are zeros, then the value of
the determinant is zero

+ Determinant of transpose is same as original matrix.

Let A and B be two matrix, then det(AB) = det(A)*det(B).

If A be a matrix then, 1471 = (Apr.

Determinant of Inverse of matrix can be defined as ¡A I ‘A
Determinant of diagonal matrix, triangular matrix (upper triangular or lower
triangular matrix) is product of element of the principle diagonal

Gr

CE :

Since determinant of transpose is same as original matrix we can
column operations too.

If A is singular then det A = 0. If A is invertible then det A AH 0.

The determinant of AB is det A times det B: |AB| = | A| |B|-

©...

CEM

Is Det(A B 47?) = Det(B) ?

Os

T F Aand B = 2Aare n x n matrices. If det(A) = 4, then det(B) = 8.

T F Aand B = 2Aare n x n matrices. If det(A) = 4, then det(B) = 8.

False: Matrix B is obtained by scaling each row of A by two. Therefore, the deter-
minant doubles at each of these scalings: det(B) = 2" det(A) = 4-2".

2. Circle the letters which correspond to the statements which are true for
all square 5 x 5 matrices A, B,C.

A. det (-A) = —det (A). .
B. det (3A) = 3det (A). H Ww

©. det (A + B) = det (A) + det (B). a
D. det (ABC) = det (A) det (B) det (C).

E. Determinant of A does not change if the rows A are rearranged in the
opposite order.

2. Circle the letters which correspond to the statements which are true for
all square 5 x 5 matrices A, B,C.

A. det (—A) = -det (A).

B. det (34) = 3det (A).

C. det (A + B) = det (A) + det (B).

D. det (ABC) = det (A) det (B) det (C).

E. Determinant of A does not change if the rows A are rearranged in the
opposite order.

Ans.: A,D,E.

Solution. A. True. Multiplying A on —1 is the same as multiplying each row
on —1, so determinant is multiplied on (-1)?
B. No. The correct formula is det (3A)

C. No. For example, it is easy to write J, whose determinant is 1, as
a sum of two diagonal matrices with zeros and ones on the main diagonal;
their determinants are 0.

D. True. In general det (AB) = det (A)det (B), this is a theorem which
was proved in class. Applying it twice we obtain the formula in D.

E, True. This depends on the sign of the permutation (n,n — 1.
For n = 5 this permutation has 2 transpositions so it is even.

Zr)

A
A

Calgatade — Aekteinart

Ust na Par mutehion
Convert gie madrix de echelon form
A a dingalat )

omd Jedse product of pivots

Card using ca faces

) u

The Pivot Formula a
echan dem

aT
After converting A to upper triangular matrix, the pivots d;, d,, ... dy
are on diagonal. —

If no row exchanges are involved, multiply those pivots to find the

determinant: det A = d:d,d3 ... dy
_ MS
In general : detA = +d,d2d3...d,

©...

G
voy .> ft *
A=|0 2 3 o 2
4 5 6
hh 2 pul
PA
magie A

©...

CE :

Roo
ane
Du
oo»
ona
Hwa

| Odd |
Odd_
row exchanges

| det A = —(4)(2)(1) = -8.

©...

nl

The Cofactor Formula

The determinant is the dot product of any row (or column) i of A with its
cofactors using other rows.

é DOI A

< 13
det A = a,1C11 + 012C12 + 01333 + + QinCin
Csfecetes of di;

y E) Line e

Howmany terms are there in Cofactor expansion ?

©...

al. =)

¢
o Y ’
N yal + Vela
{

À (2 Y 45 (2°) =

CEM

Write down determinant of A along expansion of 2"4 row

Be Zur A ro | +)

©...

CEM

Write down determinant of A along expansion of 1% column
_

5 1 Cu =7 C2=3 G3=-2
0 2 3 Ca=-11 C32=-7 G3=2

| 1 -1 i Cu = 13 Ci2=9 C3 = -6
=>

@ along the 1st row:

det(A) = 1-13 + (-1)-9+2-(-6) =13-9-12=-8
e along the 2nd row:

det(A) = (-3):7+5:3+1:(—2) =-214+15-2=-8
@ along the 3rd row:

det(A) =0:(-11)+2:(-7)+3:2=0-—14+6 = -8
@ along the 1st column:

det(A) = 1-13 + (—3)-7+0-(-11) =13-21+0=-8
e along the 2nd column:

det(A) = (-1)-9+5-3+2-(-7)=-9+15-14=-8
e along the 3rd column:

det(A) = 2-(—6) +1-(—2)

Az

a

cH

is

Az
2 Ass

> “en
sin

CANE a

“ to~ Jack” ?

