asdasdattttttthththgfgthftjhghytyts.pptx

ameyaranade5 9 views 11 slides Jun 18, 2024
Slide 1
Slide 1 of 11
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11

About This Presentation

hsrhtyt


Slide Content

Ascascacsa afsvbsdfvsdvsd ssvsdcss

Euclid’s Division Lemma 𝐺𝑖𝑣𝑒𝑛 π‘‘π‘€π‘œ π‘π‘œπ‘ π‘–π‘‘π‘–π‘£π‘’ π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿπ‘  π‘Ž π‘Žπ‘›π‘‘ 𝑏 π‘‘β„Žπ‘’π‘Ÿπ‘’ 𝑒π‘₯𝑖𝑠𝑑 π‘’π‘›π‘–π‘žπ‘’π‘’ π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿπ‘  π‘ž π‘Žπ‘›π‘‘ π‘Ÿ π‘ π‘Žπ‘‘π‘–π‘ π‘“π‘¦π‘–π‘›π‘” π‘Ž = π‘π‘ž + π‘Ÿ, 0 ≀ π‘Ÿ < 𝑏 Here , π‘Ž = 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑, 𝑏 = π‘‘π‘–π‘£π‘–π‘ π‘œπ‘Ÿ, π‘ž = π‘žπ‘’π‘œπ‘‘π‘’π‘–π‘›π‘‘ π‘Ÿ = π‘Ÿπ‘’π‘šπ‘Žπ‘–π‘›π‘‘π‘’π‘Ÿ. Example 13 = 2 Γ— 6 + 1

Euclid’s division Algorithm π‘‡π‘œ π‘œπ‘π‘‘π‘Žπ‘–π‘› π‘‘β„Žπ‘’ 𝐻𝐢𝐹 π‘œπ‘“ π‘‘π‘€π‘œ π‘π‘œπ‘ π‘–π‘‘π‘–π‘£π‘’ π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿπ‘  π‘ π‘Žπ‘¦ π‘Ž π‘Žπ‘›π‘‘ 𝑏 π‘€π‘–π‘‘β„Ž π‘Ž > 𝑏, Fπ‘œπ‘™π‘™π‘œπ‘€ π‘‘β„Žπ‘’ 𝑠𝑑𝑒𝑝𝑠 π‘π‘’π‘™π‘œπ‘€ ∢ 1. Apply Euclid’s division lemma to π‘Ž and 𝑏 . So , we find whole numbers π‘ž π‘Žπ‘›π‘‘ π‘Ÿ such that π‘Ž = π‘π‘ž + π‘Ÿ, 0 ≀ π‘Ÿ < 𝑏. 2. If π‘Ÿ = 0 , d is the HCF of π‘Ž and 𝑏 . If π‘Ÿ β‰  0 apply the division lemma to 𝑏 and π‘Ÿ . 3. Continue the process till the remainder is zero . The divisor at this stage will be the required HCF .

Β  Example :- Using Euclid ’ s division algorithm find the HCF of 12576 and 4052 . Ans. Since 12576 > 4052 we apply the division lemma to 12576 and 4052 to get 12576 = 4052 Γ— 3 + 420 Since the remainder 420 β‰  0 , we apply the division lemma to 4052 and 420 to get 4052 = 420 Γ— 9 + 272 We consider the new divisor 420 and new remainder 272 apply the division lemma to get 420 = 272 Γ— 1 + 148 Now we continue this process till remainder is zero . 272 = 148 Γ— 1 + 124 148 = 124 Γ— 1 + 24 124 = 24 Γ— 5 + 4 24 = 4 Γ— 6 + 0 The remainder has now become 0 , so our procedure stops . Since the divisor at this stage is 4 , the HCF of 12576 and 4052 is 4 .

