9.2_Special_right_triangles. PowerPoint Presentation

EmmaBasilio1 18 views 56 slides Mar 03, 2025
Slide 1
Slide 1 of 56
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56

About This Presentation

A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based&quo...


Slide Content

9.2 Special Right 9.2 Special Right
TrianglesTriangles
45-45-9045-45-90
EQ: What are the relationships between EQ: What are the relationships between
the sides on a 45 -45-90 triangle?the sides on a 45 -45-90 triangle?
Moody Mathematics

Take a square…Take a square…
Moody Mathematics

Find its diagonalFind its diagonal
Here Here
it isit is
Moody Mathematics

Find its Find its lengthlength
xx dd
xx Moody Mathematics

xx dd
xx
2 2 2
x x d 
2 2
2x d
2 2
2x d
2x d
2
2x d
Moody Mathematics

Summarize the Summarize the
pattern:pattern:
Moody Mathematics

4545
oo
-45-45
oo
-90-90
oo
legleg
legleg
legleg
2
Moody Mathematics

4545
oo
-45-45
oo
-90-90
oo
66
66
66
2
Moody Mathematics

4545
oo
-45-45
oo
-90-90
oo
88
88
88
2
Moody Mathematics

4545
oo
-45-45
oo
-90-90
oo
55
55
55
2
Moody Mathematics

4545
oo
-45-45
oo
-90-90
oo
1010
1010
1010
2
Moody Mathematics

4545
oo
-45-45
oo
-90-90
oo
222
2
Moody Mathematics

4545
oo
-45-45
oo
-90-90
oo
32
32
6
Moody Mathematics

8
4 2 4 2
4545
oo
- 45- 45
oo
-90-90
oo
Moody Mathematics

4545
oo
-45-45
oo
-90-90
oo
102
10 2
20
Moody Mathematics

9.2 Special Right
Triangles 30-60-90
Triangles
EQ: How do I find the lengths of sides of a
30-60-90 triangle

Now Let’s take Now Let’s take
an Equilateral an Equilateral
Triangle…Triangle…
Moody Mathematics

… … Find its AltitudeFind its Altitude
Moody Mathematics

xx xx
xx
aa
2 2
x x
2
2 2
2
x
a x
 
 
 
 
2
2 2
4
x
a x 
2 2
24
4 4
x x
a 
2
23
4
x
a
Moody Mathematics

xx xx
aa
2 2
x x
2
23
4
x
a
2
23
4
x
a
3
2
x
a
2
3
4
x
a
Moody Mathematics

Summarize the Summarize the
pattern:pattern:
Moody Mathematics

3030
oo
-60-60
oo
-90-90
oo
H
y
p
o
te
n
u
se
H
y
p
o
te
n
u
se
Longer legLonger legS
h
o
r
t
e
r
L
e
g
S
h
o
r
t
e
r
L
e
g
30

60

Moody Mathematics

3030
oo
-60-60
oo
-90-90
oo
H
y
p
.
H
y
p
.
½ Hyp. ½ Hyp.
½
H
y
p
.
½
H
y
p
.
30

60

3
Moody Mathematics

3030
oo
-60-60
oo
-90-90
oo
30

60

103
20
10
Moody Mathematics

Practice:Practice:
Moody Mathematics

3030
oo
-60-60
oo
-90-90
oo
30

60

143
28
14
Moody Mathematics

3030
oo
-60-60
oo
-90-90
oo
30

60

83
16
8
Moody Mathematics

3030
oo
-60-60
oo
-90-90
oo
30

60

93
18
9
Moody Mathematics

3030
oo
-60-60
oo
-90-90
oo
30

60

3
2
1
Moody Mathematics

3030
oo
-60-60
oo
-90-90
oo
30

60

33
6
3
Moody Mathematics

3030
oo
-60-60
oo
-90-90
oo
30

60

7
3
2
7
7
2
Moody Mathematics

3030
oo
-60-60
oo
-90-90
oo
30

60

23
4
2
Moody Mathematics

3030
oo
-60-60
oo
-90-90
oo
30

60

9
3
2
9
9
2
Moody Mathematics

3030
oo
-60-60
oo
-90-90
oo
30

60

6
43
23
Moody Mathematics

3030
oo
-60-60
oo
-90-90
oo
30

60

12
83
43
Moody Mathematics

Review Both Review Both
Patterns:Patterns:
Moody Mathematics

4545
oo
-45-45
oo
-90-90
oo
legleg
legleg
legleg
2
Moody Mathematics

3030
oo
-60-60
oo
-90-90
oo
H
y
p
.
H
y
p
.
½ Hyp. ½ Hyp.
½
H
y
p
.
½
H
y
p
.
30

60

3
Moody Mathematics

Mixed Mixed
Practice:Practice:
Moody Mathematics

30

60

123
24
12
Moody Mathematics

30

60

33
6
3
Moody Mathematics

88
88
88
2
Moody Mathematics

1010
1010
1010
2
Moody Mathematics

30

60

3
2
1
Moody Mathematics

10
10
10
53
Moody Mathematics

30

60

153
30
15
Moody Mathematics

8 8
8
8
82
Moody Mathematics

30

60

83
16
8
Moody Mathematics

8
4 2 4 2
Moody Mathematics

30

60

33
6
3
Moody Mathematics

15
15
152
15
15
Moody Mathematics

30

60

15
103
53
Moody Mathematics

30

60

12
83
43
Moody Mathematics

44
44
4 2
Moody Mathematics

222
2
Moody Mathematics

18
18
18
93
Moody Mathematics
Tags