- Op (

+ om (l

CE :

Question

An di Az
IfA= @, 42 43| and A, is Cofactors of a,, then value of A is given by

93, 42 Az
(A) a,A,ta,Ay+a,A, (B) Ata, A, + ai Ay
©) a, Aj? a, Ay +a, Ay (DY a, Ayt a, Ay, + 43, Ay,
m

y Pa

coithod Siqn > ani not
__ BA
- cache ;
ysith Sg ón sec vi mA
MA 27

Er

| C1 | | J. @fact

CEM

True/False~

If we replace element a, to 9 then C,, changes false

Y 3 3
7 a 1 ra)
Sry 7
©

-1 1 0
-1 0 1

©...

y E)
True/False

C;; does not depend on aj; TRo E

Ouen

5 Ve Line:
True/False Rot

In both of given matrices, C11, C12 and Cj3 are same

N 4
œ a
oo
N £6
aun
ond

©...

y E) Lineal

di A. 43

\

Let C;; be cofactor of aj;
4% An Ay

41 2 dz

q
a, 23

What could be the corresponding matrices for given determinants? _

a As ass

A Kr Cy (a

= 22011 + 2312 + 02113

OS — Qu Rs @)
Ay Qn Rs

a, 43

VV
=

©...

di A 43

7 Es a
a, da dy Let C;; be cofactor of aj; ©) Cay Aza 33

a) & Ax Cup Ay an AS

= CA Gy Fy
What could be the corresponding matrices for given determinants ? —

(a qua S du =0
1. A = 0z2Cj1 + 023C12 + 02113
Qu
0)

2. A= 022012 + d23Cz2 + dar Cae > a ES) 9 C

3. A= Cr + az + 023013 Asi . @) A2 2 Azz Azz

4. A= azılıı + 32012 +033€13 1 Az 9
SE ay %

# Lineal
ay 2 43 Let C;; be determinant of aj;
% an Ay @
di M dz ms

——”

Which of the following values evaluates to zero ?

Q Sy As
A = 21C11 + 022C12 + 023C13

2 ez |%ı An da
A = ayıCız + 021C22 + 031Cg2 dx Ay Ay
E AH 22011 + Azılız + Q23Cı3

T
wm

A= azılıı + agzlı2 + Q33C13

CE :

20. Determine the value of a11 A12 + @21A22 + a31 432 for the

23 0
matrix A = 4 1 -3 |, where À; is the cofactor of
20 1

each aj; ?

o b) 32 032 d)16 e) -16

CEA ...

20. Determine the value of a11 412 + 091 422 + a31 Aza for the

-2 3 0
matrix A = 4 1 -3 |, where À; is the cofactor of
2 0 1
each aj; ?
a) 0 b) -32 c) 32 d) 16 e) -16

True/False ?

If elements of a row (or column) are multiplied with cofactors of any
other row (or column), then their sum is zero.

eg: Azılıı + A22C12 + A23C 3 = 0.


Ons

u 14

Ca

CA

Cay

ED

Ent

Ca

9 % > b Gy q “ut J ss
i f i 4 Con not Sg
¡A

À
EN
Yre a 7

os y

y +

e

Ar

E
+ N Gp 13

ac

N
5 AM

Find product of below matrices
Cofades af 5+ WO

11 12 913] Cy, Ca Ca
G21 422 Qz3||Cı Coz 6 =?
G31 G32 MzzllCiz C23 Cas
jai © O
o m 0
ly Mz Am © O ¡Al

y E) Linear.

Find product of below matrices

pi o 6 fs6
Cu Ca Ca o | Por
Cı2 Con 6] - ? (€) rol 101

11 A 43
221 A22 A3

31 32 QzgllCiz C23 C33 6 d [A
cad #on A
Q11 12 013 iw) 0 0
| ex a22 a =? 0 SN 0
Q31 Az a
31 32 33 o e yp)

©...

