References M. H. A. Biswas, L. T. Paiva and MdR de Pinho, A SEIR MODEL FOR CONTROL OF INFECTIOUS DISEASES WITH CONSTRAINTS, MATHEMATICAL BIOSCIENCES AND ENGINEERING, Volume 11 , Number 4 , August 2014 F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology , Springer-Verlag. New York, 2001. F. Clarke, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983. F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Springer-Verlag, London, 2013. F. Clarke and MdR de Pinho , Optimal control problems with mixed constraints, SIAM J. Control Optim ., 48, (2010), 4500-4524. M. d. R. de Pinho , M. M. Ferreira, U. Ledzewicz and H. Schaettler , A model for cancer chemotherapy with state-space constraints, Nonlinear Analysis, 63 (2005), e2591-e2602. M. d. R. de Pinho , P. Loewen and G. N. Silva, A weak maximum principle for optimal control problems with nonsmooth mixed constraints, Set-Valued and Variational Analysis, 17 (2009), 203-2219. E. Demirci , A. Unal and N. Ozalp , A fractional order seir model with density dependent death rate, MdR de Pinho,Hacet . J. Math. Stat., 40 (2011), 287-295. P. Falugi , E. Kerrigan and E. van Wyk , Imperial College London Optimal Control Software User Guide (ICLOCS), Department of Electrical and Electronic Engineering, Imperial College London, London, England, UK, 2010. R. F. Hartl , S. P. Sethi and R. G. Vickson A survey of the maximum principles for optimal control problems with state constraints, SIAM Review, 37 (1995), 181-218. W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Bulletin of Mathematical Biology, 53 (1991), 35-55.