WorkflowoftheAImodelling.
(A)Thedatasetincluded20typesof
cancer.
(B)Weemployedtwoworkflows:
generalizeddeepnetworksand
specializedshallownetworks.Inthefirst
workflow,weexploredtheperformance
oftwodifferentmodels,namelyaCNN-
basednetworkandaReLU-based
network.Inthespecializedshallow
networksworkflow,webuiltshallow
modelsthatdifferentiatebetweencancer
typeswithinthesamesystemorcontext.
Forexample,thedigestivesystemmodel
aimstodistinguishbetweentwocancers,
namely cholangiocarcinomaand
colorectaladenocarcinoma.
Lazarczyk, M., Duda, K., Mickael, M. E., AK, O., Paszkiewicz, J., Kowalczyk, A., Horbańczuk, J. O., & Sacharczuk,
M. (2022). Adera2.0: A Drug Repurposing Workflow for Neuroimmunological Investigations Using Neural
Networks. Molecules, 27(19), 6453. https://doi.org/10.3390/molecules27196453
Mickael, M. E., Kubick, N., Atanasov, A. G., Martinek, P., Horbańczuk, J. O., Floretes, N., Michal, M., Vanecek, T., Paszkiewicz, J., Sacharczuk,
M., & Religa, P. (2024). Using Copy Number Variation Data and Neural Networks to Predict Cancer Metastasis Origin Achieves High Area
under the Curve Value with a Trade-Off in Precision. Curr Issues MolBiol, 46(8), 8301–8319. https://doi.org/10.3390/cimb46080490