ARCHITECTURAL LIGHTING REVIEWER summarized

cb1819181 60 views 77 slides Oct 05, 2024
Slide 1
Slide 1 of 77
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77

About This Presentation

architectural lighting reviewer


Slide Content

ARCHITECTURAL
LIGHTING REVIEWER

ARCHITECTURAL LIGHTING
WHAT IS LIGHTING DESIGN?
ELEMENTSOFLIGHTINGDESIGN
•Lightingdesignisalwaysincollaborationwithotherdesigners–interiordesigners,architects,
electricalengineers,etc.Thereareseveralaspectsorelementsoflightingdesignthatwecan
consider:
•IntensityorBrightnessofLight–determinedandcalculatedbythedesignerandmustconform
thetoneedsofthespaceandtheusers.
•Higherilluminationsuggesthighlevelsofactivityandlowerproductcosts(offices,fastfood
anddiscountretailers).
•Lowerilluminationmaysuggestreducedlevelsofactivity,higherlevelsofservice,
exclusivityandhigherproductcosts(privateoffices,expensiverestaurantsandexclusive
stores).
•Brightnesscanalldrawattentionsaswhenusedintheaterlighting.Itcanalwaysaffector
influencethemovementorattentionofusers.
•ColorofLight–includecoolnessorwarmthoflightwhichcanprovokeemotionsordifferent
perceptionnecessaryforaparticularspace.
•DistributionofLight–thewaylightfillaspace.
•MovementofLight–leastobviouselementoflightingdesignwhichreferstothechangeineither
oneofthethreeelementsoflighting(intensity,coloranddistribution).
STARTOFARCHITECTURALLIGHTINGDESIGN
•RichardKelly–oneofthepioneersofandconsideredthefatherofthearchitecturallightingdesign.
Hefirstopenedhisfirmin1935whereheworkedonarchitecturallightingandtheatricallighting.He
workedwithdifferentfamousarchitects.
•RichardKellyidentifiedthethree(3)formsoflightplaywhichisusedinarchitecturallightingdesign
today:
•focalglow–creatingfocusandinterest
•ambientluminensence–minimizingtheimportanceofcertainelements,generallighting,
achievedbylightcoloredwalls,curtainsandceilings
•playofbrilliants–stimulatingtheopticnervesandcuriosity.Itcanbeentertaining.
•TheideasofRichardKellyaresimilartotheideaofthreebasictypesoflightingbasedon
function:generallighting(ambient),tasklightingandaccentlighting.Takenote:Someother
souresalsomentionedinformationalanddecorativelighting.
•GeneralLighting–blanketsaspaceandprovidethebaseorminimumlevelofillumination
•TaskLighting–providesadditionallightinareaswherevisualtasksarerequired(i.e.
reading,cooking,eating).
•AccentLighting–providesvisualinterestbyhighlightingarchitecturalelementorcalling
attentiontoimportantitemslikeproductsorartwork.Thistypeoflightingisrelatedto
decorativeandinformationallighting.
•Alightingsourcecanbepointsource(asmallconcentratedlightsourcethatcreateshardshadows),
linesource(linearlightslikefluorescenttubes)orplanesource(relativelylargerandproduces
softersshadows).
•Layeringoflight–usingmultipleoverlappinglightingtechniques(mixingambient,taskandaccent
lighting).Itcanalsoincludeothertypesoflightlightinformationalanddecorativelighting.
❑Therearethreemethodsofillumination–general,localandsupplementaryandcombined
generalandlocalillumination.Takenote:Thesearenottheambient,taskandaccentlightingwhichis
basedonitsfunction.Thisisthetypeofilluminationbasedonlightdistributionlikeuniformityand
intensity.
❑GeneralLighting–uniformandgenerallydiffusedlighting
❑LocalandSupplementaryLighting–small,high-levelareaoflightingwithoutcontributingtothe
generallightingandsupplementsthegenerallighting
❑CombinedGeneralandLocal
TYPESOFLIGHTDISTRIBUTION
❑IndirectLighting-theceilingandupperwallsbecometheprimarylightsourcewhichcreates
shadowlessenvironments.Theresultantilluminationisgenerallyuniformanddirectandreflected
glarearelow.Ceilingwithhighluminancecanmaketheeffectofhighceiling,whichisgoodfor
largeroomwithlowceiling.Localandsupplementarylightingmightstillbeneededbecause
reflectedlightisusuallynotenoughforsomevisualtasks.
❑Semi-indirectLighting–lessattentiononthelightingfixture.Lightercoloredwallsandceilings
cangivegreaterillumination.
❑GeneralDiffuseandDirect-IndirectLighting–generallyequalamountofupwardand
downwardlights.Takenotethatgeneraldiffuseismoreglobalinshapewhiledirect-indirect
havelittlehorizontalcomponent.Duetotheirdifferentlightdistribution,generaldiffusetend
togivelighterilluminationwhilewallsmaybelessilluminatedindirect-indirectlighting.Thespace
willnotappeardullandmonotonousandwithuniformilluminationinbothtypesoflighting.
❑Semi-directLighting–iftheceilingishighreflectance,directglarecanbeminimized.Shadowing
isnotaproblemiftheupwardcomponentisatleast25%andceilingreflectanceisatleast70%.
Lightingisusuallypleasant.
❑DirectLighting–thistypeoflightingdoesnotilluminatetheceiling(probablybecauseof
exposedductsetc.).Directlightingcanbespread(surface-mountedortrofferfluorescent
fixtures)orconcentrated(downlightsusedalonewhereprivacytypeofatmosphereisneeded).
Spre
❑SpreadDirectLighting–lighttendstobereflectedbythefloorwhichthenilluminatesthe
ceiling.Thisisrepresentedbysurface-mountedortrofferfluorescentfixturesandusually
usedforgenerallightinginoffices.
❑ConcentratedDirectLighting–lighttendstobeusedwhereprivacytypeofatmosphere
isneeded.Examplesareincandescentdownlights.Theseusuallyusedforhighlighting,
localandsupplementarylightingandspecializedviewing.

ARCHITECTURAL LIGHTING
WHAT IS LIGHTING DESIGN?
ELEMENTSOFLIGHTINGDESIGN
•Lightingdesignisalwaysincollaborationwithotherdesigners–interiordesigners,architects,
electricalengineers,etc.Thereareseveralaspectsorelementsoflightingdesignthatwecan
consider:
•IntensityorBrightnessofLight–determinedandcalculatedbythedesignerandmustconform
thetoneedsofthespaceandtheusers.
•Higherilluminationsuggesthighlevelsofactivityandlowerproductcosts(offices,fastfood
anddiscountretailers).
•Lowerilluminationmaysuggestreducedlevelsofactivity,higherlevelsofservice,
exclusivityandhigherproductcosts(privateoffices,expensiverestaurantsandexclusive
stores).
•Brightnesscanalldrawattentionsaswhenusedintheaterlighting.Itcanalwaysaffector
influencethemovementorattentionofusers.
•ColorofLight–includecoolnessorwarmthoflightwhichcanprovokeemotionsordifferent
perceptionnecessaryforaparticularspace.
•DistributionofLight–thewaylightfillaspace.
•MovementofLight–leastobviouselementoflightingdesignwhichreferstothechangeineither
oneofthethreeelementsoflighting(intensity,coloranddistribution).
STARTOFARCHITECTURALLIGHTINGDESIGN
•RichardKelly–oneofthepioneersofandconsideredthefatherofthearchitecturallightingdesign.
Hefirstopenedhisfirmin1935whereheworkedonarchitecturallightingandtheatricallighting.He
workedwithdifferentfamousarchitects.
•RichardKellyidentifiedthethree(3)formsoflightplaywhichisusedinarchitecturallightingdesign
today:
•focalglow–creatingfocusandinterest
•ambientluminensence–minimizingtheimportanceofcertainelements,generallighting,
achievedbylightcoloredwalls,curtainsandceilings
•playofbrilliants–stimulatingtheopticnervesandcuriosity.Itcanbeentertaining.
•TheideasofRichardKellyaresimilartotheideaofthreebasictypesoflightingbasedon
function:generallighting(ambient),tasklightingandaccentlighting.Takenote:Someother
souresalsomentionedinformationalanddecorativelighting.
•GeneralLighting–blanketsaspaceandprovidethebaseorminimumlevelofillumination
•TaskLighting–providesadditionallightinareaswherevisualtasksarerequired(i.e.
reading,cooking,eating).
•AccentLighting–providesvisualinterestbyhighlightingarchitecturalelementorcalling
attentiontoimportantitemslikeproductsorartwork.Thistypeoflightingisrelatedto
decorativeandinformationallighting.
•Alightingsourcecanbepointsource(asmallconcentratedlightsourcethatcreateshardshadows),
linesource(linearlightslikefluorescenttubes)orplanesource(relativelylargerandproduces
softersshadows).
•Layeringoflight–usingmultipleoverlappinglightingtechniques(mixingambient,taskandaccent
lighting).Itcanalsoincludeothertypesoflightlightinformationalanddecorativelighting.
❑Therearethreemethodsofillumination–general,localandsupplementaryandcombined
generalandlocalillumination.Takenote:Thesearenottheambient,taskandaccentlightingwhichis
basedonitsfunction.Thisisthetypeofilluminationbasedonlightdistributionlikeuniformityand
intensity.
❑GeneralLighting–uniformandgenerallydiffusedlighting
❑LocalandSupplementaryLighting–small,high-levelareaoflightingwithoutcontributingtothe
generallightingandsupplementsthegenerallighting
❑CombinedGeneralandLocal
TYPESOFLIGHTDISTRIBUTION
❑IndirectLighting-theceilingandupperwallsbecometheprimarylightsourcewhichcreates
shadowlessenvironments.Theresultantilluminationisgenerallyuniformanddirectandreflected
glarearelow.Ceilingwithhighluminancecanmaketheeffectofhighceiling,whichisgoodfor
largeroomwithlowceiling.Localandsupplementarylightingmightstillbeneededbecause
reflectedlightisusuallynotenoughforsomevisualtasks.
❑Semi-indirectLighting–lessattentiononthelightingfixture.Lightercoloredwallsandceilings
cangivegreaterillumination.
❑GeneralDiffuseandDirect-IndirectLighting–generallyequalamountofupwardand
downwardlights.Takenotethatgeneraldiffuseismoreglobalinshapewhiledirect-indirect
havelittlehorizontalcomponent.Duetotheirdifferentlightdistribution,generaldiffusetend
togivelighterilluminationwhilewallsmaybelessilluminatedindirect-indirectlighting.Thespace
willnotappeardullandmonotonousandwithuniformilluminationinbothtypesoflighting.
❑Semi-directLighting–iftheceilingishighreflectance,directglarecanbeminimized.Shadowing
isnotaproblemiftheupwardcomponentisatleast25%andceilingreflectanceisatleast70%.
Lightingisusuallypleasant.
❑DirectLighting–thistypeoflightingdoesnotilluminatetheceiling(probablybecauseof
exposedductsetc.).Directlightingcanbespread(surface-mountedortrofferfluorescent
fixtures)orconcentrated(downlightsusedalonewhereprivacytypeofatmosphereisneeded).
Spre
❑SpreadDirectLighting–lighttendstobereflectedbythefloorwhichthenilluminatesthe
ceiling.Thisisrepresentedbysurface-mountedortrofferfluorescentfixturesandusually
usedforgenerallightinginoffices.
❑ConcentratedDirectLighting–lighttendstobeusedwhereprivacytypeofatmosphere
isneeded.Examplesareincandescentdownlights.Theseusuallyusedforhighlighting,
localandsupplementarylightingandspecializedviewing.

❑Direct-LightingLuminaireCharacteristics
❑Reflectorscontroloraffectlightingdistributionsdifferently.
❑ParabolicReflectors
❑Lens-
❑ShieldingBaffles
❑Pin-holedownlight
❑PrismaticandParabolicLighting–althoughthereisnodefinitesource,prismaticandparaboliclightingreferstothetwotypesof
lightdistributionfromafixture.Theymightrefertothetypeoflensused,thetypeofenclosureortheshapeofthelamp.But
remember,themaindifferencebetweenthetwoishowthelightisdistributed(asseenfromtheircandeladistributioncurves).
❑PrismaticDistribution–thelightdistributionpatternisspreaduniformlyoveralargesurfacearea.Thisallowshigherspacing
tomountingheightratio(itcanbespacedfarther).Prismaticdistributionisusuallyachievedusinglenses.
❑ParabolicDistribution–providesunevenilluminationandrequiredcloserspacingforuniformillumination.Thisdistribution
isusuallyachievedbyparaboliclouvers(eggcrate-like).
❑Takenote:prismaticandparaboliclightingusuallyrefersthetypeofofficetrofferlighting.
❑UniformityofHorizontalIllumination(workingplane,ceilingorfloorplanes)–1:2to1:3ratioofminimumtomaximum
illuminationintheworkingplaneisacceptableandtolerable.Fornon-taskillumination,1:5isacceptable.Theratiomeansthatthe
illuminationvariesupto5xtheminimumillumination.
❑UniformityofVerticalIllumination(wallplanes)–insomecases,uniformwallilluminationisdesiredwhichcannotbeachievedin
sometypesofluminaires.Thisuniformitycanbeachievedusing:
❑Pointsourcessuchasincandescentdownlights
❑Linesourcessuchascontinuousrowoffluorescentlights
❑Infinitesourcessuchasluminousceilingswheretransilluminatedorindirect
❑ParabolicreflectorbeamssuchasfromPARlamps
❑MountingHeightofLuminairesshallbecarefullyestablishedbecauseabalancebetweenlow-ceilingbrightness(toavoidglare),
goodutilizationoflight,andtheapparentceilingheightiflowmountingheightisused.
❑Lightingfixturesshallchosencarefullyconsideringthecost,quality,maintenance,easeofinstallationandindefinitelife.Some
considerationsinconstructioninclude:
❑Metalpartsshallbecoated.Maximumof90Coutsidethesurfaceoflightingfixture.Glassandplasticdiffusersshallbe
properlymountedandwithslow-burningorself-extinguishingtypesoitissafeduringfire.Fixturesforoutdooruseshallbe
suitableforoutdooruse.
❑LightingFixtureInstallation
ARCHITECTURAL LIGHTING
LIGHTING DESIGN CONSIDERATIONS

❑Fluorescenttroffersarestandard-sizedfixturesrecessedintoasuspended-
ceilingsystem.Therearedifferenttypesoffluorescenttroffersbasedonits
connectionwiththeceilingsystem:
❑ConcealedT-barandsnap-in
❑InvertedTee–designedtorestonorlay-intheinverted-Tofa
suspensionsystem
❑Horizontalflange
❑Brackets,Hooksandotherattachments
❑TypeSluminaire(splines)
❑Luminairediffusingelementsdifferintermsofphotometriccharacteristics,
costandeaseofmaintenance,appearanceandfiresafety.Theseelements
include:
❑Plainwhitediffusers–providecirculardistributionandequallight
inalldirections.Gooddiffusion,poorVCPandESI.
❑PrismaticLens–producegooddiffusion,highVCPandfairESI.
❑LouversandBaffles–canbemetalorplasticandcanhavecircular
toegg-shapeddistribution,providinggooddiffusion,goodVCPand
poorESI.
❑ParabolicLouvers–extremelylowbrightness,veryhighVCPand
goodESI.
❑BatwingDiffusers–basicallyprismaticlensesmodifiedforspecial
lightdistributionlikeabatwing.
❑LuminaireEfficiencycannotbeaccuratelydeterminedusingthe
manufacturer’sdata.Inreality,thereareotherfactorsthatcanaffecthow
muchlightisusableontheworkingplane.Thisiswherethezonalcavity
methodandcoefficientofutilizationareusedalongwithotherlightloss
factors.
LIGHTINGCONSIDERATIONS FORRESIDENTIAL
❑Provideasmuchcontrolsaspossiblelikeswitches,dimmersormultilevel
switching.Notalllightingcomponentsarerequiredatthesametime(i.e.
generallightinginkitchenandunder-cabinetlightingandaccentlighting).
❑Forlargeareas,remotecontroloflightingcanreduceenergyconsumption
(usersdon’tneedtomovetoswitchofflights).Timeswitchesforexterior
lightscanalsobebeneficial(userstendtoforgettoturnoffexteriorlights).
Thebestsolutionistoprovidedaylightinginareasusuallyoccupied
duringdaytimeslikelivingroomsandkitchens.
❑Choosepropercolorforspaces(i.e.daylightcoloredlightsforskylights
duringnight).Fluorescentlightscanbeusedforworkandutilityareas
includingkitchens,laundryandworkshops,built-inarchitecturalelements.
Incandescentlamps(warmwhite)canbeusedforbedrooms,portablelamps,
accentlights,circulationareas,stairwells,closetsandexteriorlightingfor
shortperiod(HIDlampsforlongerperiodoperations).Formirrorlightingin
bathrooms,incandescentcanbegood.
ARCHITECTURAL LIGHTING
LIGHTING DESIGN
CONSIDERATIONS
❑Providetherecommendedilluminationlevelandbrightnessratiodependingonthe
visualtask.Takenotethatthetaskbrightnessshallbehigherthansurrounding
brightness(3-5xbrighter).Alsorememberthat300-500luxilluminationforreadingto
working.
❑Generallystairlightingshallbebrighterthancorridorlighting.Placementoflightshallbe
aboveoraheadinstairstocreatetheshadowsdirectlybelowthetreadfront.Shadows
onthestairslessentrippinghazard.
❑Takenotethattablelampsarenotforgenerallighting.Ceilinglightsprovidethe
appropriategenerallighting.
❑Usediffusedistributionforgenerallighting,narrowdownlightsforareaandfurniture
accentsandwallwashersforaccentingwalls.
❑Usebuilt-inlightingtotheextentpossible,includingarchitecturalelements.Don’tusetoo
muchlightsthatarenotbuilt-inasgenerallightingliketablelamps,portablelamps,
pendantlightingandtrack-lighting.
❑Somearchitecturallightingelementscanbeusedlikelightedcornices,valances,coves,
highandlowwallbrackets,lightsoffits,lightedcanopies,luminousceilingsandluminous
wallpanels.Note:Forcovelighting,takenotethatthereisaminimumdistancefromthe
ceilingandlipheightsothattheceilingislightedwellandanyusercannotseethelamp
insidethecove.Forpaintinginsidethecovelighting,usediffuselightpaintandnot
specular/glossy.
❑Portablelightingcanbeusedtoadddramaandindividualitytoeachroom.Itcanbeused
tohighlightartworkandtreasuredpossessions.Thesecanincludedecorativelamps,
floorcansforlightingverticalelements,picturelightsmountedonpictureframesand
paintingsandportablespotswhichcanbefreestanding,wallmountedorattachedtoa
track.

❑GeneralLighting–backgroundlightinaspacethatreducesbrightcontrastsbetweentasklightsandletsyoumoveabouteasily.Almosteveryspaceinahouse
needsgenerallighting–living,dining,corridors,foyersandstairs.Takenote:switchesshallnotbelocated3mfromeachroomtoremindpeopleofturningoffthe
lights.
❑WallLighting(eitherfromthefloororceiling)shallbecarefullydeterminedsopeople(especiallythoseseatednearthewall)donotdirectlyseethelamps
whichcancauseglare.Ifdownlightsareused(notwallwashers)forwallscalloping,spacingis8-16in.fromthewalland18-30in.apart.Rememberthatwall
washersarespacedequallyfromthewallandapart(2-3feet).
❑Therecanbealotofwaystoachievewalllightinglikefluorescentwalllighting(concealedbehindashieldingboardtoproduceasoftdiffuselight),cornice
lighting,valancelighting,valancebrackets,recessedceilinglightingandtracklighting.
❑Forrecessedlighting,itneedsbaffles,louversandreflectorconestocontrolfixturebrightness.Useonefloodlightforevery2.30sqmoffloorareaforgeneral
lighting.Avoidplacingunitsdirectlyaboveseatinglocations.Othertypesofrecessedlightingareeyeball,wallwasherandpinpointspots.
❑Fluorescentlampsthatarerecessedcanalsogiveawidespreadofdiffuselightsuitablefortaskandgenerallightingespeciallyinareaswithlowceilings.
❑TroughLighting–basicallylikewallgrazing.Itconsistsofstripsofsmallreflectorbulbs,usuallytrackmounted,concealedbehindabaffleorboard,orrecessedin
theceiling.
❑Tracklightingoffersversatilityandeaseofinstallation.Attachmentscanbesimplylampholdersorothercomplexfixtures.Commontrackattachmentsareopen
downlights,lampholders,wallwashersandprojectororlowvoltagespots.
LIGHTINGFORFOYER,HALLANDSTAIRS
❑Coordinatethelightingwiththestyleofadjoiningareas.Providegeneraldiffusinglightsformaximumlightingeffect.Forstairs,locatethehallfixturesnearthe
bottomandtopofthestairsforpropershadowingofthestairs.
❑Closetlightsshallalsobeconsidered.
ACCENTLIGHTING
❑Mostaccentlightingaredirectionalincharacter,especiallywherethebeamiscontrolled.Mostaccentlightsarealsorecessedortrackmounted.
❑Openreflectoraccentlighting–aimedat30-degreesangletocenterofworkorapproximately5feet(1.50m)abovethefloortoavoidreflectedglare.
❑Lowvoltageorprojectorspotsprovidingverynarrowbeamareusedforsmallareaorlongthrowoflightlikesmallsculpture.
❑Framingprojectorseliminatespilllightaroundapictureortabletop.
❑Pendantdownlightsarehunglowoveracocktailtable.
❑Built-inlightingforshelvesanddisplaycasescanalsoworkwithopenreflectororconcealedfluorescenttubes.
ARCHITECTURAL LIGHTING
LIGHTING DESIGN CONSIDERATIONS

❑LightingforMood.Candleandoillightingcreatesawarmandcozyatmosphere.Thiscanbe
recreatedusingsmallspotlightsandshadedlampsanddarkenedfloorsandceilingswhich
absorblightthanreflectingit.
❑Well-balancelighting.Insomecases,lightsmustbeturnedonifdaylightfallsbelowacertain
level.Thiscanbedonebylight-sensitiveswitches.
❑Remembertoinstalltheappropriatetypesofluminairesininaccessibleareas(lessmaintenance
fixtures).
❑Directionalspotlightsreinforcenaturallightfromskylightwhilepickingoutpicturesonthewall.
❑Forreading,lightshallbetowardsthepage(behindoroverthereader).
❑Fortelevisionviewing–lowlevelindirectlightadjacenttothesetcanreduceeyestrain.
❑Fordiningarea–rememberthatthelightbulbshallnotbeseenbytheuser.
❑Forwriting–likereading,lightsourceshallbeplacedsonoshadowiscastonthetask.
❑Forbedroomlighting–readinglightcanbeplacedtoonesideofthebedorbehindittoavoid
glare.
❑Forbathroomlighting–lightshallshineontheuser,notonthemirror.Lightsonsidesare
recommended,notlightsfromabove.
❑Lightcupboardsandshelves–concealedorshadedstriplightarerecommendedandpositioned
aboveshelves.
ARCHITECTURAL LIGHTING
LIGHTING DESIGN CONSIDERATIONS

SIZESANDPATTERNSOFLUMINANCES
❑Luminairesthatarenumerous,large,verybrightorarrangedinstrikingpatternstendtoattractmoreattentiontothemselvesandawayfromtheluminaires.
❑Fluorescentlargerthan2’x4’(0.6mx1.2m)shouldnotbeusedonceilingslowerthan3.00m.
❑Transilluminatedceilings(luminousceilingswithlampsbehind)shallbemounted12’minimum(3.65m).Loweringtheselightmayfeeloppressiveliketheskyis
lowered.Coffer-typefixturescanbeanalternative.
❑Lightingpatternshallreinforceanydominantarchitecturalpattern,notcross-purposeit.Forexample,thedominantceilingdesignshallbereinforcedby
appropriatelighting.Arrangementofluminaireshasdifferenteffects.
❑Longitudinallinesincreaseapparentlength,directtrafficanddecreasedirectglare.
❑Horizontallinescreateaplane,increaseapparentwidthbutalsoincreasedirectglare.
❑Diagonallinesminimizeshadowsandbreakrectangularpatternswhichisanarchitecturallydominantlighting.
❑Rectangularpatternisarchitecturallydominantandapoorchoiceinstoreswheredownwardattentionisrequired.
❑Cornices,valancesandcovesareluminousceilingborders.Inlargeroomssuspendedcovesachieveuniformceilingbrightnessandwhendesignedwitha
downwardcomponentorcombinedwithlocallighting,asillustrated,giveapleasantintimateatmosphere.
❑Cofferscreatedecorativearchitecturaleffectandcanbedesignedtoresembleskylightorcanbebuiltintoactualskylights.
❑Luminousceilingsystemutilizinglouversortranslucentmaterialsuspendedbeneathrowsoffluorescentlampsprovideshighillumination,lowbrightness
andhighdiffusion.Thisisarchitecturallyoppressiveandmonotonous,requiringsomeaccentofeithercolororlighting.
❑Downlightarearchitecturallyneutralandmaythereforebespacedevenlyorunevenly.
❑Lightingcanbeusedtoconnecttheinsideandoutsideofabuildingbysimplycontinuingthelightingpatternbeyondthewindoworwallglassprovides
visibilityfrominsideoutaswellasoutsidein.
❑Visiblefixturesevenifunlitcanbeaccentuatedandtreatedasarchitecturalmotif.
❑Generally,continuousrowinstallationsaremoreattractivethanindividualunitsandtoeliminatethedominatingcheckerboardeffectofthelatter.
❑Covesandcornicesgivetheceilingafloatingorlighteffect.
❑Geometricpatternscanbeusedtoaddinterestorbreakmonotonyoflargespaces,suchasdepartmentstores.
❑Illuminationlevelstendtodropoffatleast30%nearwallseveninawell-designedinstallationbecauseofwallreflectionandabsorption(especiallyifwallshave
otherelementslikebooksshelvesordark-coloreddesigns).Thiscanbesolvedbyaddingadditionaleithertowardsthetaskorthewall(wallwashingorperimeter
lighting).
ARCHITECTURAL LIGHTING
WHAT IS LIGHTING DESIGN?