G CLASSES

yo ©
o | 0
o o |
in Dad
o | xe) | Ca Cr Cot
oo ! Ci2 Cz2 6

w Ci3 (23 Css

A wverse

\\

N
5 AM

What will be inverse of A ?

A= |@21 422 Q23

431 432 433

11 Aı2 ca|

Adjoint of Matrix: The adjoint of a matrix is the transpose of the cofactor element matrix of the given matrix.

Cir Ca Ca
pdi CPSs [G2 Coz Coz
Als 1, Adj A Ci3 C23 C33
A
¿AS
==
cy Cu Cig
ce Cay ca @3
CA Cy Css

Jwww.goclassesin

CEM

CE :

ae
— 4 -2 1
Example: Find the inverse of the matrix A = ( 5 0) 5) ;
-1 2 6

Os

ses ES

10 31 15 31,,15 Ol
lates SM, sr 2!

= 4(0 x 6-3 x 2) + 2(5 x 6 - (-1) x 3) H(5 x 2-0 x (-1))
= 4(0 - 6) + 2(30 + 3) +1(10 - 0)
=-24+66+10

=52

Now, we will determine the adjoint of the matrix A by calculating
the cofactors of each element and then taking the transpose of
the cofactor matrix.

-6 14 -6
Adj A= e 25 -7 )
10 -6 10

The inverse of matrix A is given by the formula A! =

1/5 4 -e
aaa 25 2)
52 Lo -6 10
(3/26 7/26 -3/26
= | -33/52 25/52 -7/52 |
5/26 -3/26 5/26 /
(3/26 7/26 -3/26y
Answer: A"! = (asa 25/52 -7/52
5/26 -3/26 5/26

1 adja
IAI

ssesin

CEM

Inverse

f 1 =
A= | > has inverse A! = E E À :

Re

y we A
ez Ml a pAjCo) = ©

Os

3. Define the matrices

0 1 0 0 8 9 -1 -1
3 —2 2 1 0 1 0 16
M= 0 15 O0 1 |” Nis 00 2 3
5 5 55 0 0 0 2

Compute the determinants: det(M), det(N), det(MN), det(M~'), det(adj(M)).
Hint: Recall that the adjoint matrix adj(M) satisfies M - adj(M) = det(M)I.

3. Define the matrices

0 1 0 0 8 9 -1 -1
3 —2 2 1 0 1 0 16
M= 0 15 O0 1 |” Nis 00 2 3
5 5 55 0 0 0 2

Compute the determinants: det(M), det(N), det(MN), det(M~'), det(adj(M)).
Hint: Recall that the adjoint matrix adj(M) satisfies M - adj(M) = det(M)I.

Solution.
321 3 2
det(M) = (—1)det | 0 0 1 | =(-1)(-1)det =5,
555 =

det(N)=3x1x2x2=12 (an upper triangular matrix),
det(MN) = det(M) det(N) = 5 x 12 = 60,
1 _ 1 _ı
det(M~') = qa = ®

det(adj(M)) = det ((det(M))M7") = det (5M=!) = 51 det (M7!) = 5° = 125.

Li

#
2 -7 -9
4. (15 points) Let A = 2 5 6 |. Find the third column of A~! without computing the other
1 3 4
columns.
ine)
ar

y E) Line
Today's Topics

> Crammers Yale

> Eigen volues And Ew

©...

True/False ?

If elements of a row (or column) are multiplied with cofactors of any
other row (or column), then their sum is zero.

EE Gu Haney +@2JC: =0.
U On 02
a Ga Uy = O
ly % 93

©...

CEM

Find product of below matrices

d
caf te we
11 12 913] Cy, Ca Ca m o à
21 Mz U23||Ci2 Ca Ca] = ? o No
231 G32 Azz| lC13 C3 Css !
o {Al
adjoint naht
„> Em

©...

CEM

Find product of below matrices

12
022
032

413
023
033

C31
C32
C33

|

Cy E
Cr
Ci3

411
A21
34

Can
C22
C23

412
422
432

C31
Cl = ?
C33

413
d3|= ?

a33

©...

CEM

What will be inverse of A ?

A= |G21 422 An

431 432 433

11 Aı2 cal

Adjoint of Matrix: The adjoint of a matrix is the transpose of the cofactor element matrix of the given matrix.

