AW-IPM.pdf

LakshmiPrasanna317 164 views 104 slides Sep 12, 2022
Slide 1
Slide 1 of 104
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104

About This Presentation

Area wide integrated pest management is useful for the management of destructive pest in large areas through the use of different techniques such as sterile male technique, mating disruption etc..,


Slide Content

AW-IPM : Development and Field Applications
Siddu Lakshmi Prasanna
Ph.D. Scholar
Department of Plant Pathology
1

SIDDU LAKSHMI PRASANNA 2
Introduction
•Pest control and pest management
•Why we need to stop injudicious use of pesticides?
•Need of IPM
•Constrains in IPM implementations
•Difference between different types of Pest Management
Area Wide Pest Management
•How AWIPM differs from IPM?
•History of AWIPM programmes across the world
•Status or history AWIPM programmes in India
•Approaches of AW-IPM
•Models to be followed in AW-IPM
Case histories of AW-IPM programmes
•Benefits of AWIPM programmes
•Conclusions
Contents

Integrated Pest Management (IPM):
•Integratedpestmanagement(IPM)
combinestheuseofbiological,
cultural,mechanicalandchemical
practicestocontrolinsectpestsin
agriculturalproduction.
•Itseekstousenaturalpredatorsor
parasitestocontrolpests,using
selectivepesticidesforbackuponly
whenpestsareunabletobe
controlledbynaturalmeans.
•Thefourworkhandinhandto
providetargeted,effective,long-
termpestmanagement,andeach
categoryplaysaspecialrole.
SIDDU LAKSHMI PRASANNA 3

bio-physical
communication
personal
socio-
economic
technological
Constraintsexperience
d byIPMand Non-
IPMfarmers
Constraints of IPM
SIDDU LAKSHMI PRASANNA 4

Conventional Pest Management
•Chemicalintensive
•Largelyreactivetopestoutbreaks
•Lessemphasisonprevention
•Emphasizeskillingpestsdirectly
•Majorpurposeofsitevisitsistoapply
pesticides
•Generalandwidespreaduseofpesticides
Integrated Pest Management
•Knowledgeintensive
•Systematicprogramoflongtermpestcontrol
•Majoremphasisonpreventionofpest
problems
•Emphasizesmodificationofconditionsthat
favorpests
•Majorpurposeofsitevisitsistoinspectand
monitor
•Pesticideuseistolimitintermsoftypes,
amountandlocations
•Itisafieldapproach
SIDDU LAKSHMI PRASANNA 5
Vs

Anarea-wideinsectcontrolprogrammeisalong-termplannedcampaignagainstapestinsectpopulationina
relativelylargepredefinedareawiththeobjectiveofreducingtheinsectpopulationtoanon-economicstatus
(Lindquist,2001).
•AWMisparticularlyrelevantforpestspeciesthataremobile,haveawidehostrange(cropandnon-crop),andare
locallygeneratedinthefarmingsystem,andenablesmanagementstrategiesonalarger-scalethatmaybemore
effectivethanapaddock-by-paddockapproach.
•AWMhastwokeyobjectives:
1.reduceoverallpestpressureinparticipatingregionsbymanipulatingthesizeofthelocalpopulation
2.manageinsecticideresistancethroughcoordinatedrotationofinsecticidegroups.
Area wide-Integrated Pest Management
SIDDU LAKSHMI PRASANNA 6

Area Wide Pest Management
1.ItstreatsallhabitatsofPestinfestation
2.Itisimplementedbyanorganizationsolely
dedicatedtopestmanagementinaregion
3.Itisamultiyearplanningapproachand
proactiveinnature
4.Itreliesonbothtraditionalandadvanced
tacticsofPestmanagement
Conventional approaches
1.ItDefendonlyvaluableentitieslikecrop,
livestockfromdirectpestattack
2.ItisImplementedbyindividualproducers
3.Itrequiresminimalforwardplanningand
reactiveinapproach
4.Itreliesontraditionaltacticsofpest
management
SIDDU LAKSHMI PRASANNA 7
(Lindquist,2000)