ARCHITECTURAL LIGHTING
BASICS OF LIGHT
DEFINITIONOFLIGHT
•Dependingonthepersonasked,thedefinitionoflight
candiffer.Thephenomenonoflightwasearlytheorized
byseveralpersonalitieslikeEuclidwhotheorizedthat
lighttravelsinstraightlines,Ptolemywhoexpandedthe
theoriesofEuclidandAl-Haythamwhotheorizedthat
lightisamaterialproducedbylightsources.Therehave
beenalotofstudiesthatfocusonthebehavioroflight,
whichcategorizesitsasbothwaveandparticle.
•Lightisawave,aportionoftheelectromagnetic
spectrumthatcanbeperceivedbyhumaneyes.Like
otherwaves,ithaswavelength(380-770nm),energy,
speedandfrequency.Lightisalsoaparticle(as
theorizedbysome,althoughdebunkedbyothersseveral
times).Lightasawave-particleduality(quanta)canbe
relatedtothequantumtheoryandexplainswhylightis
bothconsideredwaveandparticle.
•Forothers,lightisanart(whichcanhelpexpress
emotionandidea)andatoolfordesigningspacesand
environments.
NOTESFROMSALVAN
•Lightis“visuallyevaluatedradiantenergy”oraformof
energythatwecansee.Sincelightisawave,remember
thatHIGHERWAVELENGTH, LOWERENERGY,REDDISH
•Luminoustransmittance–measureofcapabilityto
transmitlight(ratioofhowmuchlightistransmitted).It
isalsoknowastransmittance,transmissionfactoror
coefficientoftransmission.Takenotethatthisisonly
theaveragetransmissionanditisonlyappliedfor
materialswithoutselectiveabsorption(likeclearand
frostedglass).Selectiveabsorptionmeansthatsome
lightisabsorbedbyamaterialsothematerialappearsto
haveacolor(i.e.redglass).
•Reflectance(akareflectancefactorandreflectance
coefficient)–ratioofreflectedtoincidentlight.50%or
0.5reflectancemeansthathalfoftheincidentlightis
bouncedbackandhalfiseitherabsorbed,transmittedor
both.Remember thatreflectanceisnotalways
consistentbecauseatsmallerangle,lightisgenerally
reflectedinsteadoftransmittedorabsorbed.Thetypeof
material(specular,transparentoropaque)alsoaffect
howandhowmuchlightisreflected.
•ImportantNote:Theterm“diffused”canbe
bothappliedinreflectionandtransmission.
Simply,thereisadiffusedreflectionand
diffusedtransmission(bothscatterslight).
•LuminousIntensity-ameasureofthewavelength-
weightedpoweremittedbyalightsourceina
particulardirectionperunitsolidangle,basedonthe
luminosityfunction,astandardizedmodelofthe
sensitivityofthehumaneye.Itisanalogoustopressure
orvoltage.TheSIunitofluminousintensityisthe
candela(cd),anSIbaseunit.Otherunitiscalled
candlepower(cp)butalreadyobsolete.
•LuminousFlux–rateofflowoflightpertimeinsolid
angleofonesteradian.Itisanalogoustocurrentor
waterflowrate.Itismeasuredinlumens(lm).
Luminousfluxisdefinedinrelationtoluminousintensity
(candela).Thatis,whentheluminousangleofalight
sourceisonesolidangleandtheluminousfluxis1
lumen,itsluminousintensityis1candela.
•IMPORTANT NOTE:Insimplifiedphotometry,
luminanceandilluminancearethetermused.
Remember thatluminance(photometric
brighness)generallyreferstoboth
luminousintensityandluminousflux,for
simplicityofmeasurementanddiscussion.
Luminousintensityandluminousfluxarethe
termsusedmoreinthein-depthphotometry
andphysics,alongwithluminosity,radiant
flux,luminousenergy,etc.
•Anotherunitofluminanceisfoot-lambert
whichequaltotheluminanceofasurface
emittingaluminousfluxoronelumenper
sq.foot,theluminanceofaperfectlyreflecting
surfacereceivinganilluminationofone-foot
candle.Itcanalsobeexpressedincandela
(cd)persquaremeter,anSIunit.Otherunits
arelambert(non-SI).
•Illumination–densityofluminousenergyorlightfalling
inasurface,measuredinfootcandles(fc)orlux(lx).The
usualconversionis1fc=10.76luxorsimply10lux.
•Footcandle(fc)=lumens/sq.ft.
•Lux(lx)=lumens/sq.m.
TYPESOFLIGHTSOURCES
•Primarysources–sourceemittinglightdirectly.
•Secondarysources–sourceemittinglightbyreflection.

ARCHITECTURAL LIGHTING
LIGHT AND VISION
•Primarylightsourcesemitorgeneratelightlikethesun,moonandlamps(although,notsurewhymoonisincluded).Secondarylight
sourcesarelightreflectedfromreflectivesurfaces(whichalmostallsurfaces).Theselightenterstheeyesandconvertedintoelectrical
signalssenttothebrain.
•Theeyeisthevisualorganusedbyhumanstoseelightandperceivecolors.Thetypicalpartsare:
•Cornea–clearcoveringovertheirisandpupil
•Pupil–openingoftheiristhatallowslighttoenter
•Retina–amembraneliningtheeye,oppositethepupil,whichcontainsphoto-sensitivecellsthatprovidevision.
•Rods–photoreceptorsthatprovideblackandwhitevision,activeatlowlightlevels.
•Cones–photoreceptorsforcolorvision,activeathigherlightlevels.
•Ganglioncells–newlydiscoveredcellsbutnotrelatedtovisionbutmoreonthecircadianrhythym.
•Fovea–theareaatthecenteroftheretinawherewehaveadetailedvision.
•Oureyesisacomplexdevice.Therearetwoimportantactionsrelatedtovisionintheeyes–accommodationandadaptation.
•Accommodationistheeye’sabilitytorefocuswhichmakesusseethingsfromafarandnear,whichisdirectlyrelatedtoheposition
ofeye’sfovea.
•Adaptaionistheeye’sabilitytoadapttochangesinbrightness,makingusstillseethingsindimenvironments.Therecanbethree
categoriesforthisadaptation:
•Photopicvision–visionwiththebrightestillumination(likeinasunnyday).Thisisdominatedbytheconesandtherefore,
colorsarebestseen.
•Mesopicvision–visionwithlowerillumination,wherebothrodsadconesareused.Partialcolorvisionispresent.
•Scotopicvision–visionwiththelowestillumination(likenightwithoutmoon)wheretherodsmostlyfunctionforvision.
Colorsarenotseenbutthereisstillminimalvision.
•Perceptionofcolorhappenswhenlightisabsorbedbyeitherthreeoftheconereceptors(whichmakesustrichromatic)–red,greenand
blueorintechnicalterms,conesforshort,mediumandlongwavelength.Thistrichromatictheoryofvision(akaYoung-Helmholtz
trichromatictheory)wasfirstproposedbyThomasYoungandlaterdemonstratedbyHermannvonHelmholtzin1800s.
•Theseconeshelpusperceivethedifferentwavelengthsofvisiblelight(whichmakescolor).Theseconesalsoexplainsomeofthecolor
theoryideaslikewhyyellowtendtolookbrightthanothercolors,whichisexplainedbythefactthatundernormallightconditions(photopic
vision),green-yellowwavelengthisthehighestpeakresponseoftheeye’scones.
•Whenusinglighttodoavisualtask,thereareseveralconsiderationsorconceptsthataffectoutvision.Thisinclude:
•Sizeandviewingdurationofthetask–sometasksrequiremorelightbecauseofthesizeoftheobject(likesewing)ordurationof
theviewing(likefasttransactioninbanks)
•Brightness–arelativeaspectoflightbecauseeachpersoncanadapttodifferentlevelsbrightnessdifferently.Appararent
brightnessistheperceivedbrightnessofalightsourceorilluminatedobject,mostlybecauseofitscolor.
•Contrast–relationshipoftheobjectviewedorfocusedandthebackground.Perceivedcontrastisaffectedbytheillumination
(higherilluminationproduceshighercontrast)andreflectanceofthesurface.Contrastbetweentwoobjects(backgroundand
foreground)canbemeasuredbythedifferenceoftheirreflectance.
Themiddlebarisnotingradient.Thisillusionis
becauseofhowweperceivecontrastandappraent
brightnessbytherelationshipofanobjecttoits
background.

ARCHITECTURAL LIGHTING
LIGHT AND VISION
PSYCHOLOGICAL CONCEPTSFORCONSIDERATION INLIGHTINGDESIGN
•Vision–isthefacultyorcapabilitytoseeandisveryimportantinlightingdesign.
•Perception–isawayofregarding,understandingorinterpretingsomething:amentalimpression.
•Schema–templatesaffectingourexpectationsandinterpretations.Thesearementalstructuresthat
organizeourknowledgeaboutsomething,anditshouldconsideredbyanydesigners.
•Impression–subjectiveresponsetoanobjectoridea.Lightingdesignscanalsocreatedifferent
impressionsfromdifferentindividuals.Thereisnostandardimpressionforanobject.Itisalways
relativetotheobserver’sexperiencesandschema.
EXAMPLESHOWDIFFERENTLIGHTINGARRANGEMENT AFFECTIMPRESSIONTOTHESPACE
•Thearragnementoflightcanaffecttheimpressionofthespaceandenvironment.Generaldiffuse
lightingisthelowestintermsimpressionbecauseitistoomonotonous.Illuminatingwallsincreased
theimpressionofspaciousnessandimprovedperceptualclarity.
•Lightingcanbeameanstocommunicateideasandgenerateimpressions.
•Rememberthatvisualclarityisreinforcedbyhigherlightlevelsontheworkingspace,light
inthecenteroftheroomandsomewallilluminance.
•Spaciousnessisreinforcedbyuniformperimeterlightinglikewalllighting.
•Relaxationandprivacyisreinforcedbynonuniformperimeterlightingandisolatedlighting.
Thespacelookssimple
uncluttered,theperceptual
clarityishazyanddimandthe
spaciousnessfeelssmallor
cramped.
The impressions are
pleasantness, simple and
uncluttered, and large and
spacious.
The impression for this type o
lighting are unpleasantness
and monotony, dim and dull,
simple and uncluttered.
The impressions for this type
of lighting are pleasant and
interesting, long and spacious,
and the least formal among
the six arrangements.
Overhead diffuse lighting at
high intensity produce
unpleasant and monotonous
impressions, large and
spacious and the most formal.
Combinations of 1,2 and 3
lighting produces strongly
pleasant, satisfying and
interesting, clear and bright
and large and spacious.

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
ARTIFICIAL LIGHT SOURCES
•Therearebasicallythreegeneraltypesoflamps(basedonthetheirmethodof
producinglight)–incandescent,dischargetypesandLEDlamps.Takenote:
Differentsourcesgroupororganizetheselampsindifferentways,sothisorganization
isnotstandard.
•Incandescentlamps(orbulbs)–atypeoflampwherelightisproducedbythe
heatedwirefilament.Afilamentisathinpieceofmetalwithhighmeltingpoint
whichglowsorproducevisiblelightwithacurrentpassingthrough.Thisproperty
ofanobject(glowingwhenheated)iscalled“incandescence”.
•Dischage-typelampsor(gas-dischargelamps)–atypeoflampwherelightis
producedbysendinganelectricaldischargethroughanionizedgaswhichcanbe
noblegas(argon,neon,kryptonandxenon)orcombinationofthesegases.Some
sourcesrefertodischarge-typelampsare“arclamps”becausethedischarge
occuringinanionizedgasiscalledarc.Anigniterandaballastispulsedacross
thelampto‘ignite’or‘strike’thearc,afterwhichthearcismaintainedatalower
voltage.
•LED(lightemittingdiodes)lamps–atypeoflampwherelightisproducedby
passingtheelectriccurrentthroughasemiconductingmaterial(adiode)which
emitsphotons(light)throughtheprincipleof“electroluminescence”.LEDlamps
fallundersolid-statelighting(SSL)lamps.
•Electron-stimulatedLuminescence(ESL)lamps–anewertypeoflampwhich
produceslightbycathodoluminescencewhereabeamofelectronsismadetohita
fluorescentphosphorsurface.Thistypeoflampisstillinisdevelopmentphaseto
competewithLEDlampsintermsofefficiency,butsomeESLlampsarealready
available.
•IMPORTANTNOTE:Lampsactuallyemitelectromagneticradiationindifferent
wavelengthslikeheat,UVandvisiblelight.Visiblelightistheonlytypeof
electromagneticradiationwaveswecanseewherewavelengthrangesfromaround
400nmto700nm.
•LIGHTEFFICACYVSLIGHTEFFICIENCY.Efficacyandeffiencyofartificiallight
sourcescanbeconfusingandtherearesourcesthatusetheseterms
interchangeably.Bothefficacyandefficientdescribehowmuchpowerisconverted
tolight.Intechnicalterms,lightingefficacyreferstotheamountoflumens
producedperwatt.Lightingefficiencyreferstothepercentageofpowerthat
isconvertedintosomethinguseful(visiblelight,inthecaseoflighting)andis
usuallyunitless.Soefficacyisin“lumens/watt”andefficiencyisin“%”.
Theprincipleofgas-dischargelampsis
similartotheprincipleoflightningwhere
visiblelightorflashisalsoproducedwhen
currentpassesbetweentheskyandthe
ground.However,indischargelamps,the
currentiscontinuoussovisiblelightproduced
isalsocontinuous.
Thisishowincandescentlampswork.Takenotethatthemostcommon
materialforthefilamentistungsten.IMPORTANTNOTE:Thebulbisnotin
vaccum,itisactuallyfilledwithinertgaslikeargonornitrogentoslow
downtheevaporationofthefilamentinveryhightemperature.This
increasestheefficacyofthelampwithoutdeteriorationofthefilament.The
baseofthelampservesasthetwoterminalsforthecurrenttopass
through.
InanLEDlamp,thelightemittingdiodeisenclosed
inaplastic(epoxy)shellorlens.Lightisproduced
whelelectronscrossthesemiconductorjunction.
Theplasicshellhelpsdirectthephotonsoutward.
Adiodemeansasemiconductingdevicewhichonly
allowsflowofcurrentinonedirectiononly.A
semiconductorisbasicallyamaterialwithboth
propertiesofaconductorandaninsulator.
Anotherorganizationoftypesof
lamps.TakenoteofESLor
Electron-stimulatedluminescence
(ESL)lampswhichhasadifferent
mechanismofproducinglight.
Differenttypesormixtureofgasesproduce
differentcolorsofvisiblelight.

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
ARTIFICIAL LIGHT SOURCES
CONSIDERATIONS INCHOOSINGARTIFICIALLIGHT
•LightOutput–abouthowmuchlightisproducedbyalamp.Italso
considerstheefficiencyofalamp.
•QualityofLight–considersthecolorrendition,colortemperature,
dimmingabilityanddistributionoflightsoitaddstotheaestheticsofa
designedarea.
•LightControl–someapplicationslikeselectiveilluminationina
particularspaceorfaçade,landscapehighlightingandprecise
illuminationofartworksallrequirehighdegreesofcontroloverthe
beamofthelight.Efficientandeffectivecontrolsystemscanbeusedon
halogen,LEDorCMHlamps.Forbroaddistribution,linearorcompact
fluorescentsareusuallyused.
•EnergyEfficiencyorEfficacy–asusageincreases,efficiencybecomes
important.Forhigherusageslikeinacommercialfacilities,moreenergy
efficientlampsareusedlikeLEDs,ceramicmetalhalideandfluorescent
lamps.Forlowbrightnessorshortusagelikeinresidentialor
restaurants,incandescentandhalogenlampscanbeused.
•ENERGYSTAR–trademarkedprogramofU.S.Environmental
ProtectionAgency(EPA)andU.S.DepartmentofEnergy(DOE)
thatpromotesenergyefficiency.
•MaintenanceandInitialCost–maintenanceisimportantwhenlamps
areinstalledinhard-to-reachareaslikeinhigh-bayorhigh-ceiling
lighting,streetlightingandmore.Sometypesoflampsrequiredifferent
environments(i.e.avoidincandescentlampsinvibratingenvironments,
avoidLEDsinveryhotenvironments).
Theprincipleofgas-dischargelampsis
similartotheprincipleoflightningwhere
visiblelightorflashisalsoproducedwhen
currentpassesbetweentheskyandthe
ground.However,indischargelamps,the
currentiscontinuoussovisiblelightproduced
isalsocontinuous.

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
INCANDESCENT LAMPS
▪INCANDESCENTLAMP-
▪Ithasavarietyofforms,shapesandsizesanddifferenttypesof
bases,butthemostcommonshapeforhouseholdbulbsisA19.Bulb
glasscanbeclearorcoated.
▪Itiscriticallydependent/sensitiveofwattagesupplyandvoltage
changes(fluctuationsaffectitslife,outputandefficiency,especiallyover-
voltages).
▪Energytolightconversionisonlyabout10%,therestisconvertedto
heat(lowenergyconservation).Duetothis,itislimitedtoinfrequentor
shortdurationuse,forlowcostdimming,forfocusingfixturesandfor
minimuminitialcost.
▪Someadvantagesofincandescentlamp:cheaper,instantstartand
restart(noballast),dimmable,simpleandcompact,highpower
factor,canbefocused,lifedependentonstartandwithgoodcolor.
▪Somedisadvantagesofincandescentlampincludelowefficacy,shorter
life,sensitiveandcriticaltovoltagechangesorfluctuations,high
maintenancehost,moreheatisproducedthanlight.
▪Becauseofitsinefficiencyandshorterlifespan,compactfluorescent
lamps(CFLs)andlight-emittingdiodes(LEDs)areusuallypreferredover
these.
▪Therearethree(3)commontypesofincandescentlampsinresidential
applications:
▪standardincandescentlamps(usuallyA19inshape)
▪energysavingorhalogenlamps(whichisanimproved
version)
▪spotorfloodreflectorlamps(usuallyinPARshape)–usually
usedforfloodlighting,spotlightinganddownlightingbothfor
indoorsandoutdoors.Twotypesaretypicallyused–PARlamps
andERlamps.
▪NOTE:Shapesarediscussedseparately.Butincandescentlamps
canhavevarietyofshapes.
ELLIPSOIDAL REFLECTOR LAMPS (ER SERIES)
PAR INCANDESCENT LAMP –most likely, this is
halogen lamp. You can’t easily differentiate a
halogen lamp from standard incandescent lamp.
This only shows the shape of a PAR type lamp.
HISTORYOFINCANDESCENT BULB
Takenotethatductiletungstenisthebestmaterial
asafilamentforanincandescentbulb.Although
many otherscientistscontributedtothe
developmentofthefirstlightbulb,ThomasEdison
wasgenerallycreditedbecausehepatentedthe
firstpracticalandinexpensivetypeofincandescent
lamp.
PHASING OUT OF INCANDESCENT BULBS
Take note: Philippines is one of the first to
ban incandescent lamps back in 2008 to
promote energy conservation. Today,
incandescent bulbs are rare because CFLs
and LEDs replaced them in the market.
However, you might still find them being sold
(illegally?) for incubating chicks.
For more info regarding the ban, read:
https://www.rappler.com/voices/imho/small-
victory-energy-efficiency-philippines

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
HALOGEN LAMPS
▪HalogenLamps–avariantofincandescentlampwherethetungstenfilamentisenclosed
inacompacttransparentenvelopethatisfilledwithamixtureofaninertgasandasmall
amountofahalogensuchasiodineorbromine.Alsocalledtungstenhalogenlamps,
quartz-halogenorquartziodinelamp(onlymarketingnames)
▪Thecombinationofhalogenandtungstencreatesachemicalreactionthat
increasesthelifeofthefilamentandmaintainingtheclarityoftheenvelope.
▪Likestandardincandescentlamps,halogenlampsarelessefficientthanLEDs
andCFLsandarebeingslowlyphasedout.
▪Manyhalogenlamps(low-voltage)mayrequireatransformer(step-down)ifconnected
tohigherlinevoltage.Theusualvoltagesare12Vand240V.
▪Advantages–goodcolorrendering(100),dimmable(0-100)butdimmingshortensthe
lifespan,instantstart(noballast),morecompactsize,longerlifespanandbetter
lumenmaintenanceovertimethanstandardincandescentlamps.
▪Applications–halogenlampswereknownforseveralapplicationsbutslowlybeing
replacedinsomeapplicationsbyLEDsduetolongerlifespanofLEDlamps.Generally,
halogenlampsaremorecompactinsizesotheyarepreferredinssomeapplications
requiringsmallerlamps(i.e.projectorsandillumination).
▪automobileheadlamps
▪floodlightsforoutdoorlightingsystemsaswellasforwatercraft,commercial
andrecreationaluse
▪medicaluseslikeasnear-infraredlightsourcesininfraredspectroscopy
▪heatingelementsofhalogenovensandceramiccooktopsandforanimalcages
▪indoorandoutdoorgenerallighting(butbeingreplacedbyLEDs)
▪stagelighting–ifusingincandescentforstagelighting,halogenlampsaremore
preferred.However,LEDsinstagearealsoincreasinglyusedduetolongerlifespan
anddifferentcolorsthatcanbeproduced.
▪projectionlampsformotionpictureandslideprojectorsforhomesandsmall
facilities
▪Note:themostcommonhalogenlampforinteriordesignistheHalogenGU10
downlights.
▪Note:IntheUSalone,halogenPAR38,PAR30andPAR20arebeingphasedoutduetolow
energyefficiency.Italsoincludesincandescentlamps,nearlyall4-footT-12lamps,4-foot
T8lampsandmost8-footT12lamps.
PARTS OF A HALOGEN BULB
SAMPLES OF COMMERCIALLY
AVAILABLE HALOGEN LAMPS
SAMPLES OF COMMERCIALLY AVAILABLE HALOGEN LAMPS (from SHOPEE)These are the most common shape of
halogen lamps (for spot lighting)
HALOGEN GU10 DOWNLIGHTS

