A Hertzian dipole is a starting point of antenna theory. Since most of antennas can be understood with a Hertzian dipole, we need to thoroughly study this kind of an infinitesimal antenna that is not real in practical applications.
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab2
E and H fields
1. Field analysis
Vector potential
Vector potential approach
AB ´Ñ=
ò
¢=
-
V
jkR
VdJ
R
e
A
p
m
4
222
)()()( zzyyxxrrR ¢-+¢-+¢-=¢-=
AH ´Ñ=
m
1
H
j
E ´Ñ=
we
1
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab3
Hertzian dipole
1. Field analysis
Current density approximation
2/2/for
ˆ)()(
zzz
zyxIJ
D<¢<D-
¢¢= dd
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab4
Vector potential
1. Field analysis
Current vs. vector potential
z
r
zeI
zId
R
e
zA
jkr
z
z
z
jkR
ˆ
4
4
ˆ
0
2/
2/
p
m
p
m
-
®D
D
D-
-
D
=
¢=ò
q
q
q
sin
cos
z
zr
AA
AA
-=
=
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab5
H field
1. Field analysis
( )
fq
p
q
f
mm
q
ˆ
sin
1
4
1
ˆ
11
ú
û
ù
ê
ë
é
+
D
=
ú
û
ù
ê
ë
é
¶
¶
-
¶
¶
=´Ñ=
-
r
jk
r
zeI
ArA
rr
AH
jkr
r
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab6
E field
1. Field analysis
( ) ( )
qq
p
h
q
p
h
qq
qqwe
we
ff
ˆ
sin
1
4
ˆcos1
2
1
ˆ
sin
sin
1
ˆ
1
1
2
2
ú
û
ù
ê
ë
é
-+
D
+
ú
û
ù
ê
ë
é
-
D
=
ú
û
ù
ê
ë
é
¶
¶
-
¶
¶
=
´Ñ=
-
-
kr
j
r
jk
r
zeI
r
kr
j
r
zeI
rH
rr
H
r
r
j
H
j
E
jkr
jkr
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab7
Electric dipole moment
1. Field analysis
Current vs. electric dipole moment
dt
dp
dt
zdQ
z
dt
dQ
zI =
D
=D=D
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab8
Far-field
1. Field analysis
Dr>>
fq
p
ˆ
sin
4
jk
r
zeI
H
jkr-
D
=
qq
p
h
ˆ
sin
4
jk
r
zeI
E
jkr-
D
=
[ ]
*
Re
2
1
HES ´=
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab9
Radiated power
1. Field analysis
[ ]
2
2
2
00
2
2
2
2
2
*
3
sin
sin
42
sin
42
1
2
1
Re
2
1
÷
ø
ö
ç
è
æD
=
D
=
D
==
·´=
òò
òò
ò
-
l
ph
fqq
q
p
h
q
p
hh
pp
zI
ddr
r
k
zI
dSjk
r
zeI
dSH
SdHEP
S
jkr
S
S
r
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab10
Radiation resistance
1. Field analysis
rr
RI
zI
P
2
2
2
1
3
=
D
=
l
ph
2
3
2
÷
ø
ö
ç
è
æD
=
l
phz
R
r
Open transmission line
)2/cot(
0in
zjZZ D-= b
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab11
Simple calculation
1. Field analysis
Far-field calculation
r
zeI
A
jkr
z
p
m
4
-
D
=
zz
AjE w-= q
q
sin
z
EE-=
ErH ´=ˆ
1
h
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab12
Radiation pattern
1. Field analysis
Power and field pattern
dB scale:
Half-power beamwidth:
Main beam:
qfq
q
sin),(µE
qfq
f
sin),(µH
qfq
2
sin),(µ
r
S
l
2
2D
r>
Far-field condition
: phase condition
90=q
90(BW)
3dB
=q
),(log10
10
fq
r
S
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab13
Antenna gain
1. Field analysis
Directivity: 3/2 for Hertzian dipole
Gain and efficiency
Isotropic radiation
dBi
DGh=
lossloss RR
R
PP
P
r
r
r
r
+
=
+
=h
210
44
),(
qq
pp
fq »==
r
P
U
U
U
D
SrU
2
=
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab14
(Lorentz) Reciprocity theorem
1. Field analysis
The same propagation characteristics: Tx
and Rx
Antenna measurement
1
I
2
V
1
V
2
I
21
Z
12
Z
1221
ZZ=
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab15
Antenna characteristics
Antenna gain: anisotropic radiation (G > 1)
isotropic radiation (G = 1)
Directivity and efficiency:
Angular beamwidth: 3dB
Radiation pattern [dBi]: dB isotropic
DGh=
1. Field analysis
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab16
Friis power transmission formula
Microwave radio link
R
t
P r
P
2. Microwave link
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab17
Transmitted power
Power density:
EIRP (Effective Isotropic Radiated Power)
Radiation pattern [dBi]: dB isotropic
[ ]
2
2
/
4
mWG
R
P
S
t
t
p
=
2. Microwave link
t
P
tt
GP=EIRP
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab18
Received power
Received power:
Effective area
-
er
SAP=
p
l
4
2
r
e
G
A=
[]W
R
GG
P
P
rt
t
r
2
4
÷
ø
ö
ç
è
æ
=
p
l
Friis transmission formula
2. Microwave link
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab19
Effective area
Reciprocity theorem:
Effective area:
1221
AGAG=
2. Microwave link
er
SAP=
2
2
rms
1
8
3
4
l
p
===
SR
V
S
P
A
r
r
r
r
r
R
VRI
P
44
2
rms
2
rms
== zEV D=
rmsrms
h
2
rms
E
S=
2
3
1
=G
p
l
4
2
2
2
G
A=
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab20
Free space loss
Free space loss:
Received power
2
FS
4
÷
ø
ö
ç
è
æ
=
l
pR
L
]dB[EIRP
FS rr
GLP +-=
[]W
L
GG
P
P
rt
t
r
FS
=
2. Microwave link
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab21
0.6
dishdiameter 4
]GHz[14
]W[100
=
=
=
h
m
f
P
u
t
0.55
2
]GHz[12
]W[10
3dB
=
=
=
=
h
θ
f
P
d
t
Uplink and downlink
2. Microwave link
][000,40 kmR=
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab22
tt
et
tt
DG
AD
GP
h
l
p
=
=
=
2
4
EIRP
Uplink calculation
2. Microwave link
rr
r
DG
D
h
qq
p
=
=
21
4
2
FS
4
÷
ø
ö
ç
è
æ
=
l
pR
L
]dB[EIRP
FS rr
GLP +-=
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab23
rr
r
DG
AD
h
l
p
=
=
max2
4
Downlink calculation
2. Microwave link
tt
t
tt
DG
D
GP
h
qq
p
=
=
=
21
4
EIRP
2
FS
4
÷
ø
ö
ç
è
æ
=
l
pR
L
]dB[EIRP
FS rr
GLP +-=
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab24
Noise power
Thermal noise: white noise, Nyquist formula
Thermal noise
BNN
kTBP
n
0
=
=
Noise temperature
kB
N
T=
2. Microwave link
Antenna EngineeringAntenna Engineering
EM Wave LabEM Wave Lab25
Carrier to noise ratio
TkB
C
BN
C
N
C
==
0
C/No: related to carrier to noise ratio
G/T: Figure of merit
Carrier to noise ratio
]dB[EIRP
FS r
GLC +-=
G/T: sensitivity of receiver
2. Microwave link