ANGLES of a CONVEX POLYGONNNNNNNNNN.pptx

KarlynAncheta 30 views 30 slides Aug 06, 2024
Slide 1
Slide 1 of 30
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30

About This Presentation

ANGLES OF A CONVEX POLYGON


Slide Content

Prayer…

“NAME ME!” TRIANGLE QUADRILATERAL

“NAME ME!” PENTAGON HEXAGON

“NAME ME!” HEPTAGON OCTAGON

Angles of a Convex Polygon Prepared by: Karlyn B. Ancheta

Objectives: At the end of the lesson, the students should be able to to : ∙ inductively derive the relationship between exterior and interior angles of a convex polygon; ∙ determine the sum of the measures of the interior and exterior angles of a polygon.

Interior Angle An interior angle is an angle formed by two consecutive sides of polygon. A B C D E F HEXAGON ABCDEF

Exterior Angle An exterior angle is an angle formed when one side of a polygon is extended outside. Exterior angle Interior angle

Sum of the Interior Angles of a Polygon The sum of all the interior angles of a triangle is ALWAYS 180º. X Y Z Δ XYZ Interior angles ∠X, ∠Y, and ∠Z m ∠X + m∠Y + m∠Z = 180º

Sum of the Interior Angles of a Polygon To calculate the sum of the interior angles of a polygon, use the formula below. 180º(n-2) Where n is the number of sides of the polygon.

Example 1: Find the sum of the interior angles of a nonagon. n = 9 = 180º (n – 2) = 180º (9 – 2) = 180º (7) = 1,260º sum of the interior angles of a nonagon.

Example 2: Find the sum of the interior angles of a 16-sided polygon. n = 16 = 180º (n – 2) = 180º (16 – 2) = 180º (14) = 2520 º sum of the interior angles of a 16-sided polygon.

IT’S YOUR TURN!

Who can draw or create a pentagon ? How about the hexagon ? A octagon . A triangle . A heptagon .

Measure of One Interior Angle of a Regular Polygon To calculate the measure of one interior angle of a regular polygon, use the formula below. 180º(n-2) n Where n is the number of sides of the polygon.

Example 1: Find the measure of one interior angle of a regular octagon. n = 8 180º (n – 2) n 180º (n – 2) 8 180º (6) 8 1080º 8 = 135º = = = =

Example 2: Determine the measure of one interior angle of a regular dodecagon. n = 12 180º (n – 2) n 180º (n – 2) 12 180º (10) 12 1800º 12 = 150º = = = =

Sum of the Exterior Angles of a Polygon The sum of the exterior angles of every polygon is ALWAYS 360º. Use the formula below, find the measure of the exterior angles of a regular polygon. 360º n

Example 1: Find the sum of the exterior angles of the following polygons: a. Regular Hexagon 360º 6 = 60º b. Regular Undecagon 360º 11 = 32.72 or 32 8/11

Relationship Between Interior and Exterior Angles of a Polygon The sum of the interior angle and its corresponding exterior angle of a polygon is always 180º . These angles form a linear pair because they are adjacent and supplementary.

Exterior Angle Theorem This measure of the exterior angle is equal to the sum of the two remote interior angles. a b d c m ∠a + m∠b = m∠d m ∠c + m∠d = 180º

Example 1: Find the value of k and x . 62º X 47º K 47º + m ∠K = 180 º m ∠K = 180 º - 47 º m∠K = 133 º 62º + x = K 62º + x = 133º x = 133º - 62º x = 71º = 133º = 71º

Example 2: Find the value of x. 65º (2x + 25)º (7x + 5)º 7(17) + 5 119 + 5 = 124 º 2(17) + 25 34 + 25 = 59 65º + 2x + 25 = 7x + 5 2x – 7x = 5 – 90 -5x/-5 = -85/-5 X=17 65º + 59º = 124º = 59º = 124º

Example 3: Find the value of m ∠A, m∠B , m∠C , and m∠D . m ∠A + 87 º = 180º m ∠A = 180º - 87º m ∠A = 93º m ∠B + 122 º = 180 º m ∠B = 180 º - 122 º m ∠B = 58 º A C D B 87º 122º

Example 3: Find the value of m ∠A, m∠B , m∠C , and m∠D . m ∠C + 87 º = 122º m ∠C = 122º - 87º m ∠C = 35º m ∠C + m ∠D = 180 º 35 º + m ∠D =180 º m ∠D = 145 º A C D B 87º 122º 93º 58º 35º 145º

IT’S YOUR TURN!

ANSWER ME! Identify what is being asked: What is a polygon that has five-sides? It is a polygon that has seven-sides. It is a polygon that has three-sides. What polygons have six-sides? What polygons have four-sides?

Assignment: Give the meaning of the following: Circle 2. Central Angles 3. Inscribed Angles
Tags