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
LOW PRESSURE
DISCHARGE LAMPS
•Gasesreactdifferentlyunderdifferentlevelsofpressure,which
affectthetypeorqualityoflighttheyproduce.Therearegenerally
threecategoriesoflampsthatfallundergas-dischargelamps–
low-pressure,high-pressureandhigh-intensity(HID).
•Low-PressureDischargeLamps–lampsoperatingatmuchless
thantheatmosphericpressure.
•High-PressureDischargeLamps–lampsoperatingunder
somewhathigherpressurethanlow-pressuredischargelamps
(thereisnodefiniteandestablishedrange).
•High-IntensityDischargeLamps–lampswithhigherlight
outputperunitareaodthebulb.HIDlampsareusually
characterizedbytheirbrightarcsascomparedtothesofterlight
producedbythelow-pressurelamps.High-pressureandhigh-
intensitylampsareusuallyinterchangedbecausetheymostly
refertotheverysamegroupoflamps.
•TwogeneraltypesofLowPressureGasDischargeLamps:
•FluorescentLamps(standardandcompact)
•SOXLamps(LowPressureSodiumLamps)
•FluorescentLamp–atypeoflampwherelightisproducedbyanelectriccurrentconducted
throughmercuryandinertgasinatube.TheproducedlightincludesUVwhichisconverted
tothroughthephosphorcoatingontheinsideofthetube.
•WhileincandescentlampsaregenerallycreditedtoThomasEdison,fluorescentlightsare
creditedtoGeneralElectricwhichhadthefirstpatentforcommercialfluorescentlighting.
•Likeallothergasdischargelamps,fluorescentlampsrequireballaststoregulatethe
operatingcurrentandprovideahighstart-upvoltageandastartertostartthegas
dischargecurrent.Specialtypesofballastsexistlikeelectronicballastswhicharemore
energy-efficientandbettercontrolascomparedtomagneticballasts.Othertypesofballasts
allowdimmingofthelight.Note:Ballastsandstartsarediscussedfurtheronthelastpartsof
thischapter.
•Thestandardfluorescentlampsareeitherpreheat,rapidstartorinstantstart(butrapid
starttypeisusuallythemostcommon).
•Modernfluorescentlampstodayhavecolortemperatureandcolorrenditionsimilarto
incandescentlamps.
•PhysicalCharacteristics
•Standardtypesoffluorescentlampsaremostlystraighttubes(calledlinear
fluorescent),butU-shaped,circularandright-anglelampsarealsoavailable.
•Traditional/standardtube-typefluorescentlampsareusuallyidentifiedasT12and
typicallyinstalledinadedicatedfixturewithbuilt-inmagneticballast.TheolderT12
arenowbeingreplacedbyT8andT5fluorescenttubeswhichissmallerinsize
butaremoreefficient(somesayT12arenolongermanufactured).T8andT5can
produce90-100lumens/wattwhileT12fluorescentlampsaretypically57
lumens/watt.(However,takenote:T8andT5arenowslowlybeingreplacedbyT8
andT5LEDtubeswhicharelongerlastingandrequirenoballastandstarter).
•Commontypes/sizesare40-wattwith1.20mlength(4feet)and75-wattwith2.40m
(8feet).Lengthoffluorescenttubesrangefrom2feet(600mm)to8feet(2.40m).
•ADVANTAGES.Comparedtoincandescentlamps,advantagesoffluorescentlampsinclude
goodcolorrenderingindex,higherefficiencyandlongerlifespan.
•DISADVANTAGES.SomedisadvantagesoffluorescentlampsaretheriskofUVemission,
mercurycontent,reducedlifespanwhenusedwithdimmingandothercontroldevices,
reducedlumenoutputovertime,difficultdisposal,requiresballastandstarters,and
longerwarm-uptimewhenusedincolderspaces.Usually,thelongerthefluorescentlamp
burns,colorshiftingisevidentwherechemicalimbalanceinsidethetubeproducesother
colors(whichiswhygroupingoffluorescentlampsarepreferredtocorrectthisissue).Some
sourcessaythatoldermodelsoffluorescentlampscanproduceflickeringlightswhich
causesvisualirritation.Somesourcesalsosaythatfluorescentlampsgiveoffharshlighting
becausethereisnotstandarddefinitionforharshlighting(maybeitmeanstheverybright
generallightingthanfluorescentlampstendtoproduce).
•TYPICALAPPLICATIONS.Fluorescentlampsaretypicallyused:
•forgenerallighting(whichcreateslessglareascomparedtoanincandescent
lamp)likeoverheadambientlightingincommercial,industrialorhospitalfacilities.
Takenote:linearfluorescentsarerarelyusedforaccentlighting.
•high-baylighting–newerversionsoffluorescentlampscanbeusedforhigh-bay
orhigh-ceilinglighting(inlargeareas).Although,HIDlampsaremorepopularfor
theseuses,fluorescentlampsarealsoused.SomesourcescompareusingHID
lampsandhigh-bayfluorescentlamps,andinsomecasesfluorescentlampsare
better.
FLUORESCENT LAMPS
TUBULAR FLUORESCENT
TUBE LAMPS
Take note that T12, T8, and T5
are codes for the shape of
fluorescent lamps. There are
also LEDs with these shapes.
CIRCULARFLUORESCENTTUBELAMPS
Thesetypesoflampsarecalledcirclinelampsandcommonlyusedfor
portabletasklighting(i.e.desklights).
HIGH-BAYFLUORESCENTTUBELAMPS
Thesetypesoffluorescentarejustgroupedlampsonafixtureandare
intendedforhigh-bayinstallation.Thereisnostandardheightforhigh
bay(around20to45feet)likeinwarehouseorstorageareas.

PREHEAT FLUORESCENT –take note
of the separate starter component. Ito
yungtypically nakikitanatingbilogsa
housing ng fluorescent lamps.
ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
LOW PRESSURE DISCHARGE
LAMPS
WHAT IS FLUORESCENT LAMP?
o First introduced in 1937 and was considered the best and mostly widely
used type of lamp (with varieties of sizes, wattages, colors, voltages and
specific applications).
o The most common type is cathode fluorescent lamp with a
cylindrical glass tube sealing mixture like argon and mercury
vapor. The cathode at each end supplies the electron to start and
maintain the mercury arc or gaseous discharge. The shortwave UV light
from the mercury arc is absorbed by the phosphorous coating inside
the tube and re-radiated in the visible light range. It is called
fluorescent because phosphorous radiate light when exposed to ultra
violet rays.
o It requires ballast which is composed of coil to limit the current in
the circuit, which if not controlled, will trip the circuit breaker.
o Advantages and Disadvantages:
▪Fluorescent lamp is higher efficiency the incandescent lamp
where 20% of its energy is converted to light and 80% to heat.
Note: efficiency is how much energy is converted to light while
efficacy is how much lumen per watt is produced.
▪Fluorescent lamp has longer lifespan than incandescent
lamp which is affected by the number of switching on and off
(switching wears out the cathode while burning can last 30,000
hours). The total life span is reduced if the continuously used
(i.e. 3 hours per start).
▪Summary of fluorescent lamp characteristics:
•Life span depends on the burning hours per start.
•Lumen output decreases rapidly during the first 100
hours of burning and thereafter much more slowly.
•Efficacy depends on the operating current and the
phosphors utilized. The warm white lamp is more
efficient than the white, cool white, daylight and
colored lamps.
TYPESOFFLUORESCENTLAMPS(basedonstartingtechnology)
o Therearethreedifferenttypesofstartingtechnologiesusedforfluorescentlamps(whichactuallyrefertothecircuitconfigurationof
thelamp)–pre-heating,rapidstartandinstantstart.Anotherspecialtypeofstartingisthecoldcathodefluorescentlamps
(CCFLs).Takenotethatinmodernmodels,othertypesofstartingmechanismsareavailablelikeelectronicballastsandballastswith
dimmingfunctionalities.
o PreheatFluorescentLamp–avariantofafluorescentlampwithpreheateddesign.Itusesamanualswitchorthermalstarterto
preheatthecathodeforafewsecondsbeforehighvoltageisappliedtostrikethemercuryarc.Whenthelampcircuitisclosed,
thestarterenergizesthecathodeandafterafewseconds,initiatesahighvoltagearcacrossthelampcausingittostart.
o InstantStartFluorescentLamp(1940s,akaSlimLamp)–animprovementofthepreviouspreheatfluorescentlampwherethere
isactuallynopreheatingofthecathodes.Thelampturnsoninstantlybecauseofaspecialtypeofballastthatcansupply
enoughenergytostartandmainainthearcinsidethetube.Itischaracterizedbysinglepinsateachendofthetube(bi-pinsare
availableforthesecondpinisonlyforsupport)andthelackofastarter.Sincenopreheatingisrequired,itisnotsensitiveto
temperature.
▪Itisoperatedatvariousspecificationslikecurrent(200mAand425mA)andlength(24”,36”,42”,48”,60”,64”,72”,84”and
96”).
▪Thislampishotcathode,instantstartlamp,differentfromthehighvoltagecoldcathodetype.Itismoreexpensiveandless
efficientthanrapidstarttype.
o RapidStartFluorescentLamp(1950s,morepopular)–animprovementofthepreheatfluorescentlampbutpreheatingis
achievedthroughtastarterintegratedintheballastitself.Sothereisnoseparatestarter(checkthediagram).Rapidstarthasno
delayinstartingduetoaconstantlyheatedcathode.
▪Note:40WT12isthemostpopulatrapidstartlampusuallyrepresentedbyF40T12WWR/S.Note:T12isnow
replacedbynewerandmoreenergyefficientT8andT5fluorescentversionswhicharealsobeingreplacedbyLEDs
withthesameformfactor.
▪Anotherdisadvantageofthislampistheglareproduced,soitisusuallyusedforoutdoorsignlighting,streetlightingand
merchandisedisplay.Note:Thisisnolongertruesincefluorescentlampsarenowgenerallyusedforgeneralor
ambientlightinginoffices,warehouseandcommericalfacilities.
o ColdCathodeFluorescentLamp(CCFL)–aspecialtypeoffluorescentlampwithacathodethatisnotelectricallyheatedbya
filament.Thecathodeisconsidered“cold”becauseitemitsmoreelectronsthancanbesuppliedbythermionicemissionalone.This
coldcathodeisusedingas-dischargelamps,suchasneonlamps,dischargetubesandsometypesofvacuumtube.
▪AdvantagesandDisadvantages–ithasaverylonglifecomparedtohotcathodelampsbecauseitisnotaffectedbythe
numberofstartingorswitchingofthelamp.Ithasaloweroverallefficacycomparedtohotcathodelampsandisgenerally
usedforcontinuousburningisrequired.
HOWTOREADSPECIFICATIONSOFFLUORESCENTLAMPS?
o Fluorescentlampspecificationsareusuallyprintedonthebulbitselforonthepackaging.Althoughthereisnospecificstandardfor
thenomenclatureoffluorescentlamps,thereisageneralrulethatcanbeobserved:
o “F”standandsforFluorescentandusuallysucceededwiththewattageorforsomeinstances,thelengthofthetube.For
example,F32andF40means32and40wattagefluorescentlampswhileF71meansthelampis71”long.Note:“FC”
usuallymeans“circularfluorescent”and“FU”meansU-shapedfluorescentlamps.
o “T”standandsfortubularwhichdesignatesthatthelampsistubularinshapeandfollowedbythediameterofthetube
(fractionsofeightsofaninch).Thereisageneralstandardforthelampshapecodes.Thecommontypesoftubular
shapesforfluorescentlampsareT8andT5whichreplacedtheolderT12fluorescenttubes.
o Someotherdetailscanbeprintedonbulbslike“R”whichdeterminesifthelamporfixtureshasreflectorinsideit,“BP”
meansbi-pinor2-pinswhichdescribesthepinoneachendofthetube,“CW/WW/WWX etc”meansthecolor
temperatureofthelamp,“RS”meansrapidstart(nosuffixmeanspreheatlamps),“ES”meansenergy-saving,“HO/VHO”
meanshigh-outputorveryhigh-output.Note:Therecanbealotofinformationcodedinthefluorescenttubebut
justbefamiliarofthebasicliketheFandTdesignations.
FLUORESCENT LAMP
notes from MAX FAJARDO
INSTANT START FLUORESCENT –
take note of the single pin at then of
the tubes and the lack of any starter
for preheating the cathodes.
RAPID START FLUORESCENT –take
note of the bi-pin ends of the tube
and the lack of starter component.

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
LOW PRESSURE DISCHARGE LAMPS
FLUORESCENT LAMPS
TYPICAL CIRCUIT DIAGRAM FOR A
FLUORESCENTLAMP
Thesediagramsshowapreheattype
fluorescentlampsbecauseoftheseparate
starter.Takenote:Itissuprisingthatstarters
arestillusedlocallywhichsomehowshowsthat
rapid-startfluorescentlampsarenotstill
popularinthecountry.
TYPICALMARKINGS INA
FLUORESCENTLAMP
Theimagesshowsthetypical
markingsofthespecsofa
fluorescentlampasdiscussed
previously.Takenotethatoneof
thelampsisusedasatanning
lamp(inforeigncountries)which
providesUVemissions.Sothere
isa“danger”markingalso.
TAKENOTEOFTHESE:
UVA–315–415nmwavelength
UVB–280–315nmwavelength
UVC–200–280nmwavelength
SAMPLESOFFLUORESCENTLAMPSAVAILABLEONLINE
Takenote:kakauntinalangangnakikitakongnagbebenta
onlinengfluorescentlamps.UsuallypuroLEDlampsnaang
binibenta,evenOMNIispuroLEDlightsna.Itonlyshowsthat
LEDlampsareslowlyreplacingthefluorescentlamps.
GENERALELECTRICSHIFTSTOWARDLED
In2016,GeneralElectric(GE)announcedthattheywill
discontinuetomanufactureCFLs.Idon’tknowifit
meansalsothelinearfluorescentlampsbuttakenote
thattherealreadysomeregulationsthatphasesout
theT12,T8andT5fluorescentlampsfortheLED
versions.
TOKNOWMOREABOUTTHEMARKINGS
ONFLUORESCENTTUBES:READ
https://insights.regencylighting.com/how-to-read-
a-light-bulb-part-number-linear-fluorescent-tubes

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
LOW PRESSURE DISCHARGE LAMPS
FLUORESCENT LAMPS
DIFFERENT MECHANISM OF STARTING A
FLUORESCENT LAMP
Take note of the differences between preheat, rapid start
and instant start.
THE MAIN DIFFERENT OF CCFL AND STANDARD
FLUORESCENT TUBES IS THE TYPE OF CATHODE. CCFLs uses
an electrode without filament. I’m not sure if this type of
fluorescent lamp is still used or available.
FLUORESCENT LAMPS APPLICATIONS
Fluorescent lamps are used for general lighting, usually for commercial
and office lighting. It is characterized by it diffused white lighting, which
are usually improved by reflectors or the fixtures housings. You cannot
actually simply differentiate fluorescent lamps from LEDs because they
are now manufactured in the same form (T12, T8 and T5).
BALLASTS AND STARTERS
Take note: medyomahirapnaring makahanapng ballasts and starters online, primarily because
shifting towards LED natayo. So usually, LED replacement nayungginagawasamgalumang
fluorescent lamps. Pero, you can observe namay nagbebentapa rinng magnetic and electronic
ballasts.

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
LOW PRESSURE DISCHARGE LAMPS
WHATISCOMPACTFLUORESCENTLAMP?
•Compactfluorescentlamps–arecompactversionsofthestandardtubularfluorescentlamps,whichusuallyhas
integratedelectronicballastonitsbase.Thesearealsocalledcompactfluorescentlight,energy-savinglightorcompact
fluorescenttube.ThecompactsizeoftheCFLsallowedforeasierreplacementoflessenergy-efficientincandescentand
halogenlampsonfixtures.
•Sincetheinventionoffluorescentlamps,compactorsmallerversionswerealreadybeingplannedbutthefirstCFLsarenot
commerciallyviablebecauseofhighproductioncost.Butin1980,Phillipsbecamethefirstmanufacturertomass-producea
CFLwithscrew-inbase.
•Intermsfunctionality,compactfluorescentlampsworkthesamewayasthestandardfluorescentstraightorU-tubes.
Overall,itisessentiallyjustasmallermorecompactversionoffluorescentlampsforsmallerpurposessuchasa
stand-alonebulboracomponentforasmallfixture.
•GenerallytherearetwotypesofCFLsbasedontheirbases–screw-in(integratedballast)andplug-intypes(non-
integratedballast).However,therearenowseveralshapesandconfigurationsofCFLsdependingonthebulbshape,
numberoftubes,typeofbase,outerprotectivecoveringandreflectorsides.
•Screw-intypeCFLs–areself-ballastedtypeswithscrew-base.Thesearethemostcommon.Theseareavailable
in“twintubes”or“coiledtubes”.
•Plug-intypeCFLs–arethetypeswithoutintegratedballasts.Thesearealsocommonlyreferredtoas“twintube
CFLs”duetothetypicaltwoconnectedtubesattachedtotheCFL’sbase.However,notethattherearealsocoiled
CFLswithaplug-intypebases(asseenfromaGooglesearch).Thenumberofpinstypicallydenotethetypeof
ballastitrequires–2-pinbaseformagneticballastsand4-pinbaseforelectronicballasts.Thereareseveral
basesforplug-intypeCFLsandtheyareuniqueandnon-interchangeable.
•PRACTICALNOTE:ThistypeofCFLbaseisgenerallyhardtoremovefromahousingorfixtureas
comparedtothescrew-typebases.Somebreakstheglasstubewhiletryingtoremoveplug-intype
CFLs.
•Likestandardfluorescenttubes,CFLscanalsoberapidstart(mostfixtures)orinstantstart(usedmostlyforcoolareasand
outdoors).InmostCFLs,thereisnonoticeablewarm-uptimebeforethelampreachitsfullbrightness.CFLsaremostly
marketedas“instanton”.
•ADVANTAGES.CFLs(likeallotherfluorescentlamps)aremoreenergyefficientthanincandescentandhalogenbulbsand
duetoitsdesign,caneasilyorupgradeincandescentlamps.Thearealsoprimarilypopularduetoitslonglifeandlow
cost.WhenCFLsarenearitsendoflife,thelightproductionislesserunlikeincandescentlampswherethereisnolightat
all.
•DISDAVANTAGES.CFLshaveseveraladvantages,butonemajordisadvantageisitsnon-compatibilitywithcontrol
deviceslikedimmingcontrols,timersorphotosensors.WhiletherearemeanstouseCFLsintheseapplications,lifespanis
generallyreducedwithdimmingorfrequentrapidswitchingoff(prematureburnout).CFLsaremoreexpensivethan
incandescentlamps.Likeallfluorescentlamps,UVemissionsfromCFLsisalsoaconcernwhichledtodevelopmentof
doubleenvelopCFLs.CFLsarealsosensitivetotemperaturebecausetoomuchheataffectstheballastorcapacitor
(whichiswhyCFLsareeasilyburningoutwhenusedinrecessedinsulatedcans).Allfluorescentlampscontainasmall
amountofmercurywhichisstillhazardous,sodisposalofCFLsisdifficult(recyclingispreferred).Somecountrieshave
regulationsregardingthedisposalofanymercury-basedlampslikefluorescenttubesandCFLs.
•VERYIMPORTANTNOTE:CFLsarealsonowslowlybeingreplacedbyLEDlampsbecauseitismoreenergyefficient,longerlife
spanandwithouttheriskofmercurygas.MostLEDlampsusethebasetypescommoninincandescentlampsandCFLs.
COMPACT FLUORESCENT LAMPS
SHOWING THE DIFFERENT VARIETIES OF CFLs
(depending on the bulb shape, configuration or
base). Take note of the double-envelope CFLs
becuse it can block or reduce the amount of UV
emission from the bulb. REMEMBER than all
fluorescent lamps produce UV amount which
can be harmful to human skin (like UV from the
sun).
TYPES OF PLUG-IN BASE FOR CFLs
(take note of the 2 general groups –2-pin and 4-pin bases)
SHOWING HOW DIFFICULT IT IS TO REMOVE PLUG -IN TYPE CFL BULBS
SCREW-IN AND PLUG-IN TYPE BASE
FOR CFLs
(take note that screw-in type has an
electronic ballast)
DIFFERENT TYPES OF PLUG-IN TYPE CFLs
This are only for 4-pin type bases. There is
also 2-pin type CFL base.

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
LOW PRESSURE DISCHARGE LAMPS
COMPACT FLUORESCENT LAMPS
DIFFERENTAVAILABLECOLORTEMPERATUREFORCFL
RememberthatcolortemperatureisdenotedbytheKelvins(K).CFLs
usingdifferentcombinationsofphosphorcoatingcanproduce
differentcolortemperatures(fromwarmwhite,coolwhiteto
daylight).ThisisonemainadvantageofCFLsoverincandescentbulbs
whichistypicallylimitedtowarmwhiterange.
CFLsAVAILABLEONLINE
Takenote:WalanamasyadongnagbebentangCFLsngayon,puroLED
na.Samesocket/baserinnaman,minsansameshapepa.Mayspiral
LEDlampsdinkasinaavailable.So,mukhangmalapitnarinmaphase-
outangCFLslocally.Thisisexpectedkasisobrangbabangwattageng
mgaLEDlamps(around3-10wattslangforyungequivalentng30-
50wattsnaCFLs).EvenangOMNI,puroLEDnarinang
minamanufacture.
DOUBLE-ENVELOPCFLSwheretheadditionallayercanblockUVlight.
IMPORTANTNOTE:
EventhegovernmentpromotestheuseofLED
lampsoverCFLsingovernmentoffices.Read
morehere:
http://www.ps-philgeps.gov.ph/home/index.php/about-ps/news/245-
ps-philgeps-promotes-the-use-of-led-for-lighting-government-facilities
PARTSOFCOMPACTFLUORESCENTLAMP
Takenotethatthisisascrew-intypeso
thereisalreadyaballast/choke,as
comparedtoplug-intypeCFLs.

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
LOW PRESSURE DISCHARGE LAMPS
LOW PRESSURE SODIUM LAMPS
•LowPressureSodiumLamps(availablein1960s)–atypeof
dischargelampwherelightisproducedbyexcitingthesodium
metalmixedwithinertglassinsideaglasstube.Itisthefirsttype
ofsodiumtobedeveloped(Philipswasthefirstmanufacturer
thatcommercializedSOXlamps).
•ItisusuallydesignatedasLPSorSOXlamps.
•CHARACTERISTICS
•ColorRenderingIndexis0whichcreateamonochromatic
yellowlighting.Thelightinitiallystartsasreddishglowuntilit
becomespureyellow.ItisalsothereasonwhySOXlampsare
almostonlyusedforstreetlightingandsecuritylighting
(althoughbeingslowlyreplacedbyLEDs).
•IthasthehighestefficiencyofallHIDlampssinceitconverts
allthecurrenttocreatelightatthemosteye-sensitive
frequencyofvisiblelight.Whileincandescentisalsoyellowish,
itproducesUVwhichisnotvisible,soonly10%isactually
convertedtolight.
•SOXlampshavegoodlumenmaintenancewhichmeansthey
donotdeclineintermsoflumenoutputovertime.
•SOXlampsarealsoconsideredlow-intensitylampswhichis
whytheyproducelessglare(justlikefluorescentlamps).
•Sodiumisahazardousmaterialsodisposalisdifficult.
•IMPORTANT NOTE:Asof2019,SOXlampsarealreadybeing
phased-outinfavorofLED-basedlightingwhichismoreenergy
efficient(Philipsalreadyannounced).
LOW PRESSURE SODIUM LAMPS (AS USED IN STREET LIGHTING)
PARTS OF A LOW PRESSURE SODIUM LAMP (SOX LAMP)
PARTS OF A LOW PRESSURE
SODIUM LAMP (SOX LAMP)
Take note of the typical shape of
the tube inside the outer glass.

