5. Boichenko, V.A., Leonov, G.A.: Lyapunov functions, Lozinskii norms, and the Hausdorff
measure in the qualitative theory of differential equations. Amer. Math. Soc. Transl.193(2),
1–26 (1999)
6. Boichenko, V.A., Leonov, G.A., Franz, A., Reitmann,V.: Hausdorff and fractal dimension
estimates of invariant sets of non-injective maps. Zeitschrift für Analysis und ihre
Anwendungen (ZAA).17(1), 207–223 (1998)
7. Boichenko, V.A., Leonov, G.A., Reitmann, V.: Dimension Theory for Ordinary Differential
Equations. Teubner, Stuttgart (2005)
8. Borg, G.: A condition for existence of orbitally stable solutions of dynamical systems. Kungl.
Tekn. Högsk. Handl. Stockholm.153,3–12 (1960)
9. Chen, Zhi-Min.: A note on Kaplan-Yorke-type estimates on the fractal dimension of chaotic
attractors. Chaos, Solitons & Fractals3, 575–582 (1993)
10. Chen, X.: Lorenz equations, part I: existence and nonexistence of homoclinic orbits.
SIAM J. Math. Anal.27(4), 1057–1069 (1996)
11. Constantin, P., Foias, C., Temam, R.: Attractors representing turbulentflows. Amer. Math.
Soc. Memoirs., Providence, Rhode Island.53(314), (1985)
12. Douady, A., Oesterlé, J.: Dimension de Hausdorff des attracteurs. C. R. Acad. Sci. Paris, Ser.
A.290, 1135–1138 (1980)
13. Eden, A., Foias, C., Temam, R.: Local and global Lyapunov exponents. J. Dynam. Diff. Equ.
3, 133–177 (1991) [Preprint No. 8804, The Institute for Applied Mathematics and Scientific
Computing, Indiana University, 1988]
14. Gelfert, K.: Maximum local Lyapunov dimension bounds the box dimension. Direct proof for
invariant sets on Riemannian manifolds. Zeitschrift für Analysis und ihre Anwendungen
(ZAA).22(3), 553–568 (2003)
15. Hartman, P., Olech, C.: On global asymptotic stability of solutions of ordinary differential
equations. Trans. Amer. Math. Soc.104, 154–178 (1962)
16. Hastings, S.P., Troy, W.C.: A shooting approach to chaos in the Lorenz equations. J. Diff.
Equ.127(1), 41–53 (1996)
17. Hunt, B.: Maximum local Lyapunov dimension bounds the box dimension of chaotic
attractors. Nonlinearity.9, 845–852 (1996)
18. Hurewicz, W., Wallman, H.: Dimension Theory. Princeton Univ. Press, Princeton (1948)
19. Kaplan, J.L., Yorke, J.A.: Chaotic behavior of multidimensional difference equations. In:
Functional Differential Equations and Approximations of Fixed Points, 204–227, Springer,
Berlin (1979)
20. Kuznetsov, N.V.: The Lyapunov dimension and its estimation via the Leonov method.
Physics Letters A,380(25–26), 2142–2149 (2016)
21. Kuznetsov, N.V., Leonov, G.A., Mokaev, T.N., Prasad, A., Shrimali, M.D.: Finite-time
Lyapunov dimension and hidden attractor of the Rabinovich system. Nonlinear Dyn.92(2),
267–285 (2018)
22. Ledrappier, F.: Some relations between dimension and Lyapunov exponents. Commun. Math.
Phys.81, 229–238 (1981)
23. Leonov, G.A.: On the estimation of the bifurcation parameter values of the Lorenz system.
Uspekhi Mat. Nauk.43(3), 189–200 (1988) (Russian); English transl. Russian Math. Surveys.
43(3), 216–217 (1988)
24. Leonov, G.A.: Estimation of the Hausdorff dimension of attractors of dynamical systems.
Diff. Urav.27(5), 767–771 (1991) (Russian); English transl. Diff. Equations,27, 520–524
(1991)
25. Leonov, G.A.: Construction of a special outer Carathéodory measure for the estimation of the
Hausdorff dimension of attractors. Vestn. S. Peterburg Gos. Univ.1(22), 24–31 (1995)
(Russian); English transl. Vestn. St. Petersburg Univ. Math. Ser. 1,28(4), 24–30 (1995)
26. Leonov, G.A.: Lyapunov dimensions formulas for Hénon and Lorenz attractors. Alg. & Anal.
13, 155–170 (2001) (Russian); English transl. St. Petersburg Math. J.13(3), 453–464 (2002)
Preface ix