REFRENCES 1] T. Logeswari and M. Karnan , “An improved implementation of brain tumor detection using segmentation based on soft computing,” Journal of Cancer Research and Experimental Oncology, vol. 2, no. 1, pp. 006–014, 2009. S. Bauer, R. Wiest , L.-P. Nolte, and M. Reyes, “A survey of mri -based medical image analysis for brain tumor studies,” Physics in medicine and biology, vol. 58, no. 13, p. R97, 2013. P. Kleihues and B. W. Stewart, “World cancer report,” 2003. N. Gordillo , E. Montseny , and P. Sobrevilla , “State of the art survey on mri brain tumor segmentation,” Magnetic resonance imaging, vol. 31, no. 8, pp. 1426–1438, 2013. S. Roy, S. Nag, I. K. Maitra , and S. K. Bandyopadhyay , “A review on automated brain tumor detection and segmentation from mri of brain,” arXiv preprint arXiv:1312.6150, 2013. S. Yousefi , R. Azmi , and M. Zahedi , “Brain tissue segmentation in mr images based on a hybrid of mrf and social algorithms,” Medical image analysis, vol. 16, no. 4, pp. 840–848, 2012. J. J. Corso , E. Sharon, S. Dube , S. El- Saden , U. Sinha , and A. Yuille , “Efficient multilevel brain tumor segmentation with integrated bayesian model classification,” Medical Imaging, IEEE Transactions on, vol. 27, no. 5, pp. 629–640, 2008. M. A. Balafar , A. R. Ramli , M. I. Saripan , and S. Mashohor , “Review of brain mri image segmentation methods,” Artificial Intelligence Review, vol. 33, no. 3, pp. 261–274, 2010. “What you need to know about brain tumors,U.S . National Institute of Health- National Cancer Institute.” http://www.cancer.gov/cancertopics/wyntk/brain/ allpages , 2003. [Online; accessed Mar.2003]. J. Mikulka and E. Gescheidtova , “An improved segmentation of brain tumor, edema andnecrosis ,” in PIERS Proceedings, pp. 25–28, 2013