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
HIGH PRESSURE DISCHARGE LAMPS
•HighPressureDischargeLamps–typesoflampthatoperateunderslightlylesstogreater
thanatmosphericpressure.HighPressureorHIDlampsareusuallyusedwhenhighlevels
oflightoverlargeareaisrequiredsuchasgymnasiums,warehouses,movietheaters,
footballstadia,outdooractivityareas,roadways,airporttaxiwaysandparkinglots.
•Note:HighIntensityDischarge(HID)Lampsalsorefertothesamegroupoflamps
butthedefinitionofHIDlampsmostappropriatelyrefertotheintenselightproduced
bythehighlypoweredelectricarccomparedtootherlampswiththesamearclength.It
meansthatthereishigherquantityoflightperunitareaofinthelamppackage
ortube(higherthan3wattspersq.cm.)ThesearealsoreferredtoasHighEnergy
DischargeLamps.Insomesources,fluorescentlampsandSOXlampsarealso
consideredHIDlamps(butoperatingatlowpressure).
•CommoncharacteristicsofHIDLamps:
•ballastsarealsorequired(likeinfluorescentlamps)
•slowstarting(warm-uporruntime)upto10minutesbecausetheballast
needstimetoestablishtheelectricalarc.
•producesintenselightatahighefficacy
•commonlyusedforoutdoorlightingandwherelightingisnotsubjectedto
frequentswitching
•TherearethreemostcommontypesofHIDlamps:
•HighPressureMercuryVaporLamps
•MetalHalideLamps(MH)
•High-PressureSodiumLamps
•OthertypesofHIDlamps
•CeramicMHLamps
•Xenonshort-arcLamps
HIGH-PRESSURE MERCURY VAPOR LAMPS
High-PressureMercuryVaporLamps(HPMV)(often
simplycalledasMercuryVaporLamps)–atypeoflamp
wherethelightisproducedbyanelectricarcthrougha
vaporizedmercury.
•Construction–electricarcproducedinaquartztube
enclosedinalargerglassbulb(usuallyborosilicate).The
outerbulbmaybeclearorphosphor-coatedwhich
providesthermalinsulation,UVprotectionand
convenientmountingofthequartztube.Itcanhave
externalballastorself-ballasted(SBlamps).
•Note:Phosphorisasolidmaterialthatemitslightor
luminesces,whenexposedtoradiationsuchasUVlightoran
electronbeam.
•Thelightproducedistypicallybluish-greentint
becauseofmercurybutphosphorcoatingprovides
increasedcolorcorrection.Wheninitiallyturnedon,the
lampisdarkbluewhicheventuallybecomesbluishor
whitishifcoated.
•BecauseofpotentialUVexcapingthetube,mercury
vaporlampsshallbeprotectedthroughcoatingor
specialglassenclosure.
•ThisisthefirsttypeofHighPressureorHighIntesity
DischargeLamps,buttheleastefficient.Itisnowslowly
beingobsoleteandreplacedbymetalhalidelampswhich
hashigherefficiencyandbettercolorrendering.
•Applications–MVlampsaregenerallyusedforoutdoor
streetlighting,althoughthereisalreadyslow
upgradingoflampstowardsLEDs.Evenstreetlighting
areslowlybeingreplacedbyLEDs.
ThreetypesofHIDLamps–(fromtheleft)MercuryVaporLamp(coated),MetalHalide
LampandHighPressureSodiumLamp.
SB(self-ballasted
type) Mercury
Vapor Lamps –
medyomahirap
madifferentiate
yungdifference
niyafrom non-self-
ballasted mercury
vapor lamps.

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
HIGH PRESSURE DISCHARGE LAMPS
• MercuryLamp–alampusingacombinatioofthearcdischargelike
FLs,butwithcompactfocusableshapeofanincandescentlamp
providinghighefficiencyandlongerlifeinvarioususes.
oNamingofMercuryLamps(i.e.H38MP100DX)–“H”means
mercurylamp,“38”meanstheballastnumber,“MP”isthe
lampphysicalcharacteristics,“100”isthelampwattageand
“DX”indicatesphosphors,glasscoatingorcoloring.
oAdvantagesandDisadvantages:
▪Lamplifeisextremelylongwithaverageof24,000
hoursbasedon10burninghoursperstart.Since
constantswitcheaffectsitslife,itismorepreferredto
beusedinlongperiodofburning.
▪Otherfactorsaffectitslifelikeambienttemperature,
linevoltageandballastdesign.Itisreplacedif
acceleratedlumensdepreciationisneartheendofits
lifespan.Clearlampshasthebestlumenmaintenance
followedbythecolorimprovedandphosphorscoated
units.
▪Availableinvarietyofshapes,sizesandcolorswith
ratingfrom50to150watts.
▪Theballastcanbemountedawayfromthelamp.
▪Sincehighlyefficient,itisagoodreplacementfor
incandescentlampsintermsofenergyconservation.
▪Dimmableisusingadimmableballast.
HIGH-PRESSURE
MERCURY VAPOR LAMPS
oTypicalFormsofMercuryLamps:
▪Colorsuffixes–“Dx”meansdeluxewhite,“N”meansstyle-tone,“R”
meansbeautyliteandnosuffxmeansnon-phorouscoated(confirm
further).
▪Descriptionsymboles–“B”meansblacklight,“FF”meansfroastedface,
“G”meansgenerallighting,“W”meanswidebeam,“RF”meansreflector
flood,“S”meansstreetlightingand“VW”meansverywidebeam.
oTypesofBallasts
▪Notethatballastsarebasicallysimplereactorsthatstartsandcontrol
thelampafterthedischargehasbeeninitiated.Itrequires3to6
minutesafterswitchontoreachthefulloutput.
▪ReactorBallast–lowpowerfactorandnovoltageregulator
(transformer),applicableifminimum ofonly5%line-voltage
fluctuations.
▪Auto-transformerBallast–alow-powerandnon-regulatingreactor
unitwithtransformerformatchinglinevoltagetothelampvoltage.
▪Highpowerfactorautotransformerballast–sameastype2but
withadditionalcapacitortoimprovethepowerfactor.
▪ConstantWattageAuto-TransformerBallast(akaLeadCircuit
Ballast)–aregulatinghighpowerfactorunitthatmaintainsvoltage,
wattageandlumenoutputconstant(only5%wattagevariationwith
10%voltagechange?)
▪DimmingBallastorSolid-stateDimmingControl–usedfordimming
themercurylampandavailablefor400-700and1000watts.Dimmingis
donebychangingthecapacitancewherethelightoutputcanbe
reducedby50%withoutaffectingthelamporballastitself.
oSpecialtypeofMercuryLamp–smallmercurylampthatcanreplaceinterior
incandescentlampsandareavailablein40,50,75to100and175watts,sizes
indeluxewhiteandothercolorcorrecteddesign.
▪SelfBallastLamp(un-ballasted)–aretypesofmercurylampswithout
ballastsbecauseballastmountingisimpracticalandinconvenient.
However,afluorescentisabetteralternativetothisbecauseoflower
cost,longerlife,highefficiency,goodcolor,moreattractiveandlower
energycost.
notes from Max Fajardo
Mercury Vapor Lamp sold locally through FB.
Mercury Vapor Lamp sold
in an online shop.

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
HIGH PRESSURE DISCHARGE LAMPS
•MetalHalideLamps–typeoflampthatisverysimilartoamercuryvaporlampbutwithadditionalmetal
halide(usuallysodiumsalts)insidethequartsarctubewhichproducesothercolorsthatmercuryvapor
lampscannotproduce.Thesemetalhalidesalsoincreaseefficacybutreducesthelifeandlumenmaintenance
overtime.
•Comparedtomercurylamp,ithasincreasedefficacy,reducedlifeandlumensmaintenanceto
about60%at2/3ofitslifebutbettercolor(CRI.Whenametalhalideisattheendofitslife,itexhibits
cyclingwherethelampwillgrowforawhileandgoesoff,repeatedly.
•Somecharacteristics:
•Colordependsontheamountofiodized-halidesaltinthearcandisextremelysensitiveto
voltage,temperatureandburningposition/angle.Therearemetalhalidesthatmustbe
installedinacertainangleforoptimaloperation.Briefpowerinterruptioncanevenextinguish
thelamp’sarc.
•Striketimeisshorterthanmercurylamps(2-3minutes).Re-striketimeislonger(upto10
minutes),soitisnotrecommendedforindoorareasthatneedsimmediatelight.Thisis
becausethetemperatureandpressureintheinnerarctuberequiretimetoreachfull
operatinglevels.
•Sincesignificantlyidenticaltoamercuryvaporlamp,certainmetalhalidesareusablewith
mercurylampballast.ItalsocontainsmercurysodisposalisdifficultlikeallotherHIDlamps.
•IntermsofCRI,aceramicmetalhalidelamp(CMH)hashighervalue(around90s)as
comparedtostandardMHlamps.Theselampshavealuminaarctubeinsteadofquartz.
•TypicalApplications–commonlyusedinstreetlighting,parkinglotlights,stadiumsandsports
fieldfloodlightsandinaquariumlighting.OnearchitecturallightingbookmentionedthatMetal
Halide(MH)andCeramicMetalHalide(CMH)aretheonlytypeofHIDlampsthatappropriatefor
indoorcommercialusesinspaceslikeatria,mallsandsupermarkets.ClearMHlampsareusuallyused
foroutdoors.PhosphorcoatedMHlampsareusedindoor(i.e.fooddisplays).
•Takenote:LPSandHPSarenotdiscussedinanarchitecturallightingbookbecausetheyarenot
preferredforindoorarchitecturallighting(lowcolorrenderingindex).
METAL HALIDE LAMPS
CODES usually used in Metal-
Halide Lamps.
METAL HALIDES ARE
USUALLY TUBULAR IN SHAPE
but there are varieties of
shape. Tubular MH Lamps are
usually used in floodlights.
These images show the components and how a metal halide lamp works.
Take note of the key points like the condensed halide salts and the white
painted ends.

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
HIGH PRESSURE DISCHARGE LAMPS
METAL HALIDE LAMPS
SOME APPLICATIONS OF METAL HALIDE LAMPS
NOTE: Metal halide lamps
are also used in tower lights
or light towers, usually in
construction or road
building.
TUBULAR SHAPE METAL
HALIDE LAMP
MH LAMPS IN FLOODLIGHTS

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
HIGH PRESSURE DISCHARGE LAMPS
•HighPressureSodiumLamps(developedin1960s,akaHPSorSON)
–atypeofHighPressureDischargeLamporHIDLampwherethelight
isproducedusingtheamalgamofmetallicsodiumandmercuryinside
anarctubebutwithhighpressure.
•Startingthelampisusuallywithapulsestart
•Famousvariations
•“Lucalox”–tradenameforHPSlampsbyGEwhichusesalumina
asanarctube,whichpavedwatforthefirstHPSlamps
commercialized.
•WhiteSON–variationwithhigherpressurethanstandardHPS
lampswhichproduces2,700KcolortemperatureandaCRIof
around85,typicallyusedforindoorsincafesandrestaurants.
•Characteristics
•longerlifethanLPSlampsandsmallerinsizethanLPSor
fluorescentlamps
•producesdarkpinkglowwhenfirststruckandapinkishorange
lightwhenwarmedup
•highefficiency(upto140lumens/watt)
•likeSOX,high-pressuresodiumlampshavelowercolor
renderingindexthanmetalhalideandhalogenlamps
•likeSOX,sodiumishazardousandmayexplodewhichmake
disposaldifficult.
•Applications
•HPSlampsarethemostcommonlampforstreetlighting.
•Typicallyusedforoutdoorlighting,streetlighting,homeyard
lightingandhigh-baylighting.
HIGH PRESSURE SODIUM LAMPS
XENON ARC LAMP –a type of lamp that
uses ionized xenon gas which can mimic
natural daylight.
HPS VS INDUCTION LAMP AS STREETLIGHTS –take
note of the yellowish output of an HPS lamp
HPS VS LED LIGHTS –take note that LEDs are also now
promoted for street lighting
PARTS OF AN HPS LAMPS –take note of the common
commercialized shape of HPS lamps
STREET LIGHT FIXTURE
FOR HPS TYPE OF LAMP

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
HIGH PRESSURE DISCHARGE LAMPS
WHATISABALLAST?
•Aballastisalsocalledachokeorinductor.
•Themainfunctionofaballastistoregulatethecurrent
tothelampsandprovidesufficientvoltagetostartthe
lamp.Withoutaballasttolimititscurrent,anydischarge
lampwouldrapidlyincreaseitscurrentdrawandexplodes.
Therearedifferenttypesofballastswithdifferent
mechanismsforthesamefunction.
WHATISANIGNITERORSTARTER?
•Anigniterorstarterisalsoabulb(usuallyargonfilled)with
anormallyclosedthermalswitch(bimetalliccontact)which
helpsinexcitingthegasesinsidethetube.Thisisgenerally
attributedtopreheatingthegasesinsidethetubeorbulb.
Initially,currentflowsthroughthestarterbutitsuddenly
cutsoffthecurrentwhichmakesthecurrentflowtransfer
throughionizedmercuryvaporinsidethetube.Withouta
starter,thelampwillonlyflicker.However,electronic
ballastshaveintegratedmechanismwhichservethe
functionofastarter.
•WhileallHIDlampsrequireballasts,notalltypesrequirea
separatestarterorigniter.Takenote:starterandigniters
arebasicallythesamething,butstartersusuallyreferto
onesbeingusedinfluorescentlampswhileignitersreferto
onesbeingusedinotherHIDlamps.
OTHER INFORMATION
LAMP
CAPACITOR
BALLAST
IGNITER or
STARTER
TYPICAL CIRCUIT DIAGRAM FOR HID LAMPS

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
COMPARISON CHARTS
SAMPLE COMPARISON OF THE THREE TYPES OF LAMPS
DIFFERENT COMPARISON CHARTS
Take note: LED, CFL and Incandescent/Halogen are always compared for household
lighting. Other types of discharge lamps are not compared because they are usually for
larger applications and different usage.

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
HIGH PRESSURE DISCHARGE LAMPS
OTHER INFORMATION
Characteristics
High Pressure
Mercury Vapor
Lamps
Metal Halide Lamps
High Pressure
Sodium Lamps
Other Names HPL MH HPS, SON
Important Note
Least efficient HID
lamp; slowly being
replaced;
Most efficient Fairly efficient
Shape and Look
bulb shape varies but
elliptical is more
common (some bulbs
are coated)
bulb shape varies but elliptical is
more common
(some bulbs are coated)
bulb shape varies
but elliptical is more
common
(generally uncoated)
Life Span 16,000 –24,000 5,000 –20,000 16,000 –24,000
Typical Light
Colors
white white yellowish
Color Rendering
Index (CRI)
50 (poor to fair) 80 –90 (good) 65 –85 (good)
Color
Temperature (K)
3200 –7000 (warm to
cold)
3700 (cold) 2100 (warm)
Lamp Efficacy
(lumens/watt)
25 -60 70 -115 50 -140
Ballast and Starter
Ballast required
(self-ballasted is
available); starter is
usually integrated to
the bulb
Ballast required
(self-ballasted is available)
Ballast required
(self-ballasted is
available)
Start-up Time 2 –5 minutes 15 minutes Up to 10 minutes
Typical Use Outdoors Indoors/Outdoors Outdoors
Application
Examples
primarily for street
lighting, but Fajardo
mentioned area
lighting, emergency
lightingand after
hours indoor
lighting
lighting for gymnasiums and arenas
and parking lots; large indoor areas
(replaced most mercury vapor lamps
because of better CRI); used where
color is important like in TV/movie
prods, aquarium lighting,
automotive headlamps, sports
games, factories and retail stores
For industrial
security lighting,
street lighting
Other Notes
Not suitable for
constant switching
some variations are
available where
higher color
rendering index is
desired
oColorRenderingIndex–importantforareaswhereaccurateperceptionofcolorsareimportant.For
example,inparkingareas,coloridentificationisimportantinsearchingforcars(redandblackmaylook
thesameifCRIisverylow).

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
LIGHT-EMITTING DIODES (LEDs)
•Light-emittingdiodes(LED)lamps–aretypesoflampswherelightisproducedby
passingcurrentthroughasemiconductor.LEDlampscanproducevisiblelight,aswellas
infraredandUVlight(whichiswhyUVLEDlightsarealsopopularfordisinfection).
•LEDsrunonlow-voltageDC,notonAC.Itmeansthatitworkswhencurrentisrunning
inonedirection.However,itcanstillworkonACbutitwillflickerveryfastduetothe
frequencyofalternatingcurrent.LEDtechnologyisstilldevelopingandLEDsthatcanuse
ACdirectlycanbedevelopedsoon.
•LEDsasalightsourceisarelativelynewtechnologywhichslowlyreplacesothertypes
oflampsworldwideduetoitshigherenergyefficiencywhichpromotesenergy
conservation.ManufactureofLEDsiscostlywhichisthereasonwhyinitialcostofLEDs
ishigherthanincandescentandCFLs.
•LEDscomeaspackages,notasstandalonelightingdevice.Eachpackageistypically
composedofthetwosemiconductinglayers(PandNlayers),withlenscoversfor
protectionandlightdistribution,andaheatsinkbecauseLEDsaresusceptibletoheat.
LEDsneedadriver(orpowersupply)tooperatewhichisbasicallyasmaller
transformer.
•ThereareseveralwaysthatLEDsproducedifferentcolorsandqualitiesoflight.One
methodistoproduceUVwaveswhichexcitesthephosphorsthatemitvisiblelight
(phosphorscanbeintegratedintheLEDitselforcoatedinternallytothefixture).Another
methodistocreatedifferentcolorsoflightbyadditivemixingofcolorsfromLEDarrays
(RGBLEDs).
•LEDDriver–acriticalcomponentofLEDtechnologythatregulatespowertoanLEDora
stringofLED(alsocalledAC-DCswitch-modepowersupply).LEDchipsaresensitiveto
voltageandtemperature,whichifunregulated,makestheLEDchipburnitself(called
thermalrunaway).TheLEDdriverisaself-containedpowersupplywhichtheoutput
matchestherequirementsoftheLEDchipitself.
•NOTE:InmanyLEDlamps,thedriverisalreadyintegratedintothelamp
itself(soitiscommontoseeLEDlampsbeingsoldasstandalonelamps).
However,especiallyforlargerlamps,LEDdriversarenotintegratedtothe
lamp,sotheyareusuallyinstalledwithseparatedriverinacircuit.Majorityof
LEDlampsneeddrivers,driverlessLEDsareuncommon.
•ThesearebasicallythefunctionsofdriversinLEDlighting:
•ThedriverchangesthehigherACvoltageintolowervoltageDC
sinceLEDsoperateonlowvoltageDCelectricity
•Theinputvoltageofthedrivermustbethesameasthevoltage
requiredbythedriver.Thedriverregulatesthevoltageinputto
avoidflickeringorflashing.
•Thedrivercontrolsthelightoutputusingpulse-widthmodulation.
•NOTE:Insomeapplications,likesmallLEDsintoys,LEDscanconductand
illuminateifconnecteddirectlytoabattery.Thisisnotalwayspossiblesince
withoutdriver,thelifeofanLEDisreduced.
LED CHIPS ARE INTEGRATED INTO FAMILIAR LAMP SHAPES
As you can see, there are several ways in which the LED chips are
installed inside an LED bulb using the more common form factor
(A or T). Take note that drivers are usually internally integrated.
THIS IS A DRIVER FOR LED (NON-INTEGRATED)
LED STRIP WITH DRIVER

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
LIGHT-EMITTING DIODES (LEDs)
THIS IS A RETROFIT LED LAMP
There are two types of LED in the market –
retrofit LEDs and Plug-and-Play LEDs.
•Before1990s,LEDsareonlyusedfornumericdisplays,trafficlightsand
scoreboards.However,withtheinventionofblueLEDs,LEDdeveloped
rapidlyuntilitbecameapreferredchoiceforgenerallighting.
•BlueLEDs–arebasicallylight-emittingdiodesthatproducebluelight
whichisanimportantcomponenttocreatewhitelight(rememberRGB
lightcreateswhitelight).TheinventionoftheblueLEDs(redandgreen
werefirstdiscovered)pavedwayfordifferentapplicationsofLEDsuch
aswhitelight,TVandmobilescreens.
ARCHITECTURALAPPLICATIONOFLEDs
•LEDfacades
•SOURCE
•https://www.tcpi.com/led-architectural-lighting-a-practical-guide/
•https://www.architectmagazine.com/technology/lighting/leds-light-and-
architecture_o
•https://fmlink.com/articles/lighting-methods-works-best-different-
situations/
•otherinfosaboutLED
•http://www.lightingcompass.com/_newsletters/Citizen_Releases_their_C
heaper_and%20_Cooler_Version_6_LED_Lineup.pdf

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
LIGHT-EMITTING DIODES (LEDs)
DIFFERENT LED PRODUCTS AVAILABLE IN THE MARKET (from small lamps to big lamps)
DIFFERENT LED PRODUCTS AVAILABLE IN THE MARKET
Take note of the COB downlights. LED downlights can be COB
(chip on board) or SMD (surface mounted diodes). COB are
used for more focused LED lights (like in downlights) where the
beam of light needs to be controlled. SMD LEDs have wider
beam angles.
ORGANIC LEDS (OLEDS)–these are new types of LEDs. These
are more expensive than the standard LEDS.

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
OTHER LIGHTING TECHNOLOGIES
•InductionorInduction-DischargeLamps–aretypesoflampssimilartofluorescent
lampsbutthegasdischargeisnotproducedbyanelectricarcpassingthroughthetube
butbyelectromagnetic(EM)field.Thevisiblelightisalsoproducedbytheinternal
phosphorcoating.Becauseofthelackofelectrodes,inductionlampshavehigherlife(up
to100,000hours)andusedforapplicationsthatrequirelessmaintenanceordifficultto
reachandusuallyinareassubjectedtocoldtemperature.
•Cold-CathodeLamps–alreadydiscussedpreviously.CCFLsareusuallymadebyhand
andcanbemadetodifferentshapesandconfigurations.Itis,however,beingreplacedby
LEDs.
•OrganicLightEmittingDiodes(OLEDs)–similartoLEDsbutplanarinnatureinsteadof
linearorpointsources.Thesetypesoflightsourcescanbemountedonflexiblesurfaces
orsubstratelikeinfoldingorroll-updisplays.However,OLEDsarelessefficientandmore
expensivethanLEDs.
•Light-emittingPlasma(LEP)–similartoinductionlightingthatissimilarinconstruction
asmetalhalidelamp.SinceLEPsareproducinghighintensityoflight,itismoremarketed
foroutdoorlighting.Itisnotsureifthistechnologywillbedevelopedmoretocompete
withthehighlypopularLEDlightssinceLEDsalreadypenetratedtheoutdoororstreet
lightingindustry.
•Fiber-opticLighting-
INDUCTION DISCHARGE LAMPS
Take note yung magnetic coils. Most induction lamps are circuilar or in loop shape.
OLED Lights are expected to be popular in architectural lighting. OLEDs have already been introduced in modern TV screen
technology.
COLD-CATHOD FLUORESCENT LAMPS
These types of fluorescent lamps are commonly used in display lighting, outdoor lighting (because it is not sensitive
to temperature) unlike the typical fluorescent lamps. It is difficult to identify a cold-cathode from a regular fluorescent
tube because the main difference lies inside the tube.
LIGHT-EMITTING PLASMA LAMPS
Take nore

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
WHICH LAMPS ARE BEING PHASED -OUT?
Type of Lamp Is it phased-out or banned? Notes
Incandescent Lamps Yes. Already banned in the Philippines and internationally.
Some are still selling, which is
used for incubating chickens.
Halogen Lamps
Yes. Since this is just like incandescent lamps, it is already
phased-out.
Linear Fluorescent Lamps (straight
tubes)
Yes, but not all. T12 already phased out while T8 and T5 which
are more energy-efficient than T12 are still available. However,
it is expected that T8 and T5 will be phased-out soon (also in
favor of LED).
Any type of fluorescent lamps
are also becoming rare locally.
You can find T8 and T5 lamps,
but the available types are
mostly of LED versions.
Compact Fluorescent Lamps (CFLs)
Yes, but slowly. However, larger manufacturers are already
discontinuing production of CFLs (i.e. General Electric). There
are still locally available CFLs in the market, although LED is
now more preferred.
CFLs are becoming obsolete
locally, LED lamps are being
promoted and sold in the local
market (even the government
promotes LED).
Low-Pressure Sodium Lamps (SOX
Lamps)
Yes, but slowly. The demand for SOX lamps is decreasing.
Manufactures like Philips already announced discontinuing
production of SOX lamps.
Mercury Vapor Lamps
Yes, but not all. United States already banned the use and
sale of mercury vamps for lighting purposes. However, there
are also other non-lighting uses of MV lamps (UV lighting). In
fact, in the Philippines, there are few selling MV lamps for
aquarium or terrarium lighting (UVB lighting for animals).
It is not sure if MV lamps were
extensively used in the local
lighting industry.
Metal Halide Lamps
Somehow yes. As of now, there is no big news regarding
totally phasing out MH lamps, but in the US, there are already
regulations that regulate the efficiency of commercially
available MH lamps. Soon, these lamps will be completely
phased out.
High-Pressure Sodium Lamps
(SON Lamps)
No, only few. In US, there is no massive phasing out of HPS or
SON lamps but low efficiency HPS lamps are already being
discontinued by manufacturers. However, with the decreased
demand, it is more likely that manufacture of SON lamps will
be discontinued over LED-based lighting.
There is no enough data that
shows if HPS lamps were
extensively used locally
(especially in street lighting).
Light Emitting Diodes (LEDs)
PHASE-OUT TIMELINE OF PHILIPS

