A Review of Particle Swarm Optimization (PSO) Algorithm
https://iaeme.com/Home/journal/IJMET 38
[email protected]
[80] Kennedy J (2000) Stereotyping: Improving particle swarm performance with cluster analysis.
In: Proceedings of the IEEE internationalconferenceonevolutionarycomputation,pp303–308
[81] Kennedy J (2003) Bare bones particle swarms. In: Proceedings of the2003 IEEE swarm
intelligence symposium (SIS’03), pp 80–87,Indianapolis,IN,USA,April24–26,2003
[82] Kennedy J (2004) Probability and dynamics in the particle swarm. In: Proceedings of the IEEE
international conference on evolutionary computation, pp 340–347, Washington, DC, USA,
July 6 –9,
2004KennedyJ(2005)Whydoesitneedvelocity?In:ProceedingsoftheIEEEswarmintelligencesym
posium(SIS’05),pp38–44, Pasadena,CA,USA,June8–10,2005
[83] Kennedy J, Eberhart RC (1995) Particle swarm optimization? In: Pro -
ceedingsoftheIEEEinternationalconferenceonneuralnetworks,pp1942–1948,Perth,Australia
[84] Kennedy J, Mendes R (2002) Population structure and particle swarmperformance. In:
Proceedings of the IEEE international conferenceonevolutionarycomputation,pp1671–
1676,Honolulu,HI,USA,Sept22–25, 2002
[85] KennedyJ,MendesR(2003)Neighborhoodtopologiesinfully-informedandbest-of-
neighborhoodparticleswarms.In:Proceed-ings of the 2003 IEEE international workshop on soft
computing inindustrial applications (SMCia/03), pp 45–50, Binghamton,
NewYork,USA,Oct12–14, 2003
[86] Krink T, Lovbjerg M (2002) The life cycle model: combining parti-cle swarm optimisation,
genetic algorithms and hillclimbers. In:Lecture notes in computer science (LNCS) No. 2439:
proceed-ingsofparallelproblemsolvingfromnatureVII(PPSN2002),pp621–
630,Granada,Spain,7–11Dec2002
[87] Lee S, Soak S, Oh S, Pedrycz W, Jeonb M (2008) Modified
binaryparticleswarmoptimization.ProgNatSci18:1161–1166
[88] Lei K, Wang F, Qiu Y (2005) An adaptive inertia weight strategy forparticle swarm optimizer.
In: Proceedings of the third internationalconference on mechatronics and information
technology, pp 51–55,Chongqing,China,Sept21–24,2005
[89] Leontitsis A, Kontogiorgos D, Pagge J (2006) Repel the swarm to
theoptimum.ApplMathComput173(1):265–272
[90] Li X (2004) Better spread and convergence: particle swarm multi-objective optimization using
the maximin fitness function. In:Proceedings of genetic and evolutionary computation
conference(GECCO2004),pp117–128,Seattle,WA,USA,June26–30,2004
[91] LiX(2010)Nichingwithoutnichingparameters:particleswarmoptimization using a ring topology.
IEEE Trans EvolutComput14(1):150–169
[92] LiX,DamKH(2003)Comparingparticleswarmsfortrackingextremaindynamicenvironments.In:P
roceedingsofthe2003Congresson Evolutionary Computation (CEC’03), pp 1772–1779,
Canberra,Australia,Dec8–12,2003
[93] LiZ,WangW,YanY,LiZ(2011)PS-ABC:ahybridalgorithmbasedon particle swarm and artificial
bee colony for high-dimensionaloptimizationproblems.ExpertSystAppl42:8881–8895
[94] Li C, Yang S, Nguyen TT (2012) A self-learning particle swarm opti-mizer for global
optimization problems. IEEE Trans Syst ManCybernetPartBCybernet42(3):627–646
[95] LiY,ZhanZ,LinS,ZhangJ,LuoX(2015a)Competitiveandcooperativeparticleswarmoptimization
withinformationsharingmechanismforglobaloptimizationproblems.InfSci293:370–382
[96] Li Z, Nguyena TT, Chen S, Khac Truong T (2015b) A hybrid algorithmbased on particle swarm
and chemical reaction optimization formulti-objectproblems.ApplSoftComput35:525–540
[97] Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle swarmoptimizer. In: Proceedings
of IEEE swarm intelligence sympo-sium,pp124–129,Pasadena,CA,USA,June8–10,2005