Fundamental Theorem of Arithmetic πΈπ‘£π‘’π‘Ÿπ‘¦ π‘π‘œπ‘šπ‘π‘œπ‘ π‘–π‘‘π‘’ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘π‘Žπ‘› 𝑏𝑒 𝑒π‘₯π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘‘ π‘Žπ‘  π‘Ž π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘ π‘œπ‘“ π‘π‘Ÿπ‘–π‘šπ‘’π‘ , π‘Žπ‘›π‘‘ π‘‘β„Žπ‘–π‘  π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿπ‘–π‘ π‘Žπ‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘’π‘›π‘–π‘žπ‘’π‘’ , π‘Žπ‘π‘Žπ‘Ÿπ‘‘ π‘“π‘Ÿπ‘œπ‘š π‘‘β„Žπ‘’ π‘œπ‘Ÿπ‘‘π‘’π‘Ÿ 𝑖𝑛 π‘€β„Žπ‘–π‘β„Ž π‘‘β„Žπ‘’π‘¦ π‘œπ‘π‘π‘’π‘Ÿ. Now factorize a large number say 32760 . 32760=2x2x2x3x3x5x7x13x13

Revisiting Irrational Numbers 𝐿𝑒𝑑 𝑝 𝑏𝑒 π‘Ž π‘π‘Ÿπ‘–π‘šπ‘’ π‘›π‘’π‘šπ‘π‘’π‘Ÿ 𝑖𝑓 𝑝 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 π‘Ž 2 , π‘‘β„Žπ‘’π‘› 𝑝 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 π‘Ž, 𝑖𝑠 π‘Ž π‘π‘œπ‘ π‘–π‘‘π‘–π‘£π‘’ π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿ. Theorem: √2 𝑖𝑠 π‘–π‘Ÿπ‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™. Proof: Let us assume on contrary that √2 is rational number then we can write √2= a/b where a and b are co-prime. √2 = π‘Ž /𝑏 (𝑏 β‰  0) squaring on both sides 2 = π‘Ž 2 / 𝑏 2 2 𝑏 2 = π‘Ž 2 . Here 2 divides π‘Ž 2 , so it also divides π‘Ž . So we can write a=2c for some integer c.

Β  Substituting for π‘Ž we get 2𝑏 2 = 4c 2 that is 𝑏 2 = 2c 2 . Here 2 divides 𝑏 2 , so it also divides 𝑏 .This creates a contradiction that a and Β b have no common factors other than 1. This contradiction has arisen because of our wrong assumption. So we conclude that √2 is a irrational number .

Revisiting Rational numbers and their decimal expansions Theorem: 𝐿𝑒𝑑 π‘₯ 𝑏𝑒 π‘Ž π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘€β„Žπ‘œπ‘ π‘’ π‘‘π‘’π‘π‘–π‘šπ‘Žπ‘™ 𝑒π‘₯π‘π‘Žπ‘›π‘ π‘–π‘œπ‘› π‘‘π‘’π‘Ÿπ‘šπ‘–π‘›π‘Žπ‘‘π‘’.π‘‡β„Žπ‘’π‘› π‘₯ π‘π‘Žπ‘› 𝑏𝑒 𝑒π‘₯π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘‘ 𝑖𝑛 π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘š of 𝑝 and q, π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑝 π‘Žπ‘›π‘‘ π‘ž π‘Žπ‘Ÿπ‘’ π‘π‘œπ‘π‘Ÿπ‘–π‘šπ‘’, π‘Žπ‘›π‘‘ π‘‘β„Žπ‘’ π‘π‘Ÿπ‘–π‘šπ‘’ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿπ‘–π‘ π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘ž 𝑖𝑠 π‘œπ‘“ π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘š 2 n 5 m , where n and m π‘Žπ‘Ÿπ‘’ π‘›π‘œπ‘› - π‘›π‘’π‘”π‘Žπ‘‘π‘–π‘£π‘’ π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿπ‘ . Example:0.375= 375/10 3

Theorem Let x =p/q be a rational number, such that the prime factorisation of q is of the form 2 n 5 m , where n, m are non-negative integers. Then x has a decimal expansion which terminates. Example: 3/8=3/2 3 =0.375

Theorem Let x =p/q be a rational number, such that the prime factorisation of q is not of the form 2 n 5 m , where n, m are non-negative integers. Then, x has a decimal expansion which is non-terminating repeating ( recurring ) . Example: 1 / 7= 0.1428571…
Tags