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
LAMP SHAPES AND SIZES
TYPESOFLAMPSBASEDONLIGHTINGDISTRIBUTION
•Before,theshapeofalampcandeterminethetypeoflightingtechnologyitutilize.
Today,severallampshapesarenowavailableindifferentlightingtechnology(i.e.T12
LEDthatcanreplaceT12fluorescentlamps).However,certainlightingfixturesor
luminairesonlyworkwithcertainlampshapes.Lampshapes/typecanbecategorized
accordingtohowitsupplylightintoomnidirectionallampsanddirectionallamps.
•Omnidirectionallampsemitlightineverydirection.Tocontrolthedirectionand
distributionofthelight,lightingfixturesandaccessoriesareused.Common
omnidirectionallampsareintheshapeA(arbitrary),B(blunt-tiporbullet),C
(coneshaped),F(flameshaped),G(globe),PandPS(pearshaped)andT
(tubular).
•Directionallampshaveabuilt-inreflectororlensoneachbulb.Thecontrolofthe
directionordistributionisprimarilybythelampitself,butadditionalcontrolsif
attachedinahousingorfixtures.ThesetypesoflampsincludeshapeR(reflector),
PAR(parabolicaluminizedreflector),MR(multi-reflector)andAR(aluminum
reflector).
DESIGNATIONOFLAMPSHAPES
•Theshape/sizeofabulbisusuallydesignatedbyacode.Themostcommonand
widelypopularshapeisactuallyA19bulbs.Thediameterdesignationiscanbein
EnglishorMetric,A19bulbs(19/8inches)isA60(60mm)inmetricdesignation.
However,notethatEnglishdesignationismorepopularlyused(oratleastlocally).
•Someshapesaremoreusedinonetypeoflampthantheother.Forexample,
fluorescentlampsareusuallydesignatedintubularcodes.
•ANSIandIEChavestandards/specificationsfortheshapesofthesebulbs.
COMMONLY USEDTYPES
•Aseries(arbitrary)–standardshapeofhouseholdlightbulbs.A-shapedbulbshave
beenhistoricallyusedforincandescentbulbsbutthenewertypesoflamps(LEDsand
CFLs)arealsoavailableinthisshape.
•BandCseries–alsoknownas“candelabralightbulbs”.Theseshapesarecommonin
chandeliers,nightlightsandlowerwattageapplicationssuchasholidaystringlights.
•PARseries(parabolicaluminizedreflective)–bulbsthatutilizeaparabolicmirroror
reflectivesurfacetofocusthelight(usuallyusedforspotorfloodlamps).Common
PARlampsincludePAR20,PAR30,PAR38,andPAR42butothersizesexist.
DIRECTIONAL
LAMPS
OMNIDIRECTIONAL
LAMPS

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
LAMP SHAPES AND SIZES
THESE ARE USUALLY THE SHAPES OF HID LAMPS
Take note: I’m not sure why it is separate. Pero siguroit
shows naitoyungpinakacommonnashapes ng mgaHID
lamps. Take note also, yungT12 safluorescent lamps ay
ibaang shape saT12 naHID lamps.
OMNIDIRECTIONAL LAMPS
•Omnidirectionalbulbsgiveofflightinalldirections–top,sidesandbottom.
Theseareidealforfloorlamps,tablelamps,wallsconcesandchandeliers.Some
typesoflampsareomnidirectionalbydesignlikeincandescentlamps.
•Sometypesofomnidirectionalbulbsareintegratedintoahousingwith
reflectorstoconvertittodirectionallampfixtures.
•Onesourcelistedomnidirectionallamptypes–A,BT,P,PS,SandTlamps.So
thismeansthetubularT5orT8areconsideredomnidirectional.
DIRECTIONALLAMPS
•Directionallamps(AR,MR,PAR,R)produceaconeorbeamoflightwherethe
centerislogicallythebrightest(100%light).Accordingtoonesource,direction
lampsarewhere80%oflightoutputisfallingwithinthe120-degreecone.Beam
angleistheanglewherelightis50%andaboveandusuallydesignatedor
specifiedbythemanufacturertohelpdesigners.Fieldangleisthewider
anglewherethelightgoesfrom100%to10%andusuallynotspecifiedbythe
manufacturer.
•Directionallampsareusuallyusedfortasklighting,displaylighting,pendant
lights,ceilingfanlightsorceilinglights.
•Onesourcelistedlamptypesthataredirectional–BR,ER,K,MR16,PAR16,
PAR20,PAR30,PAR30LNandPAR38.
•NOTE:Itisdifficulttofindastandardbasisregardingthespecificanglesoflight
tobeconsideredomnidirectionalordirectional.
PARTS OF LIGHT BEAM FROM A LIGHTING FIXTURES
Take note of the term “spill light” on the field angle.
LAMP SIZE DESIGNATION FOR FLUORESCENT LAMPS
Take note: Iba-ibayungavailable ng bases for
fluorescent lamps. May contact base, may single pin,
may2-pin. Sa CFLs, 2-pin, 4-pin or screw-in lang ataang
meron.
DIRECTIONAL VS OMNIDIRECTIONAL LAMPS
TYPES OF LAMP BASED ON HOW LIGHT IS
DISTRIBUTED
OMNIDIRECTIONAL VS DIRECTIONAL LAMPS

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
LAMP BASES
GENERAL LAMP BASES
COMMON BASES FOR HID LAMPS
COMMON BASES FOR CFLsCOMMON BASES FOR INCANDESCENT AND HALOGEN LAMPS
COMMON BASES FOR FLUORESCENT LAMPS
TYPESOFLAMPSBASEDONLIGHTINGDISTRIBUTION
•Before,theshapeofalampcandeterminethetypeoflightingtechnologyit
utilize.Today,severallampshapesarenowavailableindifferentlighting
technology(i.e.T12LEDthatcanreplaceT12fluorescentlamps).However,
certainlightingfixturesorluminairesonlyworkwithcertainlampshapes.Lamp
shapes/typecanbecategorizedaccordingtohowitsupplylightinto
omnidirectionallampsanddirectionallamps.
•Omnidirectionallampsemitlightineverydirection.Tocontrolthedirection
anddistributionofthelight,lightingfixturesandaccessoriesareused.Common
omnidirectionallampsareintheshapeA(arbitrary),B(blunt-tiporbullet),C
(coneshaped),F(flameshaped),G(globe),PandPS(pearshaped)andT
(tubular).
•Directionallampshaveabuilt-inreflectororlensoneachbulb.Thecontrol
ofthedirectionordistributionisprimarilybythelampitself,butadditional
controlsifattachedinahousingorfixtures.Thesetypesoflampsincludeshape
R(reflector),PAR(parabolicaluminizedreflector),MR(multi-reflector)and
AR(aluminumreflector).
DESIGNATIONOFLAMPSHAPES
•Theshape/sizeofabulbisusuallydesignatedbyacode.Themostcommonand
widelypopularshapeisactuallyA19bulbs.Thediameterdesignationiscanbe
inEnglishorMetric,A19bulbs(19/8inches)isA60(60mm)inmetricdesignation.
However,notethatEnglishdesignationismorepopularlyused(oratleast
locally).
•Someshapesaremoreusedinonetypeoflampthantheother.Forexample,
fluorescentlampsareusuallydesignatedintubularcodes.
•ANSIandIEChavestandards/specificationsfortheshapesofthesebulbs.
COMMONLY USEDTYPES
•Aseries(arbitrary)–standardshapeofhouseholdlightbulbs.A-shapedbulbs
havebeenhistoricallyusedforincandescentbulbsbutthenewertypesoflamps
(LEDsandCFLs)arealsoavailableinthisshape.
•BandCseries–alsoknownas“candelabralightbulbs”.Theseshapesare
commoninchandeliers,nightlightsandlowerwattageapplicationssuchas
holidaystringlights.
•PARseries(parabolicaluminizedreflective)–bulbsthatutilizeaparabolicmirror
orreflectivesurfacetofocusthelight(usuallyusedforspotorfloodlamps).
CommonPARlampsincludePAR20,PAR30,PAR38,andPAR42butothersizes
exist.

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
TYPES OF BULB BASES
•Theshape/sizeofabulbisusuallydesignatedbyacode

SAMPLE PRODUCT NAME FOR XENON LAMP
Look at the printed specs on the base of the lamp.
SAMPLE PRODUCT NAME A METAL HALIDE LAMP
Product name is usually printed on the bulb itself.
ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
NAMING OF LAMPS
•IncandescentorHalogenLamps–usuallydescribedbytheirwattage,
shapeandsizes.
•100A19/CL–100watts,Ashape,19/8”diameter,clearlight
•60G40/W–60watts,Gshape,40(diameter?),white
•100PAR38/FL35–100watts,PARshape,38(diameter),35deg
beamangle
•Inseveraltimes,additionalinformationareaddedbythe
manufacturerlikethemanufacturer’scode,classfilament,
maximum overalllength(MOL),MBCPormiddlebeal
candlepower,lumensproducedbythelamp,ratedlifeand
colortemperature.
•FluorescentLamps–usuallydesignatedby“F”followedbythewattage,
shapeandsize.Insomecases,CRIandcolortemperatureareusually
addedattheend.Somemanufacturersalsohaveadditionaltagginglike
“ECO”,“ALTO”or“SPX”.
•F32T8/830–fluorescentlamp,32watts,T8shape,“8-30”means
theCRIisin80s,andcolortemperatureisin3000K.
•HIDLamps–usuallyfollowadifferentnomenclaturethatisnoteasyto
read.Thefirstcharacterusuallyidentifiesthelamptype:
•“B”forself-ballastedmercurylamps,“C”forceramicmetalhalide
lamps,“H”formercurylamps,“L”forlow-pressuresodiumlamps,
“M”forquartzmetalhalidelamps,“S”forhigh-pressuresodium.
•Thefinalcharacterusuallyidentifiestheluminairecharacteristics
–“E”meansenclosed,“F”meansenclosedwithUVbarrier,“O”
meansopenluminaire,“S”meansopenluminairebutonlyin
certainangle.
•Additionalinformationarealsogiven,withoutparticularstandard.
•LEDLamps–sinceLEDsarenew,thereisstillnoestablishedstandard
forspecifyingLEDlampsbutlikefluorescentandHIDlamps,CRIand
colortemperatureareindicated.Intermsofcolor,LEDtechnology
improvementismovingveryfast,soitishardtoestablishnaming
standardswhennewerimprovedproductsreplaceolderLEDs.
SOME TABLES FOUND IN A PRODUCT CATALOG OF A LIGHTING MANUFACTURER
Each manufacturer has their own codes integrated to their product naming.

EFFICACY LABEL FOR CIRCULAR FLUORESCENT LAMPS
ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
ENERGY EFFICIENCY IN LOCAL CONTEXT
BALLAST EFFICACY FACTOR
This is required for all lamps that require ballasts like fluorescent
lamps and HID lamps. Although I’m not sure if HID lamps are even
that common in the Philippines, probably for floodlamps. Ballasts
that consume 30% of energy consumption of the lighting fixture is
considered inefficient.
EFFICACYLABEL FOR COMPACT FLUORESCENT LAMPS
Take note, efficacy is the parameter used, not efficiency.
EFFICACY LABEL FOR LINEAR FLUORESCENT LAMPS
Takenotethatwhilelinearfluorescentsarenotyetbanned,thegovernment
alreadysetaminimumefficacyforlinearfluorescentlampsto75lumensperwatt.
SOURCE:
https://www.doe.gov.ph/consumer-
connect/lighting-and-appliance-labelling-
standard?ckattempt=1

ARCHITECTURAL LIGHTING
ELECTRICAL LIGHTING MATERIALS
OTHER TYPES

ARCHITECTURAL LIGHTING
QUALITIES OF LIGHT SOURCES
•Therearetwoaspectsofcolorandlightinlightingdesign–tintsofwhitelightand
spectralcolorsor“coloredlights”.Althoughcoloredlightsarenotpopularin
architecturallightingbefore,itisnotusedforlightinginteriorsandexteriorsof
buildings.
•ColorTemperature(CT)–thetechnicaltermthatreferstothermalqualityofalight
source,whichismorepopularlyrepresentedby“warmwhiteandcoolwhite”but
specificallymeasuredintermsof“K”.Itisbasedontheincandescentofablackbody
radiator.
•Thestandardpointofreferenceofthecolorofincandescenceisthe“blackbody
radiator”whichisatheoreticalmaterialthatperfectlyabsorbsall
electromagneticenergythatstrikesit.Ifablackbodyisheated,itradiatesdifferent
wavelengthsofenergy(includingvisiblelight)dependingonthetemperature
(reddishtobluishmeanslowtohighenergyortemperature).
•SpectralPowerDistribution(SPD)Curve–plotofalightsource’sradiantpowerat
eachwavelengthoflight.Tounderstand,firstrememberthatwhenanincandescent
material(i.e.filamentinaincandescentlamp)isheatedtoacertaintemperatureit
emitsradiantenergyindifferentwavelengthsandamongthese,thereisapeak
wavelengthwhichoverpowerstheothervisiblewavelengths.Forexample,when
heatedin3000K,ablackbodyemitsmorereddishvisiblelight.Whenheatedto6000K,
blackbodyemitsmorewhitevisibleenergy.Anemissionofincandescentlampisthe
closesttoablackbodyradiator.
•Asonesourcesay,spectralpowerdistributionisthebuildingblockof
colorconsiderationandithelpsdeterminehowthelightsourceappears
andhowobjectcolorsarerenderedunderthatlightsource.
•Anotherexplanation–thevisiblewhitelightthatweseeismadeofa
spectrumofvariouscolorsoflightfrom380nmwavelength(violet)to
760nm(red).TheSPDisgraphshowsthepower(strength)ofeach
wavelengthofvisiblelightproducedbyalightsource.
•Note:SPDgraphsorcurveareusedinseveralapplicationsinlighting
industryincludingthedescribingthecolorrenderingcapacity(CRI)ofa
lightsource.Asmorewavelengthsoflightarerepresentedbyalightsource,
thebetterthecolorrenderingpropertiesofthelightsource.Thatiswhythe
bestcolorrenderingisdaylight,asseeninitseven,flatorwell-curved
SPD.Incandescenthasagooddistributionofvisiblelightsoitisconsidered
asalampwithagoodcolorrenderingindex(CRI),usuallyof100.
•CorrelatedColorTemperature(CCT)–isthecolortemperaturethatdescribesnon-
incandescentlampslikefluorescent,HID,LED,OLED,plasmaandinductionlamps.
TakenotethatCCTandCTareusuallyinterchangeableinpracticallightingdesign.
•Thestandardcolortemperatureofourlightingusuallyrangesfrom2,500K(warm)to
over6,000K(white).
SPD CURVE OF A BLACKBODY RADIATOR
This is the reference graph where we can see why 3000K
is reddish and 6000K is white or bluish. The non-colored
portions of the graph are the invisible radiant energy
from a light source like UV and infrared.
SPECTRUM OF DIFFERENT
TYPES OF LAMPS
As you can see, there are
different spectrum levels for
each type of lamp. If you look
at HID lamps, yellow yung
pinakapeak na wave. Sa
flourescent is blue. Sa warm
white LED is red. Medyo
mahirap intindihin pero just
try to be familiar with the
concept. REMEMBER NA FOR A
CERTAIN COLOR
TEMPERATURE, MAY CERTAIN
COLORS NA NANGINGIBABAW
AND MAKIKITA YUN USING
THE SPD CURVE OF A GIVEN
LIGHT SOURCE.
DIFFERENT SPD CURVES OF
DIFFERENT TYPES OF LAMPS
From each graph, you can see
which color temperature is more
prominent. Take note of the
daylight (D65), it’s a theoretical
illuminant simulating daylight in a
clear noon. The ideal SPD for
color rendering is when the curve
is smooth (without spikes) and
evenly distributed. That is why,
other than incandescent and
daylight, other light sources have
poor CRI.
COLOR TEMPERATURE

ARCHITECTURAL LIGHTING
QUALITIES OF LIGHT SOURCES
COLOR TEMPERATURE
SOMENOTESABOUTCOLORTEMPERATUREOFLIGHTS
•“Warmwhite”or“softwhite”–consideredcomfortableandhomey
(goodforresidentialuse).Thiskindoflightingcanalsoemphasizebrown
woodsorwarmcolorslikered,goldandorange.
•Warmerwhitesareinvitingandtheirsoftnessinvitesrelaxationwhichis
whytheymoresuitableforbedroomandlivingrooms.Inkitchens,warm
andcoolwhitelightscanbecombinedforcozykitchenareaandforthe
detailorientedworkspacesinthekitchen.
•“Coolwhite”or“brightwhite”–acoolandvibrantlightingtypically
producedbyfluorescentlamps.Thislightingisusuallyusedinbusiness
environmentsbecauseitisappropriateforlightreadingandotherdetail
orientedtaskwork.Itcancomplementorhighlightothercolorssuchas
blue,greenorwhiteandevenneutralgray,silverorstainlesssteel.
•Coolwhiteanddaylightlightingareusuallyusedinschoolhallwaysand
hospitals.Thiscanpromotealertnessandcalm.
•“Daylight”–starkwhiteorbluishappearinglightingthatcanbeusedfor
securitylighting,displayingartworkorascommercialapplications.
•Readinglightsareusuallydaylighttemperature,becausethiscolor
providesgreatcontrastbetweenblacktypeonwhiteoroff-whitepaper.
•Forwomen,daylightlightinginbathroomsarebetterformake-upsinceit
iseasiertoseewhattheirmake-uplookoutdoors.
•Somestudiesshowedthatcoolwhiteanddaylightaresuitablefor
bedroomsbecausethebluelightfromthelamphelpswakingupinthe
morning.However,somestudiesshowedthatbluelightinthebedroom
canalsoaffectsleepcycles.
•Someadvicesforresidentialspaces,warmlightformajorityofthespaces
andcoolordaylightforspacesthatneedsattentiontofinedetail(desks,
bathrooms,garages,offices,kitchens,workshops,bathroomsand
focusedtasklighting).However,withtheadventofLEDlights,“color
tuning”ispossible.
REFERENCE COLOR TEMPERATURE
Just be familiar with which temperature is warm white, neutral, cool or daylight is assigned to.
DIFFERENT APPLICATIONS OF COLOR TEMPERATURE
Take note, medyo confusing ito kapag naicompare with color rendering index. In terms of color
rendering index kasi, highest ang incandescent (100) pero yung warm white is not recommended for
task or general lighting. Basta when it comes to display or retail, the most important is color rendering
index. But if in terms of task lighting, cool or daylight lighting is more appropriate.

•Whilerelatedtocolortemperature,thecolorappearanceofalightsource
canbeseparatequalitytostudy.Thecompletestudyofthecolor
appearanceofthelightsourceisquitecomplicatedandinvolvesthecolor
science.Forsimplerexplanation,colorappearanceisbasicallyhowwe
perceivethecolorofalightsourcethroughthephotoreceptorsinour
eyes.Thisismoreofaqualitativepropertythanaquantitativeone.
•PerceivingthecolorofalightsourcecanbethroughtheuseofSPDgraph
orthechromacitygraph.Thechromacitygraphisageneralgraphusedin
severalaspectsofcolorperception,notonlyinlighting.Itisagraphthat
showsallpossiblecolors(likeothercolormodels).However,inarchitectural
lighting,thechromacitydiagramisusedtoseehowdifferentcolorsof
lightcanbemixedtogethertoformothercolors.
WHATISCHROMACITY?
•Chromacity-anobjectivespecificationofthequalityofcolorregardless
ofitsluminancewhichconsiststwoparameters–hueandcolorfulness(or
saturation,chroma,intencityorexcitationpurity).Thetopicofchromacityis
highlyscientificandinvolvesfairlycomplicatedcolorscience.However,in
termsoflighting,chromacityisjustanotherwaytodescribethe
perceivedcolorofalightsourcebasedonchromacitygraph.Chromacity
isalsousedtomeasurecolordifferenceorcolorshiftoflightsources.
•Thefamousstandardchromacitydiagramsarenamedas“CIE1931xy
chromacitydiagram”and“CIE1976LUVchromacitydiagram”(which
consideredtheperceptualuniformity).
•Takenote:Theconceptofchromacityisactuallymoreappliedinnon-
architecturallightingsuchastheproductionofcolorsinTV,monitorsand
otherlightsources.WiththeadventofLED,itismorelikelythat
experimentationofcoloredlightsinarchitecturalapplicationwillbe
observedsoon.
•Inarchitecturallighting,thecolorsoflightsareusuallylimitedtothealine
orportioninachromacitydiagram(asshowninthelightmetergraph).
ARCHITECTURAL LIGHTING
QUALITIES OF LIGHT SOURCES
COLOR APPEARANCE
CHROMACITY DIAGRAM
Just be familiar of the concept.
Remember that chromacity
diagram is applicable in lights.
LIGHT METERS
There several models of light meters
but it can also measure CT, illuminance
and the chromacity of the light source
(usually giving the chromacity
coordinates or X-Y)
CCT OF LAMPS
As you see, the dashed
line is where the color
temperatures of lamps
fall (2500K to 6000K).