Az

-Adj A

CE :

4 -2 1
Example: Find the inverse of the matrix A = ( 5 O 3 ) ;
-1 2 6

Os

ses ES

10 31 15 31,,15 Ol
lates SM, sr 2!

= 4(0 x 6-3 x 2) + 2(5 x 6 - (-1) x 3) H(5 x 2-0 x (-1))
= 4(0 - 6) + 2(30 + 3) +1(10 - 0)
=-24+66+10

=52

Now, we will determine the adjoint of the matrix A by calculating
the cofactors of each element and then taking the transpose of
the cofactor matrix.

-6 14 -6
Adj A= e 25 -7 )
10 -6 10

The inverse of matrix A is given by the formula A! =

1/5 4 -e
aaa 25 2)
52 Lo -6 10
(3/26 7/26 -3/26
= | -33/52 25/52 -7/52 |
5/26 -3/26 5/26 /
(3/26 7/26 -3/26y
Answer: A"! = (asa 25/52 -7/52
5/26 -3/26 5/26

1 adja
IAI

ssesin

CEM

Inverse

1 =
A= : | has inverse A7! = | d a |
cd ad—be|-c a

Os

—2 -7 -9
4. (15 points) Let A = | 2 5 6 ) . Find the third column of 47! without computing the other

1.3 4 —
columns.
Cc
At =
„Ai ai
A
y Aro
= A o

Li

#
—2 -7 -9
. (15 points) Let A = 2 5 6 |. Find the third column of A~! without computing the other
1 3 4

columns.

SOLUTION. To compute the third column of A7!, we only need to solve the system Ax = (0 0 1)",
where the right hand side is the third column of identity Jz. Using Gaussian elimination, we get

-2 -7 -9|0 1 3 alı 13 4/1
2 5 6/0 28, 2 5 6 \o | 24/0 -1 -2]-2
1 3 ali -2 -7 910) Bra lo -1 -1| 2
( J Fo:

R3—Ra

Bso,

0 -2|-2
as Dan

Then applying back substitution, we have 13 = 4, 22 = —6, zı = 3. Therefore, the third column of
AT is (3 -64)7. - a

©...

CEM

0 0 0 0
1 0 0 0
4. Compute the determinant /0 0 0 1 0 y, > Y
00300 3 4
00003
-6
12
-12
18
-24

Bunw»

Os

CEM

2
0
4. Compute the determinant |0 \
0
0 3 0
A. -6 eo
B. 12 o 1
C. -12 20
-18 A
E. 18 a>
F. -24 —
=-&

Cramer’s Rule

Mathematics of millionaires

Heayf Exmpuday

Sy omar money
AN

rta 5 ea)
II
©--

Aup pose trot det CA) — 6) which means

pr oxi sts

G CLASSES

nd FT ie
A
\ Cig 1
ln __))

ay 4 %
AM Pr Gag
Ag vz a

3

De 3

CE JM

at oxist Curie)

qu
x= wb
a,
00) a
== desta) m
de = del (0) ,
= An) a

Fan det (As)

See

fy =
3)
A, =
_

A, =

by An ag
Le O22 Gag
bz 0, 35

0 +0 +0%#0

a bh %
F Pr |

97 vs as
E 4 a
Ay Ayn V2
934 452 bs

Ar =b Rolve foe oc (ohm rl exist)
Uns or | > for
"ee
9 Cammırs vale Beck GubShhbin

HF usuel E: fy Auch
u ~ You can Lind pl and EN by L.

Use Cramer's Rule to solve for the indicated unknowns.

Se { 2a, — 32,

te for x, and 2,

yo lind

quo” pan fe
14

Solution. € chs

1. Writing this system in matrix form, we find

[5 4] »-[-]

——
To find the matrix Aj, we remove the column of the coefficient matrix A which holds the
coefficients of +, and replace it with the corresponding entries in B. Likewise, we replace the
column of A which corresponds to the coefficients of z, with the constants to form the matrix

Ay. This yields
4-3 4
2 1 -2

Computing determinants, we get det(A) = 17, det (A,) = —2 and det (A,

A

—24, so that

_det(A)_ 2 _det(A) 24

Ted) — 17 #27 qet(4) IT

The reader can check that the solution to the system is (—,
Tags