ARCHITECTURAL LIGHTING
QUALITIES OF LIGHT SOURCES
COLOR RENDERING
•Differenttypesoflightsourcescanrendercolorsindifferent
ways.Thisqualityiscalledthecolorrenderingpropertyor
colorrenditionofalightsource.Unlikeotherpropertiesof
lightsuchasintensity,colorrenderingpropertyissomehow
comparativeinnature.
WHATISCOLORRENDERING?
•Inmoretechnicalterms,colorrenditionreferstothe
interactionofalightsource’sspectralpower
distributionandthespectralreflectancefunctionof
objects,whichisaprincipalfactorindetermininghow
objectswillappear(illuminancelevel,adaptation,
surroundingconditionsandotherfactorsalsoplayarole).
Tobeabletounderstandthis,youmustrememberthat
objectsdoesnotactuallyhavecolorsbutonlyappear
coloredbecauseofthevisiblelightthattheyreflect(a
blackobjectdoesnotreflectanyvisiblelightsoitlooks
black).Sinceobjectsreflectsomeorallvisiblelighttouching
itforustoperceiveitscolors,anyvariationsofthevisible
lightfromthelightsourceaffecthowthecolorsofthe
objectsareperceived.
•Themaindriverofthecolorrenderingpropertyofany
lightsourceisitsspectralpowerdistributionwhichwas
alreadydiscussedundercolortemperature.Insimpler
sense,ifallportionsofvisuallightspectrumareequally
emittedfromalightsource,thecolorsoftheobjectwillbe
renderedthebest.Thistheoretical“bestcolorrendering
property”canonlybeachievedusinga“blackbody
radiator”.Theclosestpracticallightsourcesarethe
daylightandincandescentlamps.
•IMPORTANT:Inaverysimpledefinition,colorrendering
propertyisthemeasureofhowwellalightsource
rendersobject’scolorsascomparedtoareference
illuminant(whichisusuallydaylightorablackbodyradiator).
THECOLORRENDERINGINDEX
•Thereareseveralmetricsdevelopedtomeasurethis
propertyofalightsourcebutthemostpopularandwidely
usedmetricisthe“CIETest-ColorMethod”commonly
referredtoas“ColorRenderingIndexorCRI”which
measuresonlytheaveragefidelityorhowsimilaralight
sourcerenderscolorscomparedtoareferencesource.
•TheCIETest-ColorMethodutilizes8standardcolorsampleswith
moderatelightnessandofapproximatelyequaldifferenceinhue
(mostlypastelcolors)and6specialcolorsamples.Using
mathematicalmethod,lightsourcesarescoredfrom0-100forits
averagefidelity(CRI)whereascoreof100indicatesthatthe
subjectlightsourcerenderscolorsinamanneridenticaltothe
referencelightsource.
•ACRIscoreof70swerewidelyconsideredasacceptableforinterior
applicationwhile80s–90sareexcellent.
•Therearetworeferencelightsourcesusedinthismethod–the
blackbodyradiatorforcolortemperaturelessthan5000Kand
thedaylightforcolortemperatures5000Kandhigher.
•IMPORTANT:Usingtheaveragefidelity(CRI)forthescoringinthis
methodisproventobeinaccuratewhichmeansnotalllight
sourceswithequalCRIscoresrendertheacolorthesameway.This
iswhytherehavebeenattemptstoreplacethismethodformore
accuratecolorrenderingindex.
•ColorRenderingIndexoflightsourcesisimportantinarchitectural
lightingespeciallyinspaceswherecolorreceptioniscriticalsuch
asretailstores,showrooms,displayrooms,restaurants,andlobbies.
•CRIwasfirstintroducedin1965andeventhoughitiswidelyused,
thereareobviousissueswithitsaccuracy.Therewerealready
otherdevelopedalternativestoreplacetheoutdatedCRImethod
includingthenew“TM-30”whichisamethoddevelopedthe
IlluminatingEngineeringSociety(IES).
•Takenote:ColorRenderingisabroadtopicanditinvolvesotheraspecs
suchascolorfidelityandcolorpreferencewhichisnolongerabasic
information.
OTHERCOLORRENDERINGINDEX
•ColorQualityScale(CQS)–anotheralternativemethodthatuses
colorinfidelityandcolorpreferenceanditalsousesmorecolor
samplesintotal.
•TelevisionLightingConsistencyIndex(TLCI)–ain-standardindex
whichisusedtomeasuringthecolorrenderingattributesofalight
sourceconsideringhowcameracapturescolors.Thisindexis
intendedforphotography.
•TM-30–arelativelynewmethodtoanalyzethecolorrendering
abilitiesofalightsource.ItismoreaccuratethantheCRImethod
becauseithasotherimprovedparametersandconsidersmorecolor
samplesascomparedtotheCRImethod.
KRUITHOFCURVE
Adiagramshowingthe
relationshipbetween
colortemperatureand
theilluminanceofa
lightsource.The
pleastantzoneisthe
perfectcombinationof
illuminanceandcolor
temperatureforhuman
observers.
DIFFERENT CRI REQUIREMENTS
FOR TYPES OF SPACES
COLOR RENDERING INDEX
COMPARISON

ARCHITECTURAL LIGHTING
QUALITIES OF LIGHT SOURCES
OTHER COLOR QUALITIES OF LIGHT
•ColorConstancyorChromaticAdaptation–istheperceptionofobjectsashavingthe
samecolorunderdifferinglightingconditions.Thisisanevolutionarycapabilitiesof
humanvisionwhereyoucanstillseeifafruitisripeunderfullsun,underacloudysky,
underatreeorinasupermarket.
•ColorMixing–theproductionofanycoloredlightisbasicallybymixingdifferentcolored
lightstogether(verysimilartopigmentcolormixing).
•Note:Itisimportanttorememberthatcolormixinginpigmentsisdifferent
fromlightsources.TheprimarycolorsinpigmentcolormixingareRed,Yellow
andBlue(RYB)whileincoloredlight,itisRed,GreenandBlue(RGB).
•Note:Thereareothercolorsystemsthatusenotonly3primarycolorssuchas
thePantonesystem.
•Incolortheory,hueistheperceptionofcolorasred,greenorblue(orsimply
thecolorname).Chromaisthesaturationofthecolor.Valueistherelative
lightnessanddarknessofacolorwhichinvolvestint(addedwhite),tone(added
gray)andshade(addedblack).
•Inpigment,complimentarycolorsproducesblackwhileinlight,theyproduces
white.Adjacentcolorsarecolorsnexttoeachotherinacolorwheel.Warm
colorsresemblefirewhilecoolcolorsresembleiceandwater.
•Additivemixing–combiningofcoloredlightstoproduceathirdcolor.Color
gamutistherangeofcolorsthatcanbeproducedfromcombinationsofany3
colors(suchasthecolorgamutforRGB).
•Subtractivemixing–filteringalightsourcesoapreferredcoloredwillonlybe
emitted(i.e.puttingabluefilterinawhitelightsoucewillproducebluelight).
•Therearedifferenttypesoflampsthatcanproducedifferentcolorsoflight:
•FluorescentLamps–alsoavailableinRGB.Coloredlightsareachievedusing
differentmixturesofphosphorscoatinginthetube.
•ColdCathodeLamps
•NeonLamps–onlyusedforsignagebecauseofitslowlightoutput.Neonlights
arenotusedforgenerallighting.
•LEDLuminaires–canproducedifferentcoloredlightsbecauseanLEDluminaire
canhavedifferentLEDs(redLEDs,greenLEDsandblueLEDs).Thismakes
productionofcolorseasierwithoutanyphysicalchangestotheluminaire.
•ColorFilters–arefiltersusedforanylamptofilteroutthedesiredcoloredlight.
Somelightfixtureshaveintegratedcolorfilterslikeaccentandtracklights.
•PlasticFilters–usuallythinsheetsofpolycarbonateorpolyester,easy
tousebutpronetoheatanddamages.
•GlassFilters–madefromglasssomoredurablethanplasticthin
filters.Dichroicglassfiltersaretypesofglassfiltersthatbothfiltera
certaincolorandreflectothercolors.
•BecauseoftheadventofLEDandothertechnology,coloredlightingisbecoming
increasinglyusedinmanyarchitecturalapplications.
COLOR MIXING IN PIGMENT VS IN LIGHT
Take note that CMYK is related more to color mixing in light.
SUBTRACTIVE MIXING
Take a look at how blue
light is produced from
white light source.
DICHROIC GLASS FILTER
You can see the term
“dichroic” in some lamps.
It usually describes the
type of lens it has.
NEON LIGHTS
Remember, neon lights are
cold-cathode fluorescet
lamps. Basically the gas inside
the tube is neon which flows
when current passes through.
COLOR MIXING
Take note: Color mixing in
light is usually done for
stagelighting. And it uses
luminaires with multiple
bulbs with RGBs.

ARCHITECTURAL LIGHTING
BASIC COLOR PERCEPTION
•Scientifically,ourcolorperceptioncanbeexplainedbyphotopicand
scotopicvision.Photopicvisionishumaneye’svisionunderwell-lit
conditions(daytimevision)whilescotopicvisionisunderlow-light
levels(nightvision).
•Colorperceptionisgreatestunderphotopicvisionandlowestunder
scotopicvision.Theconesintheeyesareusuallyattributedtophotopic
visionwhiletherodsareresponsibleforvisionatlow-light.
•Underphotopicvision,humaneyesrespondsmoretowards555nm
visiblelight,whichisintherangeofyelloworgreen.
•Anotherimportantphenomenonisthatwarmcolorstendtoadvance
whilecoolcolorstendtorecede.
•Differentfactorsalsoaffectcolorperceptionssuchasilluminanceor
brightnessofanobject’scolororofthelightsource.
•Colorscanalsohavemeaning (i.e.purplemeansroyalty,blue
indicatesstability,redsymbolizespassion).
•Colorscanalsohaveconnotations(i.e.washingawallredcanindicate
excitementinUS,butitconnotatescommunisminRussiaormourning
inSouthAfrica
DIFFERENT EFFECT OF LIGHTING COLOR TEMPERATURE IN SPACES
EFFECT OF COLORS IN PERCEPTION OF INTERIOR SPACES
PHOTOPIC AND SCOTOPIC VISION

ARCHITECTURAL LIGHTING
LIGHTING FIXTURES OR LUMINAIRES
•Luminaireorlightingfixtures–refertoanassemblyoflamp,
reflectors,housing,electricalcomponentsandotherhardwarefor
properinstallationintheceiling,floororwall.
•NOTE:Rememberthedifferencebetweenlampandluminaire.Alampor
bulbsisusuallyasinglelight-emittingcomponentwhileluminairesare
assembliesofcomponents.However,whenitcomestoLED,thetermlampor
luminairecanbeconfusingbecausethelightcomponentisactuallyasmall
LEDchip.
•Thereisnoindustrystandardforcategorizingororganizingluminaires.
Thesecanbecategorizedbygeneralluminairetype,specificuse,
apertureshape/size,mountingmethod,lightdistributionpattern
andlamptype.
BASICCOMPONENTS OFALUMINAIRE
•Housing–functionsbothasthemountingplatformandasaradiator
thatdissipatesheatproducedinsidetheluminaire.
•Socket–holdsthelampinthecorrectionlocationandpositionandalso
providingtheelectricalconnection.
•Reflectors–usedtocontrolthedistributionoflightaroundorabove
thelampthroughspecular,semi-specularand/ordiffusereflection,
preventglareandcanoptionallychangethecolorofthereflectedlight.
•Aperture–openingofthereflector.
•Flangeoroverlapflange–aringconnectedtoreflectorwhich
coverstheseambetweentheceilingmaterialandthefixture
housing.Itcanbethesamecolorasthereflectororpainted
differently.Flangelessfixturesarealsoavailablebutharderto
installbecauseofthepatchingcompoundforthejointbetween
theceilingandfixture.
•Lenses,refractorsordiffusers–otheroptionalfeaturesofaluminaire.
•Louversorbaffles–bladeorgridofbladesbelowthelampfor
shieldingagainstdirectviewtopreventglare.Itcanbecurvedor
straight,fordifferentdistributioneffect.
•Supportbrackets–differenttypesofbarsorclipsforattachingthe
luminairetotheceilingorceilingsystem.
BASIC COMPONENTS
BASIC PARTS OF A LUMINAIRE
Take note of the flange. The flangeless luminair is a bit confusing.
OTHER EXAMPLES OR FORMS OF LUMINAIRES
Different types of luminaires have different parts (i.e. fluorescent lamps and suspended lights).

LIGHTING FIXTURES OR LUMINAIRES
COMMON TYPES
TYPESOFLIGHTINGFIXTURES
•Astothelightdistribution–direct,semi-direct,generaldiffuse,direct-
indirect,semi-indirect,indirect
•Astomounting–surface-mounted,pendantlights,recessed(fullorsemi-
recessed).
DOWNLIGHT
•Downlight–aluminairefromwhichthelightisdirecteddownward
withdirectdistributionpattern.Itcanberecessed,surface-
mountedorpendant,canuseanylightingtechnologyandcanhave
differentpatternsoflightdistributionlikewide,coneornarrowcone
oflight.Adownlightisaverygeneralclassificationandtherecanbemy
othertypesoflightfixturesfallingunderthiscategory.
RECESSEDADJUSTABLEORACCENT
•Aluminairethatcanbeconsideredavariationofadownlightthatusesa
directionallamp(R,PAR,MR,AR,LED)oralampsetwithanadjustable
reflector(MHorCMH)onapivotingarm.
•TAKENOTE:Thethreetermsdescribedifferentaspectsofalighting
fixture.“Recessed”referstotherecessedmounting,“Adjustable”refers
toadjustabilityofthelampdirectionorlocationand“Accent”means
thelightisusedtodirectedtowardsahighlightedoremphasized
object.
TYPESOFLIGHTDISTRIBUTION –basedonCIEor
InternationalCommissiononIllumination.
•Direct–100%downward(basicallysameasdownlight)
•Semi-direct->60%downward,<40%upward
•Direct/Indirect–equaldistributionupwardanddownward
•Indirect–100%upward
•Semi-indirect->60%upward,<40%downward
•Diffuse–100%alldirection(basicallysameas
omnidirectional).Canbeconfusedwithdirect/indirectbut
theshapeofdiffuselightisusuallyglobalwhile
direct/indirectareusuallyhorizontal
SEMI-RECESSED ADJUSTABLE DOWNLIGHT
ARCHITECTURAL LIGHTING
RECESSED ADJUSTABLE DOWNLIGHT
SYMMETRICALVSASYMMETRICAL LIGHTDISTRIBUTION–
basedonCIEorInternationalCommissiononIllumination.
Thisclassificationismoreonhowthebeamdistributionis
categorized.Asymmetricaldistributionisusedforavoiding
glaresandwallwashing.

WALL WASHER (LINEAR LED AND SINGLE FIXTURE LED)
ARCHITECTURAL LIGHTING
LIGHTING FIXTURES OR LUMINAIRES
COMMON TYPES
WALLWASHER
•Aspecialformofdownlightwithfixedangleanddirection(usuallynotdirectlydownward).
Ithasaspecialshapedreflector,oftenpairedwithalens,forasymmetricwashoflight
towardsawall.Wallwashingcanbeachievedbyplacingmultiplespacedlightingfixtures
paralleltoawallorusingasinglelinearfixture.
•1/3oftheceilingheight–generalruleonthespacingofwallwashersfrom
eachotherandfromthewall.Somesourcessaythat2.5-4feetistherangebut
3feet(1m)isthetypicalspacing.
•Wallwashersareusedtoprovideasmoothwallwashwithoutscallopingofthelights.Itis
usuallyusedtohideimperfectionsandeliminateshadows.Thisworksbestonlightmatte
walls(sometimeceilingsalso).
WALLGRAZER
•Aspecialtydownlightsimilartoawasherbutwithdifferentpurpose.Wallgrazinglights
areplacednearertothewall(almostverticallyorientated)toemphasizethefeaturesand
texturesofthewall.Itcanalsobeusedtoemphasizepolishedsurfacesbecausethesmall
distancefromthewallminimizesreflectionsofthelamp.Likewallwashers,wallgrazing
canbeachievedbyspacesluminairesorsinglelinerluminaires.
•12inchesmaximum–typicalmaximumdistancefromthewall.
TRACKLIGHTINGSYSTEM
•Trackluminariesorfixturesbasicallydescribemoretheinstallmentorcompositionofthe
lamp(trackandtrackheads).Atrackistypicallyastraightmetalchannelwithinternal
wiringusually2’,4’or8’inlength.Thesetrackscanhavedifferentconfigurationsand
installmentmethod–recessed,surfacemountedorpendant.Theinternalcompositionof
thetrackcanvarybetweenmanufacturersandnotalltracklightsarestandardized.The
trackcanbeacableorarodsystem.
•Trackheadsarethecomponentsattachedtothetrackswhichcanbespotlights,wall
washersordecorativependantswhichmakesthislightingsystemflexible.
•Therearemultipleoptionsforthetrackheadslikeaframingprojector(asusedin
theatricallighting)andevenwallwashers.
WALL GRAZER WALL WASHER
WALL WASHER VS WALL GRAZER
WALL GRAZER (LINEAR TYPE) Take note: most of the wall
grazers found online are incorporated in a cove lighting instead
of exposed.
DIFFERENT APPLICATIONS AND TYPES OF TRACK LIGHTS.
As you can see, there are actually three different types of
track lights (H-track, J-track or L-track).
OTHER TYPES OF TRACKHEADS

ARCHITECTURAL LIGHTING
LIGHTING FIXTURES OR LUMINAIRES
COMMON TYPES
COVELIGHTING
•Atechniqueinwhichaluminaireissetonashelf,ledgeorhorizontalalcove
belowtheceiling,Lightfromtheluminaireisreflectedofftheceilingandintothe
spacebelow.
•Acovelightingcanbeadecorativeelementonlyoramajorcontributorforthe
ambientlighting.
INSTALLATIONOFCOVELIGHTING
•Covelightingusuallyuselinearlighting.Thesimplestcovelightsourceisa
fluorescentstriporLEDstrip.Thereareusuallyminimumdimensionsofaceiling
cove.
•LiptoCeilingOpening–12”or1footminimum
•CenterofLamptoWall–5”minimum
•CenterofLamptoLip–2”minimum
•Thelipshallalignwiththetopofthelampandpaintinsidethecoveas
mattewhiteorthecoloroftheceiling.
•Socketshadowsonthecovelightingcanbeaddressedbystaggeringthelayout
ofeachcoveluminaires.
•Somecoveluminarieshaveasymmetricreflectoravailableinfluorescentlamps
orLEDlamps.
DIFFERENT APPLICATIONS AND TYPES OF TRACK LIGHTS.
As you can see, there are actually three different types of
track lights (H-track, J-track or L-track).

ARCHITECTURAL LIGHTING
LIGHTING FIXTURES OR LUMINAIRES
COMMON TYPES
THEATRICALLIGHTING
•Specialtylightingusedintheatricalapplications.Thetwomostcommontypesusedfor
thisapplicationareceramicmetalhalide(CMH)andLEDlamps.
•EllipsoidalReflectorSpotlight–duallensedluminairesforcarefulbeamshapingand
edgesoftnessadjustment.Itusestheshapeofthereflectors,shuttersatthegate
(opening)ofthespotlightandadjustmentofthelensestosharpenorsoftenthebeam
edge.
•PAR(usuallyPAR56andPAR64)–largerversionsPARlampsusedfortheatricals.These
canbeavailableinHIDorLED.
•Striplight–compartmentedormulti-circuitedunitforalinearwashoflight(aslinearwall
washerlight).
LUMINAIREACCESSORIES
•Therearedifferentaccessoriesthatcanbeaddedtolampsforcontrolandimprovement
ofthelighttheyproduce.Itincludes:
•Mountingaccessorieswhichdependiftheluminaireisrecessed,semi-
recessed,surface-mountedorpendant.
•Lensescanbeusedtosoftenthebeamorspreadthebeamslinearly.
•Filtersforcolorarealsoavailable.
•LouversorBarndoor
OUTDOORLUMINAIRES
•Whilediscussionsoninteriorluminairesalsoapplytooutdoorluminaires,thelatterhas
codestandardsforwaterintrusionanddirtorinsectswhichistheIngressProtection
Rating(IPRating).Thisisusuallyfollowedbytwodigitsandcanbereadusingthetables
forboththedigits.
•Cutsheets,specificationssheetsorspecssheets–documentspreparedbythe
luminairemanufacturerwhichlistsallnecessaryinformationregardingaluminaire.
PAR LIGHTS FOR THEATRICAL
STRIPLIGHTS FOR THEATRICAL
DIFFERENT TYPES OF LUMINAIRE ACCESSORIES
Example: Lamp holders, sockets, mounting accessories etc.IP PROTECTION RATING
Some sources say it’s International Protection Rating.
OUTDOOR LUMINAIRES
The IP Code, or Ingress Protection Code,
IEC standard 60529, sometimes interpreted
as International Protection Code, classifies
and rates the degree of protection
provided by mechanical casings and
electrical enclosuresagainst intrusion,
dust, accidental contact, and water.
ELLIPSOIDAL REFLECTOR SPOTLIGHTS FOR THEATRICAL

ARCHITECTURAL LIGHTING
LIGHTING FIXTURES OR LUMINAIRES
OTHER PRACTICAL INFORMATION
SAMPLE OF UNDERCABINET LIGHTING
DIFFERENT FORMS OF WALL SCONCE
Remember: A wall sconce is wall lighting
fixture and are usually directed
upwards. Take note: In modern usage,
wall sconce and a wall fixture are used
interchangeably.
SAMPLE OF CHANDELIER LIGHTING
A chandelier is a branched ornamental light fixture designed to be mounted on ceilings or
walls. Chandeliers are often ornate, and normally use incandescent light bulbs, though some
modern designs also use fluorescent lamps and recently LEDs.
BILLIARD LAMP
Basicallylook like a track lighting. It’s basically just a lamp for
billiard table and it comes in different forms but usually tree
lamps mounted on a pendant track.
NIGHT LAMP –USED FOR NIGHT OBVIOUSLY. Take note: yellowish light
or warm white are the usual colors. Although there are already other color
available now.

ARCHITECTURAL LIGHTING
LIGHTING FIXTURES OR LUMINAIRES
COMMON TYPES
CCC
•CCC
OTHER INFOR ABOUT LUMINAIRE TYPES
http://www.rsltg.com/images/Fixtures.pdf

ARCHITECTURAL LIGHTING
LIGHT DISTRIBUTION
•Distributionoflightfromaluminaireistheresultofthecombinationofthefixture’scomponents
andthelamp.Takenote:thelampisthebulbandtheluminaireistheassemblywhich
includesthelamps,reflectors,housingandotherelectricalcomponents.
•Reflectioniswhenlightbouncesoffofthereflectivesurface.Therearethreetypesofreflection:
•Specularreflection(mirror-like)–happenswhenthesurfaceisverysmoothand
reflective.Theangleofincidenceisequalandoppositetotheangleofexitanceor
reflection.Theseincludeglass,polishedstoneandpolishedmetal.
•Semi-specularreflection–happenswhenthesurfacescatterthereflectedlight.Some
portionsofthelightreflectfromthesurfaceperfectlywhileothersarepartiallyspreadand
diffused,producinghazyreflectionimages.Theseincludesemi-specularreflectionbrushed
metal,woodwithasatinfinishandfabricwithasheen.
•DiffusedReflection(matte)–happenswhenthesurfacescatterthereflectedlightinall
directions.Itincludesflatpaint,bondpaper,unfinishedorsandedwoodandunpolished
stone.
•Refractioniswhenlightbendswhenpassingthroughanothermedium.Takenote:both
reflectionandrefractionhappensinothertypesofwaveslikesoundwavesandwaterwaves.This
happensbecausethewavetravelsatdifferentspeedswhenpassingdifferentmediaormaterial
withdifferentrefractiveindex(opticaldensity).
•TheSnell’sLawincorporatesdifferentparametersliketherefractiveindex,angleof
incidenceandangleofrefraction(bothmeasuredfromthenormalorperpendicularangle.
•Diffusioniswhenlightisscatteredinalldirections.Diffusionoflightcanbeachievedbydiffused
reflectionorusingatranslucentmaterialwherewhenlightpasses,insteadofrefractedinaprecise
angle,itisrefractedindifferentangles.Inlightingfixtures,diffusersareusuallytranslucent
materialsattachedtotheaperture.
•Transmissionreferstothepassageoflightthroughamediumormaterial.Herearetherelated
terms:
•Transmittance–percentageoflightbeingtransmitted.Thiscanbecategorizedinto
transparent,translucentoropaque.
•Transparent–virtuallyallowspassingofalllight.Objectscanbeseenthrough(i.e.clear
glass)
•Translucent–lightpassesthroughbutscattersthelightandblurringtheobjectbehind
(i.e.frostedoretchedglass,lightdiffusers).Sometranslucentcanalsofiltercolorsinlight.
•Opaque–Nolightpassesthrough(i.e.woodandmetal)
•SurfaceReflectionandAbsorption–allsurfacesreflectandabsorblightatsomelevel.
•Inter-reflection–lightbouncesoffofaroom’ssurfacesandfillsinshadows,reduces
contrastandproducesamoreuniformbrightness.Inter-reflectionisincreased(brightens
therooms)iftheroomsurfacesarelight-coloredandhigh-reflectance.Darkandlow-
reflectancematerialsabsorbmuchoftheincidentlightproducesdarkerspaces.
•Shadowsproducedbyalightsourcecanbecrisp/clear(hard)orsoftened(soft).Thisistheresult
ofthesizeofthelightsource.Thesmallerthelightsourceorluminaire,theharderthe
shadowsandviceversa.
EFFECT OF THE SIZE OF THE LIGHT
SOURCE TO THE TYPE OR CHARACTER
OF THE SHADOWS
TYPES OF LIGHT BEHAVIOR (Take note: As you see, in Physics, there are other
more specific terms which explains the behavior of light waves. For example,
diffusion is more known as diffraction in physics-related discussion.
DIFFERENT TYPES OF TRANSMISSION (Take note: I
don’t understand why there is an opaque light bulb,
because by definition, If it is opaque it shall no transmit
light).
REFLECTANCE AND TRANSMITTANCE

•Glareisthevisualdiscomfortproducedbyalightingsystem.Inother
sources,itisdefinedasuncomfortablebrightnessratiosorcontrastinthe
fieldofvision.Therearethreetypesofglare–reflected,directanddisability
glare.
•ReflectedGlare(veilingreflectionsorindirectglare)–occur
whentheviewerseesalightsourceorbrightlyilluminatedobject
reflectedinareflectivesurface.Thismakesithardforthe
viewertofocusonotherobjectsbecausebrighterobjectstendto
affectourvision.Thisismainlyobservedinspecularor
glass/mirrorlikesurfaceslikewindowsortables.Thiscanbe
preventedbyappropriateplacementofluminairesandtracingthe
pathofreflectivelights.Note:Reflectedglareusuallyrefersto
reflectivesurfaceswhileveilingglareareformatteordullfinishes.
•DirectGlare–occurwhentheobjectseesthelightsourceora
reflectionofthelightsourcedirectly.Thisisparticularlya
problemwhenthesurroundinghavelowerbrightnessthanthe
lightsourceitself.Luminairemanufacturersintroducecut-off
angleorshieldingangletolimitdirectviewingofthelamp.
•Cut-offangle–theanglefromafixture’sverticalaxis
atwhichashieldingdevicecutsoffdirectviewofa
lamp.
•Shieldingangle–anglefromtheceilingplanetothe
lineofsightwherethelampinaluminairebecomes
visible.
•DisabilityGlare–occurwhentheglareimpairstheviewertosee
becausethelightsourceistoobrightthanthesurrounding
environment.Onemajorexampleiswhenadriverisconfronted
byaverybrightheadlightatadarknight.Thiscanbepainfuland
dangerous.
•Takenote:Thereisalsowhatsomesourcecall“discomfortglare”
whichisaslighterimpactfulglarethanvisibilityglarebecauseit
onlycreatesdiscomfort.Wecansaythatdiscomfortanddisability
glarearetypesofglaresbasedonitseffecttotheviewer,while
reflectedanddirectglaresaretypesofglaresbasedonhowthe
lightisseenorviewed.
HOWISGLAREMEASUREDANDAVOIDED?
•Thediscomfortaspectofglareisqualitativebutthereisamathematical
methoddodetermineifalightingsituationcancauseeitherdiscomfortor
disabilityglarefortheuser–theUnifiedGlareRating(UGR).
•UnifiedGlareRating(UGR)–widelyacceptedmethodformeasuringdirect
discomfortglare,proposedbySorensenin1987andadoptedbythe
InternationalCommissiononIllumination(CIE)in1995.TheUGRaddsupthe
contributionofallglaresourcesinthevisualfield,butalsoconsideringsource
luminance,size,positionandbackgroundluminance,aswellasroomsize,
reflectancefactors.TheacceptableUGRisbetween16and28,dependingon
thespaceortask.
•Forindirectorreflectedglare,itcanbeavoidedbyusingmaterialswithlower
reflectance(i.e.non-glass)andlimitingtheluminanceoflightsourcesso
discomfortisavoided.
•IMPORTANT NOTE:Glareisobviouslyrelatedtohowlightsourcesare
positionedwithinthefieldofvision.Therearedifferentsourcesthatsuggest
theanglefromthefieldofvisionthatcancauseglare.FromSalvan,itis53
degreesfromhorizontaloneyelevel.Largerlightsourcetendtocreate
morediscomfortthatsmallerlightsourcewhichonlycreatessparklesinthe
fieldofvision.Increasingtaskbrightnesscanreduceglare.
ARCHITECTURAL LIGHTING
LIGHT DISTRIBUTION
DIRECT VS REFLECTED GLARE
TYPES OF GLARE
Better organization of terms. Take note that the
discomfort and disability glare are connected.
CUT-OFF ANGLE AND SHIELDING ANGLE
Take note that luminaires utilize these
components to redirect light and to avoid direct
view of the lamp which causes glare.
This is the discomfort glare formula for a single light source. It was not
explained by Salvanbut it is different from the UGR formula, so I don’t think it
is relevant.
This is the maximum UGR
for different tasks or
spaces. Take note of offices
where UGR of 19 or below
is needed.
Take note of the 53-degree angle from the
horizontal where direct glare can occur.
REFLECTED GLARE AND OFFENDING ZONE
Take note that the offending zone is the portion of the ceiling
that may cause reflected glare. Also remember of the 20-40
degree from the vertical which is where the optimal angle for
visual task.

METHODSFOREVALUATINGPERFORMANCE OFLIGHTINGSYSTEMS
•Theeffectofglarecanbeaffectedbytheadaptabilityofvision.For
example,aheadlightduringadarknightcancausedisabilityglarebut
cannotduringday.
•OtherstandardmeasureforglareistheVisualComfortProbability
(VCP)whichisapercentageofnormal-visionobserverswhowillbe
comfortableinthatspecificvisualenvironment(establishedbyIESNA).
•EquivalentSphericalIllumination(ESI)–amethodorconceptof
glare-systemwherelightingsystemscanbecomparedwith.Thisglare-
freesystemismadeofsphericalenclosure.Itisasystemdevelopedin
1981LightingHandbookwhereitis“usedasatoolindeterminingthe
effectivenessofcontrollingveilingreflectionsandaspartofthe
evaluationoflightingsystems”.
•AContrastRenditionFactor(CRF)of1.00meansthata
subjectsystemgivesthesamecontrastrenditionasthe
integrationsphere.
•TheLightingEffectivenessFactor(LEF)fromtheESImeasures
thelightingeffectivenessofthetotalsystem.
•RelativeVisualPerformance(RVP)–ametricthatteststhe
effectivenessvisualperformanceoftaskaccomplishmentinregardto
speedandaccuracy.
ARCHITECTURAL LIGHTING
LIGHT DISTRIBUTION

CONTROLOFREFLECTEDGLARE–thereisnostandardmethodto
completelyeliminateveilingreflections,buttherearewaystominimize
theseglares:
•throughproperarrangementofsource,taskandobservers
•adjustingbrightness
•designingtheluminaireorthelightsource
•changingthetaskquality
TECHNIQUES
•placementoftasksandluminairesinparallellineofsightbutnotover
theuser.
•thetiltofthedeskmustbeconsidered,sincesomevisualtasks
neededadjustableandtiltedtables
•planauniformlayoutforthelightingandfurniture
•adjustthecharacteristicsofthelightsourcelikedimming,using
luminaireswithloweroverallilluminance(luminousceiling),provide
bothprimaryandsecondarylightsource
•useluminaireswithbatwingdiffuserswhichhaslowerlight
distributionundertheluminairetoreducedirectandreflectedglare
•reducereflectanceofwallsto50%,floorto30%andceiling80%to
minimizecontrastthatcancausedirectandreflectedglare
•minimizeluminanceratiobetweenthetaskandthesurroundings
(althoughinsomecases,toattractattention,highluminanceis
utilizedformerchandiseupto50:1).
•Brightwallsincreasetheimpressionofspaciousness.
•Worker-adjustabletasklightsincreasethefeelingofcomfortand
control.
•Downlightsandcoloredlightsincreaserelaxationandcomfort.
•Hidden-sourceindirectlightingandvery-low-brightnessluminaires
cancausediscomfortbecauseoftheinabilitytolocatetheselight
sources.
VISUALACUITY
•Thefactorsthataffectvisualacuityaretheglare,luminanceratios,
brightnesspatternsandchromacity.
•Visualnoise–referstothedisarrayoflightingsourceswhichcreates
visualclutteranddisturbance.
ARCHITECTURAL LIGHTING
LIGHT DISTRIBUTION

ARCHITECTURAL LIGHTING
NATURAL LIGHTING OR DAYLIGHTING
•Daylightingreferstousingthesunlightandthenaturallightfromtheskytoilluminate
buildinginteriorsbecauseartificiallightsweredim,dirtyandexpensive.Thereare
benefitsofdaylightinganditinclude:
•Reducedenergycosts–reductioncanbeupto35%butnot100%sincenight-
timelightingisstillrequired.
•Increasedoccupantsatisfaction–becauseofvariationsinlightintensity,direction
andcolorwhichisaffectedbytheweather,timeofdayandchangeinseasons.
•Increasedworker/studentproductivity–appliedinworkspacesandschoolsand
havebeenrelatedtoreducedabsenteerates,increasedproductivity,reduced
fatigueandimprovedoccupanthealth.
•Increasedsales
•Improvedhealth–hospitalpatientshavebeenshowntorecoverfasterinrooms
thatprovideaviewtotheoutsideandcanevensupportcircadianentrainment.
•Planningandincorporationofdaylightinginthebuildingdesigncanbediscussedbythe
architect,interiordesignersandlightingdesigners.Otherconsiderationsorstepscanbe:
•selectingmaterialsandfinisheswithhighreflectancevaluesformaximizinginter-
reflectionandhelpingdaylightpenetratedeeperintotheinterior
•lowerpartitionstoavoidblockingorabsorbingthedaylight
•arrangementofspacestominimizeobstructionstodaylight
•Thepositionofthesunisimportantinconsideringdaylighting.Rememberthatangleand
intensityofthesunatitshighestandlowestanglesvaries,summersolstice(June21)and
wintersolstice(December21).
•Takenotetheanglesofthesun’spositions–azimuthanglewhichismeasuredclockwise
fromNorth,altitudeistheanglefromthehorizonandzenithanglemeasuredfromthe
vertical.SunstudiescanbedoneusingsoftwareandBIMorCAD.
•Buildingorientationcandeterminewhichtypeofdaylightareintroducedinthebuilding.
•Glazingreferstothepartofthewall,windoworskylightthatismadeofglassoranother
lightadmittingmaterial.Theseglazingmaterialsarecharacterizedby:
•VisibleLightTransmittance(VTorTvis)isthepercentageoflightthatpasses
throughit.
•InsulatingPropertiesusuallyratedasU-factor(lowerU-factor,lowerconductance
orbetterinsulation)
•SolarHeatGainCoefficient(SHGC)–takenotethatvisiblelightis46%ofthe
energyfromdirectsunlight,47%isinfraredand7%isUVregions.SHGCisthe
percentageofsolarenergypassingthroughaglazing.Someglazingcanonly
allowvisiblelightwhileblockinginfrared(IR)andUV.

ROOF MONITORS (Take note of the shape of a roof monitor. It looks like a clerestory
window.
Or they can be just the same.
ARCHITECTURAL LIGHTING
NATURAL LIGHTING OR DAYLIGHTING
•Therearetwotypesofdaylighting–toplightingandsidelighting.
•Toplighting–alightingstrategythatuseslightfromskylights,roof
monitorsorclerestories.Itisgenerallythemoreeffectivedaylighting
solutionbecauseitcancoverlargerspacesevenlyandeliminatesdirectsun
penetration.Therearebasicallytwoapproachesfortoplighting:
•Roofmonitorsandclerestoriesarepartsofthebuildingshape
andmayaffectitsappearanceoutside.Thefallinbetween
toplightingandsidelightingbecausetheyadmitnaturallightfrom
thetopandfortheside.Therearedifferentroofmonitors
configurationlikea“pop-up”roofmonitor(whichIcan’tfind
online).
•Skylightsareaperturesintheroofthatadmitnaturallightand
maynotaffectthebuildingshape.Itcanbedome-shapedorflat.
Itcanbesplayedornotorwith/withoutdiffusersatthebottom.
Multipleskylightscanbeprovidedforevendistributionofnatural
lighting,andcancoveraround2-6%oftheroofarea.Standard
maximumspacingforevenilluminationis1.5xtheheightof
thespace.
•Light/solartubes(alsoknownaslightpipes,tubularskylights,
sunpipes,sunscopesordaylightpipes)arephysicalstructures
usedfortransmittingordistributingnaturalorartificiallightforthe
purposeofillumination,andareexamplesofopticalwaveguides.
Theinteriorofalighttubeisusuallymadeofreflectivematerials
allowinglighttobendandreachtheinteriorspaces.
•Someofthecomponentsthatcanbeaddedtoskylightsorsolar
tubesaremanualormotorizedsetofvanesorlouversfor
controllingthedistributionordirectionofthedaylight.
WHAT A SOLAR OR LIGHT TUBE LOOKS LIKE ARCHITECTURAL APPLICATIONS OF LIGHT TUBES (TAKE NOTE: IT’S NOT ALWAYS SMALL TUBES)
SKYLIGHTS (Take note, one major difference of skylights and roof monitors is that
skylights follow the shape of the roof)

ARCHITECTURAL LIGHTING
NATURAL LIGHTING OR DAYLIGHTING
•Sidelighting–alightingstrategythatuseslightthrough
thewindowsinthewall.Itisthemostcommon
daylightingstrategy.
LIGHTSHELVESANDWINDOWS
•Whensidelightingwithwindow,thegeneralruleof
thumbisthatthedaylightwillpenetrateintotheroom
atadistance1.5xto2xtheheadheightofawindow.
Thiscanbeincreasedbyusingalightshelfwhichisa
horizontalplatformthatreflectsincomingsunlightinto
theceilingwhichisdiffuseddeeperintotheroom.
•Alightshelfshouldbehighlyreflectivematerialto
maximizetheredirectedlightbuthighlyspecular
materiallikemirrororglasscancauseglare.Light
shelvescanextendoutwardstoprovideshadingfor
thewindow.
•Lightshelvesaretypicallyinstalledat7’-6”ormore,
soceilingheightsof9’orhigherarerequired.
•Tiltingtheshelfandslopingtheceilingorusing
curvessurfacescanimprovethepenetrationof
daylightintotheroom.
•Amirroredlouversystem(permanentoroperable)
canbealsobeused.
•Splayingwindowscanalsoincreasetheamountof
daylightingcomingintotheinteriorspaces.
SHADINGSTRATEGIES
•Thereshallbebalanceofdaylightingandcomfortinan
interiorspace.Rememberthattoomuchdaylightcan
causeglareandheatgain.
•Thereareseveralshadingstrategiesthatcanbeused
likeexteriorshelves,shuttersandawnings,interior
drapesorblindsandlouversorblindsinsidedouble
glazingsystems.
•Exteriorshelvesaresolid,horizontalopaqueelements
integraltothearchitecturalcomponentslikewalls.
•Shuttersaresystemsofframedslatsthatareangledto
blockdirectsunlightandwithgapsforadmittinga
portionofdaylight.
•Awningsaretypicallyopaquefabricoraluminum
assembliesattachedthebuildingexteriorsandusually
abovewindowsoropenings.
MIRRORED LOUVER SYSTEM FOR BOTH
DAYLIGHTING AND SHADING
SIDELIGHTING USING WINDOWS
AND LIGHT SHELVES
AWNINGS WINDOW SHUTTERS
TOPLIGHTING VS SIDELIGHTING
TAKE NOTE OF UNILATERAL
AND BILATERL SIDELIGHTING
THIS SHOWS THE DAYLIGHT DISTRIBUTION USING UNILATERAL AND
BILATERAL SIDELIGHTING (ILLUMINATION GRADIENT)

ARCHITECTURAL LIGHTING
NATURAL LIGHTING OR DAYLIGHTING
•Daylightingsystemsorstrategiesmayincludeorconsider:
•Daylight-optimizedbuildingfootprint(orientation)
•Climate-responsivewindow-to-wallarearatio
(glazingratio)
•High-performanceglazing
•Daylighting-optimizedfenestrationdesign
•Skylights(passiveoractive)
•Daylightredirectiondevices(i.e.solartubesandlight
shelves)
•Solarshadingdevices
•Daylight-optimizedinteriordesign(furniture,space
planningandroomfinishes)
•DaylightFactor(DF)istheratioofthelightlevelinsidea
structuretothelightleveloutsidethestructurewiththe
formulaDF=(Ei/Eo)x100%whereEi=interiorilluminance
duetodaylightattheworkingplane,Eo=simultaneous
outdoorilluminanceonahorizontalplanefroman
unobstructedhemisphereofovercastsky.TheEi(interior
luminance)isthesumoftheskycomponent(SC)ordirect
lightfromsky,ERCorexternallyreflectedcomponentof
thedaylightandIRCorinternallreflectedcomponentof
daylight.
•TheDaylightFactorsareusedbylightingdesigners
tocomputeifthedaylightisenoughtoperform
tasksunderdaylighting.Thisisbasicallythe
Lumen/ZonalCavityMethodbutfordaylighting.
•Thedaylightfactorsisusuallyusedandmeasured
withcomplexsoftwaressuchastheRadiance
softwareandraytracing.
OTHER INFORMATION
ILLUMINANCE AND DAYLIGHT FACTORS

ARCHITECTURAL LIGHTING
LIGHTING DOCUMENTATION
TYPES OF LIGHTING DOCUMENTS
REFLECTEDCEILINGPLAN
•showsthatlocationoftheluminairesintheceilingorevenonthewalls
•canbeconsideredasalightingplan
LUMINAIRECUTSHEETSORSCHEDULE
•liststheluminairesforacertainareaorproject
LUMINAIRESYMBOLS
•Thesymbolsofeachluminaireshallrepresentthegeneralproportions,
orientationshapeofsurfaceandpendantmountedluminairesandthe
apertureforrecessedluminaires.
•Symbolsshallbesimpleandclearmostlyusingcircles,squaresand
rectanglesandconsistentinscale.Smalleraperturescanbeenlarged
forclaritywhenprinted.
•Downlights–widestrangeofsizesandoptionsbecausetherearealot
oftypesofdownlightsavailable.Circular,squareorrectangularcanbe
usedinlightingplans.
•AdjustableorAccent–includestrackluminairesandgenerallyshows
thedirectionofthefocususingarrowheads,linesorotherindicatorsof
direction.
•WallWash–canbesymbolizedbyanarroworhalfshadedsymbol(the
non-shadedportionindicatedthedirectionofthewalltobewashed).
•ContinuousLinearLuminaires–canbeshownbylinesorlinear
elementswherethesizeandorientationcanalsobedetermined.
•Pendants,Sconces,FloororTableLamps–pendantandsconce
luminairesmayormaynotbeshownontheRCPdependingonthe
complexityoftheplansinceitmayoverlapothersymbolsthatare
actuallyontheceiling.
•Othersymbolslikeoutlets,switchesanddimmerscanalsobeincluded
intheplan.
•Forsimplifications,luminairescanbetaggedusingdesignationand
matricesforguideshallbeprovidedinalightingplan.

ARCHITECTURAL LIGHTING
LIGHTING DOCUMENTATION
LIGHTING DESIGN
SPACINGCRITERIAFORLUMINAIRES
•spacingofluminairesisaratioofthedistancefromtheworkplan
(horizontalworkplane)totheluminaireandthemaximumdistance
betweenluminairestomaintainevenilluminationonthehorizontal
workplane.
•Inshort,spacingcriteria=(height):(maxluminairedistance).Most
ofthetime,thespacingcriteriaisgivenasanumberlike1:2is“2”or
1:1.5is“1.5”.
•Forexample,aluminairehasaspacingratioof1.5or1:1.5.Theheight
oftheceilingtotheworkplaneis3meters,thereforethemaximum
spacingoftheluminairesintheceilingis3x1.5or4.5meterstoprovide
evenillumination.
LAYOUTOFLUMINAIRES
•Themostidealplacementforgeneralilluminationisgridarrangement,
soitdoesnotattractattentionfromtheusers.Thiscanbeincorporated
inaceilingtilegrid.
•Thelightingdesignercanusethecenterlinesofarchitecturalelements
likedoors,windows,theroomdimensionsandamongotherthingsto
determinethegridlinesbywhichthelightingcanfollow.
•Determinethegeneralilluminationrequiredforacertainspaceand
usingthespacingcriteriaofluminaires,thedistancesofthegridcanbe
used.
•Usuallycomputergeneratedrenderingsofthelightingareusedtosee
theeffectoftheluminairelayoutandspacing.
OTHERDOCUMENTS
•Specifications–textdocumentsforthedetailsandrequirementsofthe
project.Itusuallyhasthreetypes:
•Generalinformationabouttheproject
•Describingtheproducts
•Executionbylistingdeliveryandinstallationrequirements
SAMPLE OF A LUMINAIRE CUTSHEET
Take note of the usual contents:
•Features
•Applications
•Product Code and information like
voltage, reflector type and color, other
options like dimmable ballasts and
accessories
•Photometric Report showing the
efficiency and spacing criteria
•Ballast Information
•Zone Lumen Summary
•Candlepower distribution
•Luminance Data
•Color Multipliers
•Coefficients of Utilization –Zonal Cavity
Method
•Lamp Characteristics or Light Quality –
CCT or CRI
SAMPLE LUMINAIRE LAYOUT AND RENDERING

ARCHITECTURAL LIGHTING
LIGHTING DOCUMENTATION
LIGHTING DESIGN
INSTALLATIONOFWALLWASHERS
•thepreferredinstallationandspacingforwallwasherswerealreadydiscussed.
INSTALLATIONOFWALLGRAZERS
•wallgrazersaremaximumof12”fromthewallisilluminatesandthereareusually
installedontheedgeorrecessedonthecove.
INSTALLATIONOFACCENTLIGHTING
•Accentlightscanberecessed,semi-recessed,surface-mountedorpendant,butmost
ofthemareadjustable.Foraccentlighting,theusualguideforthespacingisthe
viewingangleoftheuser.Theidealangleofaccentluminairefromthewallis
between30-45degrees.
INSTALLATIONOFCOVELIGHTING
•Covelightingusuallyuselinearlighting.Thesimplestcovelightsourceisa
fluorescentstriporLEDstrip.Thereareusuallyminimumdimensionsofaceiling
cove.
•LiptoCeilingOpening–12”or1footminimum
•CenterofLamptoWall–5”minimum
•CenterofLamptoLip–2”minimum
•Thelipshallalignwiththetopofthelampandpaintinsidethecoveas
mattewhiteorthecoloroftheceiling.
•Socketshadowsonthecovelightingcanbeaddressedbystaggeringthelayoutof
eachcoveluminaires.
•Somecoveluminarieshaveasymmetricreflectoravailableinfluorescentlampsor
LEDlamps.
INSTALLATIONOFSCALLOPLIGHTING
•Scalloplightsareproducedwhenalightisplacedclosetoawall.
•Todeterminehowaluminairecanproducescallopinginthewall,examinethebeam
spreadoftheluminaireinitscutsheetandplaceitsothebeamcantouchthewall.
Theside-to-sidespacingoftheluminairescanbedeterminedbythedesigner.
INSTALLATIONOFLUMINOUSCEILINGS
•Luminousceilingsaremadefromtranslucentmaterialwithlightsbehindit.These
aretypicallyusedtocoverwidespacesandproduceevenandshadowless
illumination.
•Thetypicalcommercialsizingofluminousceilingsfollowthestandard2’x2’or2’x4’
ofceilingtilesbutmanufacturerscanalsomaketheirownsizing.
•Theluminairebehindthediffusingmaterialcanbespacedlikeintheshowndiagram.
SAMPLE SECTIONS OF WALL GRAZING
SPACING OF WALL WASHERS
Basic spacing idea –equaldistance from
wall and from each luminaire.
PLACEMENT GUIDE OF
ACCENT LIGHTING GUIDE DIAGRAM FOR
SCALLOP LIGHTING
GUIDE DIAGRAM FOR LUMINOUS CEILINGS
GUIDE DIAGRAM FOR COVE LIGHTING

ARCHITECTURAL LIGHTING
LIGHTING CONTROLS
•Lightingcontrols,specificallyenergycontrols,canhelpreducetheoverallenergysavings.
Thesimplestcontrolsaretheswitchesanddimmers.
DIMMERS
•Althoughtootechnical,dimmerscontrolthelightingoutputbymodifyingthesinewave
cycleofelectricityandeachtypeofdimmerdoesthisdifferent.Dimmersmustworkbe
installedproperlyconsideringthelamps,ballasts,transformersandpowersupplies.
•Wallboxdimmers–dimmercontrolsinstalledinthewall.
•ResistanceDimming–oldestandsimplestdimmingmechanism.Itutilizesavariable
resistorinserieswiththelightingfixturesandcontrollableusinganarmpassingthrough
coilsofwire(resistors).Itisconsideredinefficientduetothegenerationofconsiderable
heat.
•ForwardPhaseandReversePhaseDimmingarebothrelatedandbestexplained
together.Themechanismisbestexplainedbylookingthewavegraphoftheelectricity
oncecontrolledbythesedimmers.
•ForwardPhaseDimming–adimmingmechanismwherethelightingcontrol
intensityisdonebyvaryingthe“on”pointineachhalfofthecycle,thus
controllingtheamountofpowerdeliveredtothelamp.Justrememberthe
“varyingon”.Thecommontypesaretriac(triodealternatingcurrentswitch)
orSCR(siliconecontrolledrectifier).Thecommondisadvantageofthistypeof
dimmeristhehummingorthebuzzingsoundandpotentialelectromagnetic
interference.
•ReversePhaseDimming–adimmingmechanismoppositeoftheforward
phasedimmingwherelightingcontrolintensityisdonebyvaryingthe“off”point
ineachhalfofthecycle.Thesedimmersareusuallyusedfordimmingelectronic
transformersinlowvoltage(ELVdimmers),andelectronicballastsinfluorescent
fixtures.
•Sinewavedimming–adimmingmechanismsimilartoresistancedimmingbymodifying
theentireelectricalsinewave.Advantagesincludewiderapplicationtodifferentdevices,
thelackofhummingorharmonics.Disadvantageincludethehighercost.
•Dimmingballasts–componentrequiredforlinearandcompactfluorescentlamps
andusuallyupto10%dimmedonlysincetoomuchdimmingisoftenunnecessary.These
comeindifferentformsandwiringliketwo-wireballasts,3-wireballastsand4-wire
ballasts.
OCCUPANCY ANDVACANCYSENSORS
•Thesesensorscombinemotiondetectionandswitchesusuallybuilt-inandwithadjustable
timerandsensitivitydependingontheusageandspace.Thisadjustmentperspaceis
called“commissioning”.
•PassiveInfrared(PIR)–sensorsthatrespondtochangesinbackgroundheatata
wavelengthemittedbyhumanswhichoperateonlineofsite(noobstructions).
•Ultrasonicsensors–sensorsemittingunheardhighfrequencysoundwaveswhich
bouncesoffoftheobjectstosenseifthespaceisempty.
•Otherfeatureslikemanualswitchingandflashingofthelightsbeforeturningoffto
alertmotionlessusersarealsoused.
•Sensorshelpreduceenergyusageinspaceswherelightscanbeleftopenlikestore-
roomsandbathrooms.
RESISTANCE DIMMER
COMPARISON OF DIFFERENT SENSORS VISUAL SAMPLES OF SENSORS
FORWARD AND REVERSE PHASE DIMMERS
DIMMING BALLAST FOR FLUORESNCE LAMPS

ARCHITECTURAL LIGHTING
LIGHTING CONTROLS
CONTROLSYSTEMS
•Forcomplexapplications,completecontrolsystemsareusuallyusedwhere
devices,controlsoftware,dimmers,relays,sensorsandinputareinvolved.
Thereisnouniversalsystem,thecontrolsystemwillalwaysdependonwhat
typesoflamporlightingtechnologyareusedbythesystem.
•Fixturescontrolledareusuallygroupedinto“controlzones”whichwillbethe
basisofthedimmingscheduleorzonescheduleusuallyrepresentedintables.
•Thesecontrolscaninvolve:
•Dimmingsystems–combinationofmultipledimmersinasinglewall
mountedpanel.
•Presetsorscenes–recordedsettingsofdimmersandswitchesto
eliminateguessingoftheusers.
•Multipledimmingsystemsateachentrypointforlargerspaces
•Photocellscanalsobeusedasenergysavingcomponentwhichdetectambient
lights(daylightandelectroniclights)fordimmingorturningoffelectricallights.
•Daylightharvesting–termusedtodescribetheuseofphotocellsto
adjusttheelectriclightinginresponsetodaylightenteringthrough
windowsorskylights.
LARGERCONTROLSYSTEMS
•Singlelargercontrolsystemscanbeusedtocontrollightinginmultiplespaces
likemultipleroomsorentirefloorofabuilding.Thesesystemscanevenexpand
intermsoffunctionandcanincludedimming,switching,raisingorlowering
windowblinds,programming,andaudio/videosystems.
•Centralizeddimmingsystems–exampleofalargercontrolsystemwhere
dimmingiscontrolledinasinglecabinetorhardware.
•Distributeddimmingsystems–alargercontrolsystemwherethedimming
hardwarearespreadovertwoormorelocations.
•Exampleisadigitaladdressablelightinginterface(DALI),asystemfor
powerandlightingcontrolusedfortheballastoffluorescentlamps.
•DigitalMultiplexLightingandRemoteDeviceManagement(DMX)–originally
developedfortheatricalapplication.Thesemanagementsystemsarebasically
characterizedbycomplexremotelycontrolledparametersandconfigurations.
•RS232–datacommunicationstandardsusedinvariouselectronicequipment
usuallycombiningcontrolsforAVsystemandlightingsystems.Thissystemcan
beusedwithBuildingManagementSystems(BMS)likebuildingautomationand
controlnetwork(BACnet)andalsotheinternet.
CONTROLSYSTEMFEATURES
•Advancedprogrammingcanbeintegratedintothe
controlsystem.Thisprogrammingcaninvolved:
•TimeofDayEvents–usingonboardclockto
adjustthelightingatthesametimeevery
day(i.e.turningoffandonoflightsareset
timeofeachday).
•CalendarEvents–usingofcalendarto
scheduledifferentcontrolpresets.
•AstronomicalTimeClockEvents–usingof
astronomicaltimeclockwithprecisecontrol
usingthebuildingslatitudeandlongitude.
•ControlofExternalDevices–controlling
otherdevicesnotdirectlyconnectedto
lightinglikewindowblinds.
•InputfromExternalDevices
DOCUMENTING CONTROLS
•Documentsordrawingsmustshowthelighting
controls.Forlargerfacilities,thesemayrequirea
separatedrawingsheet.
•Switching–canbeshownintheReflectedCeilingPlan
bydrawingarcsconnectingtheluminairestoits
switchordimmer.Theseconnectionsareusuallynot
representingthewiringmethodbutonlyshowswhich
oftheluminairesarecontrolledorgroupedtogether.
•Dimming–Forcomplexcontrolsystemsandwhen
thedimmingcontrolisnotontheroom,taggingor
numberingthefixturescanhelpidentifywhichgroup
aredimmedtogether.
COMMISSIONING
•Commissioningmeansthatthesystemisinspected
forproperconnectionsandoperations,especiallyfor
complicatedcalibratedcomponentslikedimmersand
sensors.
•Thecommissioningagentsareusuallycomingfrom
andcertifiedbythecontrolsystemmanufacturer.
However,inlargerprojects,theownercanalsohire
in-housecommissioningagentsforthedifferent
buildingsystemsoftheproject(HVAC,electricaland
lighting).

ARCHITECTURAL LIGHTING
PHOTOMETRICS AND CALCULATION
❑Photometry–themeasurementoftheintensityoflightorofrelative
illuminatingpower.Inarchitecturallighting,photometricsanswerthequestion
“Howmuchlightisneeded?”or“Howmuchluminairesaretobeinstalled?”.
IMPORTANTRELATEDTERMS
•Luminance–lightemittedfromalightsource.
•IlluminanceorIllumination–lightlandingonasurfaceortheincidentlight
uponasurface.
•Reflectance–lightbouncingoffofasurface.Allsurfacesarereflectivetosome
degree.
UNITSFORMEASURINGLIGHT
•Forluminance,lumen(lm),candela(cd)orcandlepower(cd)areused.
•Lumen(lm)–usuallyusedtodescribelightoutputinalldirections
(omnidirectionallamps).
•Candela(cd)–usuallyusedtodescribelightoutputinonedirection
(directionallampsorluminaires).
•Candlepower–anobsoletetermbutarestillsometimesused.
•Forilluminance,footcandleandluxareused.
•Footcandle(fc)–theamountoflightlandingon1footsurface,1foot
awayfromalightsourceemitting1lumen.
•Lux(lx)–theamountoflightlandingon1sq.m.surface,1meteraway
fromalightsourceemitting1lumen.
•Forsimplifiedconversion,1fc=10lxisusuallyused.Thecorrect
conversionis1fc=10.76lx.
•Forreflectance,foot-lambert(fL)andcandelapersq.m.(cd/sqm)areused.
•Foot-lambert(fL)–
•Candelapersqm(cd/sqm)–measurementofluminanceintheSI
system.
VISUALIZATION OF LUMINANCE AND ILLUMINANCE
Take note: minsan, pwedengmapagpalitang luminance and reflectance.
The lights we see from a light-emitting and light-reflecting surfaces are
basically measured the same using cd/sqm. Yung luminance as defined
by the lighting book is basically the luminous intensity.

ARCHITECTURAL LIGHTING
PHOTOMETRICS AND CALCULATION
ILLUMINANCE CALCULATIONS
➢Illuminancecalculationsareusuallysimple,usingonlysimplemathematics.In
othercomplexcases,manufacturer’sprovideonlinecalculatororspreadsheet.
OthersmightuseCADsoftware.Rememberthatilluminanceisthemeasureof
theintensityoflightreachingasurface.
POINTMETHOD
➢Alsocalledthe“point-to-pointmethod”.Itisusedforquickcalculationsofthe
amountoflightfromasinglesourcelandingonaspecificpoint.
➢Itusestheinversesquarelawwhichstatesthatwhenthedistancebetween
thelightsourceandthetargetpointdoubles,theilluminationreducesby
theinverseofthesquare(or1/2
2
or¼,not½).Takenote:Fortargetpointsnot
perpendiculartothelightsource,cosinelawwillbeusedinthecalculations.This
lawisalsoapplicabletootherwaveslikeradiowavesandsoundwaves.
➢Inthismethod,therearuleofthumbregardingthemaximumsizeofthelight
sourceorluminaire.The1/5
th
rulesaysthatthemaximumsizeofaluminaire
shallbe1/5
th
ofitsdistancefromatargetsource.Thisruleisonlyapplicableto
luminaireswithaperturenotgreaterthan12”.
➢TakealookattheformulaforthePointMethod.Remember,Eistheintensity
oftheillumination(usuallyonthelevelofaworkspaceilluminated).Disthe
distancebetweenthelightsourceandpointofcalculation.Iorcpcanbefound
ontheluminaire’scutsheetusingatableorusingthecandlepower
distributioncurve.
➢Fortheilluminancecalculationatanglesnotperpendiculartothelightsource,
cosinelawisused.Takeatlookatthesamecalculation.
INVERSE SQUARE LAW APPLIED IN LIGHTING
SAMPLE ILLUMINANCE CALCULATION USING POINT METHOD
CANDLEPOWER DISTRIBUTION TABLE AND CURVE
Take note, the concentric circles in the curve are the candlepower or
luminance of a luminaire. Take note that since light distribution is
usually symmetrical, it only shows a quadrant. Some semi-direct or
diffused luminaires may show the whole curve. You can see from the
candlepower distribution curve if the luminaire is symmetrical.
Asymmetrical luminaires are usually used for wall washing.

ARCHITECTURAL LIGHTING
PHOTOMETRICS AND CALCULATION
ILLUMINANCE CALCULATIONS
LUMENMETHODorZONALCAVITYMETHOD
➢Pointmethodisusedfortheilluminationofasinglelightsource.Lumenmethodisusedforcalculatingthe
averageilluminationinanentireroomthatusesauniformlyarrangedluminaires.
➢Lumenmethodcalculatestheaverageilluminationonhorizontalplanessuchasthefloorortheworkplane
usingtheformulaE=LN/AwhereEistheaverageilluminationinfootcandlesorlux,Listhelumenoutputof
thelampused,NisthenumberoflampandAistheareaofthespace.Thisformulaisnotaccuratebecause
itdoesnotinvolveotherfactorsthataffectstheillumination–lightlossfactor(LLF)andcoefficientof
utilization(CU).
➢CoefficientofUtilization(CU)–afactormultipliedtothestandardlumenmethodformulawhichaccounts
forthefixtureefficiency,roomsurfacereflectance,roomsizeandshapeandetc.,usuallyfoundinthe
cutsheetoftheluminaire.RememberthatCUisdecimal(lessthan1)butmanufacturersusuallyshowitas
wholenumbers.TogettheCU,youhavetodeterminethefollowingparameters:
➢Ceilingreflectance(%)–dependsonthesurfacematerialorcolor
➢WallReflectance(%)–dependsonthesurfacematerialorcolor
➢FloorReflectance(%)–itisusuallyassumedtobe20%andisnotusuallydetermined.
➢RoomCavityRatio(RCR)–therearetypically3cavitiesinaroom.RCRisusedfortheroom
cavity.Dependingonthepurposeofcalculationorthetypeofluminaire,theremaybenoceiling
orfloorcavities(i.e.ifilluminationonthefloorismeasured,theplaneisonthefloorandnofloor
cavity).TheformulaofRCRisRCR=5h(L+W)/LW.
➢InthetableforCU,usethereflectancevaluesandtheRCRtogetthecoefficientofutilization.
➢LightLossFactor(LLF)–afactormultipliedtothestandardlumenmethodformulawhichaccountsforthe
decreasedefficiencyofthelightingsystemovertimeastheluminairesandtheroomage.Notethatthisis
importantbecauseeachtypeoflampcandecreaseitslumenoutputovertime.Therearetwogeneral
typesofLLFthatmustbeconsidered–recoverableLLFwhichcanberecoveredthroughmaintenanceand
nonrecoverableLLFwhichcannot.
➢LampLumenDepreciationFactor(LLDF)–arecoverableLLFaccountingforthegradual
decreaseoverthelamp’slife,usuallyapercentageofthelampsinitiallumens.Itisprovidedbythe
lampmanufacturer.
➢LuminaireDirtDepreciationFactor(LDD)–arecoverableLLFaccountingforthedirt
accumulationwhichreducestheeffectivenessofreflectorsorrefractors.Itcanbecomputedusing
thetablesprovidedbyCIEandLLD-timegraph.
➢LampBurnoutFactor(LBO)–arecoverableLLFaccountingforthepercentageofthenumberof
lampsremaininglightedtothetotalmaximumnumberofburnouts.
➢VoltagetoLuminaireFactor(VF)–anonrecoverableLLFaccountingforthevoltagelevelthatcan
affecttheoutputofaluminaire.
➢Ballastfactor(BF)–anonrecoverableLLFaccountingfortheunderdrivingoroverdrivingofthe
lamp.
➢ReflectorFactor(RF)–usuallynotincluded,anonrecoverableLLFwhichaccountforthetypeof
reflectorusedlikespecular,semi-specularfinishes.
➢FINALFORMULA–thefinalformulausedintheLumenMethodisgiven,whichnowaccountsforthe
coefficientofutilizationandthelightlossfactors(LLF).Theformulacanberearrangedtodeterminethe
numberofluminaires.Thereareothersoftwareusedforthismethod.
SAMPLE TABLE OF COEFFICIENT OF UTILIZATION
THREE (3) CAVITIES IN A ROOM
BASIC LUMEN METHOD
Take note of the two important
reduction factors.
LLDF TABLE
TABLES USED FOR THE DIRT DEPRECIATION FACTOR
FINAL FORMULA FOR ILLUMINATION
BIM FOR LIGHTING
In computerized lighting calculations, 3D models are required. IES files which contain the
information on the optical performance of a lamp or luminaire are also used.
ROOM CAVITY RATIO (RCR)

ARCHITECTURAL LIGHTING
PHOTOMETRICS AND CALCULATION
ILLUMINANCE CALCULATIONS
OTHER IMPORTANT
INFORMATION
The standard working plane
height for measuring illumination
(office) is 750 to 850mm.
From Salvan,
750mmfor offices and schools
910-960mm for drafting
1060 –1210mm for shops
WORKSHEET FOR THE LUMEN OR ZONAL CAVITY METHODSTANDARD ILLUMINANCE OR ILLUMINATION LEVELS
Take note this is from IESNA Lighting Handbook and there are different standards or organizations that recommends different levels of
illumination for different tasks. The most important here is that 300-500 lux is recommended for general task lighting
SAMPLE LISTS OF LIGHT LOSS FACTOS

ARCHITECTURAL LIGHTING
BUILDING AND ENERGY CODES
MODELCODES
➢Modelcodesareexternalcodesthatareadaptedbyacityorcountry,usuallydevelopedby
internationalorganizations.Thesemodelcodesareupdatedonaregularcycle,typicallyevery3
years.
➢ExamplesofmodelcodesaretheNationalElectricalCode(createdbytheNationalFirePrevention
AssociationofNFPA),theInternationalBuildingCode(IBC),InternationalGreenConstructionCode
(IgCC),ModelLightingOrdinance(MLO)andStandardsforAccessibleDesign(byAmericanswith
DisabilitiesAct).
➢InternationalBuildingCode–developedbytheInternationalCodeCouncil(ICC),comprehensive
buildingdesigncodesincludinguseandoccupancy,heightlimitations,fireresistanceand
protection,evacuation,accessforpersonswithdisabilities,structuralcomponentsandeven
lightingandventilation.
➢InternationalGreenConstructionCode(IgCC)–developedbytheAmericanInstituteof
Architects(AIA),ASHRAE(AmericanSocietyofHeating,RefrigeratingandAir-conditioning
Engineers),USGreenBuildingCouncil,IESandmaintainedbyInternationalCodeCouncil(ICC).
➢NationalElectricalCode(NECorNFPA70)–developedbytheNationalFirePrevention
Associationwhichaimstoreducetheworldwideriskoffireandotherhazardsthroughcodesand
standards,research,trainingandeducation.TheNECcoverssafeelectricalstandards,installation
andotherelectricalcomponents.
➢ModelLightingOrdinance(MLO)–developedbytheInternationalDark-SkyAssociationandthe
IES.Itisintendedtoaddresslightpollutionbyprovidingstandardsforoutdoorlighting(i.e.
reducingglare,lighttrespassandskyglow).
➢LightTrespass–lightfromonepropertyfallingontoanadjacentproperty.
➢Skyglow–lightthatisemittedupwardbyluminairesandscatteredintheatmosphere,
producingaluminousbackgroundintheskywhichreducesthevisibilityofthestars.
➢StandardsforAccessibleDesign–developedbytheAmericanswithDisabilitiesAct(ADA)for
providingstandardsfordesignofaccessiblefacilitiesandbuildingcomponents.
ENERGYCODES
➢Therearesomeenergycodesusedwhichisfocusedonenergyefficiencyoflightingcomponents.
OneexampleistheASHRAE/IESNA90.1orASHRAE90.1whichsetstheminimumenergy
efficiencyrequirementsforbuildingenvelopesandequipmentforHVAC.Itisusuallycomplement
bytheNationalElectricalCode(NEC).
➢Somecodeshaveregulationsaboutthelightingpowerdensity(LPD)whichmeanslightpower
consumptionperbuildingarea(wattsperarea).Eachtypeofbuildingorspacehasa
recommendedLPDwhichcanbeusedtocalculatethepowerallowanceforlighting.Itcanuse
buildingareamethodwhereamaximumlightingpowerallowanceisassignedperbuildingtype
orspace-by-spacemethodwhereamaximumlightingpowerallowanceisassignedperspaceor
room(notthewholebuilding).
➢Othercodesandstandardsare:
➢ASHRAE/USGBC/IESStandard189.1StandardfortheDesignofHigh-PerformanceGreen
BuildingsExceptLow-RiseResidentialBuildings
➢InternationalEnergyConservationCode(IECC)–alternativetoASHRAE90.1
➢CaliforniaTitle24
SUSTAINABILITY
➢Lightingaccountsforaround10%ofresidentialpowerconsumptionand20%ofcommercialpowerconsumptionwhichiswhylightingareagood
optiontosubjectenergyreductionpoliciesandmethods.Thiscanbedoneby:
➢selectingfixtureswithgoodperformanceandlifeexpectancy
➢selectingfixtureswithhigherenergyefficiencies
➢analyzingcostconsiderationsbecausetherearecaseswheretheinitialcostareoffsetbymaintenanceorreplacementcost.
➢SomeofEnergyProgramsaimingforSustainableDesign
➢LeadershipinEnergyandEnvironmentalDesign(LEED)–voluntaryprogramestablishedbytheU.S.GreenBuildingCouncil(USGBC),a
non-profitorganizationforsustainabilityinthebuiltenvironment.Itusesratingsystemscoveringrangeofbuildingtypes,existing
buildingoperationsandmaintenanceandneighborhooddevelopment.ThescoresarecategorizedintoCertified,CertifiedSilver,Certified
GoldandCertifiedPlatinum.Thereareseven“impactcategories”thatmakeupthemainframeworkofthecurrentversion,LEEDv4.
➢Reversecontributiontoglobalclimatechange
➢Enhanceindividualhumanhealthandwell-being
➢Protectandrestorewaterresources
➢Protect,enhance,andrestorebiodiversityandecosystemservices
➢Promotesustainableandregenerativematerialresourcescycles
➢Buildagreenereconomy
➢Enhancesocialequity,environmentaljustice,andcommunityqualityoflife
➢GreenGlobes–alternativetoLEEDanddeveloped/administeredbyCanadianStandardsAssociationandU.S.GreenBuildingInitiative.It
usesanonlineassessmenttoolandpointsystemtoassessaprojectandassignspointsbasedonsevencriteria:
➢Energy
➢Water
➢Resources
➢Emissions
➢IndoorEnvironment
➢ProjectManagement
➢Site
➢EnergyStar–aprogramoftheU.S.EnvironmentalProtectionAgencycoveringproducts,homesandcommercialbuildings.Ithas
programsforLEDandCFLlamps.
➢ForEnergyStarLED:
➢Correlatedcolortemperatureof2,700K,3,000K,3,500K,or4,000K
➢CRI≥80
➢Packagingmentionifdimmable
➢Minimumthree-yearwarranty
➢ForEnergyStarCFL
➢Productionof80percentofinitiallumensat40percentofratedlife
➢Aminimumratedlifeof6,000hours
➢CRI≥80
➢Abilitytostartinlessthanonesecond,andreachfulloutputinlessthanthree
➢minutes
➢ICC700NationalGreenBuildingStandard–developedbytheNationalAssociationofHomeBuilders(NAHB)andtheInternationalCode
Council(ICC).
➢Life-CycleCostAnalysis–evaluatingthefinancialimplicationsofthebuildingsystems(includinglighting)whichcanbecategorizedintotheinitial
cost(i.e.costofpurchaseandinstallment)andtheannualcosts(i.e.costofmaintenanceandreplacement).Thisanalysiscangetcomplicatedwhen
consideringinflation.
➢ReturnonInvestment(ROIorPayback)–usuallyconsideredinrenovatingorreplacingthelightinginanexistingspace.TheROIisusuallyrelatedto
thecostoftherenovation/replacement.
➢ThereareonlinereferencesforcomputationoftheROIandLife-CycleCostAnalysisthatcanbeusedbylightingdesigners.

ARCHITECTURAL LIGHTING
LIGHTING EFFECTS ON HEALTH
➢Therehavebeenalotofstudiesfocusingonhowlightingaffectshealthand
welfare,andthisfieldisalreadyexpanding.
➢BiologicalRhythms–predictablebiologicalcyclesofhumanssuchasthe
circadianrhythms(sleepcycle)whichregulateswakingupandsleeping,also
calledinternalclock.Thisinternalbiologicalclockisusuallysynchronizedwith
theoutsideworld,inaprocesscalled“entrainment”.
➢Inhumanseyes,thereisathirdtypeoflightsensitivecellcalledthe
intrinsicallyphotosensitiveretinalganglioncell(ipRGC)whichis
stimulatedbylightandsignalsthebodyclockandhormoneproduction.Its
peakresponseisinthebluerange(between460and480nm)whichiswhy
bluishlightscancauseirregularitiesinbiologicalclock.Thiscanaffectthree
hormones–serotoninwhichisamoodenhancer,melatoninwhichmakesus
drowsyandslowsbodyfunctionsforsleepandcortisolwhichisinvolvedin
stressmanagementandbloodpressureregulationandsugarmetabolism.
➢Therearedifferenttherapiesthatuselightfordifferentconditionssuchas:
➢SeasonalAffectiveDisorder–kindofdepressioncausedby
inadequateorill-timedexposuretolightwithhighbluecontentand
usuallyuseLightTherapy
➢SkinDiseases–somechronicskindiseaseslikepsoriasisandeczema
canbetreatedwithultravioletBradiationorUV-Bproducinglamp.
➢VitaminDDeficiency–skinproducesvitaminDwhenexposedto
ultravioletBradiationinsunlight.Reducedexposurecancause
VitaminDdeficiencythatcanleadtorickets(malformationofbones)
andotherdiseases.
➢Full-spectrumLighting–firstusedin1960sbyDr.JohnOttforelectricallight
sourcewithvisibleandultravioletspectrumsimilartonaturallight.These
typesoflightsarespecializedlampsthatcanbeproducedbymanufacturers
andclaimsforbettervisibility,bettercolordiscrimination,reductionofeye
strain,improvedmoodandimprovedproductivityorclaimingassimilarto
daylight.Thesetypesoflampsareusuallyabove5000KandtheCRIiscloseto
100.
➢ExcessiveexposuretosunlightorUVcancausesunburnandotherissueslike
skincancerandeyeproblems(althoughmanyeyeissuesareage-related).
LIGHTING-RELATED ORGANIZATIONS
➢IlluminatingEngineeringSociety(IES)–recognizedtechnicalauthorityon
illuminationandfoundedin1906.
➢InternationalAssociationofLightingDesigners(IALD)–foundedin1969
➢DesignersLightingForum(DLF)
➢InternationalCommission onIllumination(CIEorCommission
Internationaledel´Eclairage)–foundedin1913andfamousforlighting
matterslikecolorandvision,photobiologyandimagetechnology.
➢NationalCouncilonQualificationsfortheLightingProfessions(NCQLP)–
foundedin1991forestablishingaprofessionalcredentialforlighting
designers.
➢InternationalDark-SkyAssociation–establishedin1988andfocusedon
preventingandreducingnight-timelightpollution.
Tags