•notinabandonedcrops,alternatehosts,backyard
hostsoronwildhosts.
•significantuntreatedrefugiaofthepestremainfrom
whichrecruitsre-establishdamagingdensitiesofthe
pestpopulation.
•includingabandonedcrops,alternatehosts,
backyardhostsoronwildhosts.
•nosignificantuntreatedrefugiaofthepestremain
fromwhichrecruitscanre-establishdamaging
densitiesofthepestpopulation.
SIDDU LAKSHMI PRASANNA 8

SIDDU LAKSHMI PRASANNA 9

SIDDU LAKSHMI PRASANNA 10

Approaches of AW-IPM
Sterile
insect
technique
Mating
disruption
with
pheromones
Genome
editing
through
CRISPR
Enterobacter
(Gut
microbiome
of insects)
Cytoplasmic
incompatibility by
Wolbachia
release of insect
carrying
dominant lethal
(RIDL)
Male
Annihilation
Technique
Inundative
release of
parasitoid
insects
(Biological
control)
SIDDU LAKSHMI PRASANNA 11

Sterile Insect Technique (SIT)
SITdefinedas―Amethodofpestcontrolusingareawideinundativereleasesofsterileinsectsto
reducefertilityofafieldpopulationofthesamespecies(IPPC,FAO).
•SimilarlySterileInsectisdefinedas―Aninsectasaresultofanappropriatetreatmentisunableto
produceviableoffspring(FAO).
•SIThasbeenknownforitseradicationofNewWorldScrewormfly,Cochliomyiahominivorax.
•TheIdeaofthistechniquewasconceivedbyDr.E.FKnipling.
Itwasintheyear1954-55thatScrewormflygotsuccessfullyeradicatedfromCuracaoIsland.Similar
resultswereachievedfromUSA,MexicoandLibya.ForthisDr.EdwardF.KniplingandDr.RaymondC.
BushlandwereawardedwithWorldFoodPrize(1992)
SIDDU LAKSHMI PRASANNA 12

There are four
components of Sterile
Insect Technique
1. Mass Rearing
2. Sterilization
3. Release
4. Monitoring
ComponentsofSIT
SIDDU LAKSHMI PRASANNA 13

SIDDU LAKSHMI PRASANNA 14
Fig: Wild type population and Sterile insect technique release population work in a field condition

Generation Natural
population
of Female
(Assumed)
Sterile Male
insect
Released
S:F Male
ratio
Infertile
Progeny(%)
No. of
female in
each
generation
1 1000 2000 2:1 66.7 333
2 333 2000 6:1 85.7 47
3 47 2000 42:1 97.7 1
4 1 2000 2000 99.9 0
Knipling’sSITModel
Knipling(1955)alsoemphasizedonfollowingprerequisitesbeforedevelopingandapplyingSITwhich
includes
•Estimatesofnaturalpopulationoftargetinsectmustbeaccurate
•Rearenoughsterileinsectstooverfloodnaturalpopulation.
•Thereleasedinsectmustbedistributeduniformly
•Irradiationmustproducesterilitywithoutaffectingcompetitivematingabilityandlongevityofinsect.
•Femaleshouldmateonlyonce.
•Iffemalesmatefrequentlythenmalesshouldalsomatefrequently
SIDDU LAKSHMI PRASANNA 15

SIDDU LAKSHMI PRASANNA 16
Various SIT programmesfollowed
S.noSterileInsecttechniqueagainstInsectPests Countries Reference
1.NewWorldScrewworm,CochliomyiahominivoraxUSAMexicoLibya Lindquistetal.,1992
2.Mediterraneanfruitfly,Ceratitiscapitata VariouspartsofLatinAmerica Hendrichsetal.,1995
3.Codlingmoth,Cydiapomonella Canada,USAandSwitzerlandIAEA,2001andThacker2002
4.Tsetsefly,Glossinapalpalis Zanzibarisland,Tanzania
Joint FAO/IAEA Division www.iaea.or.at:80/programs
5.Onionfly,Deliaantiqua Netherlands Thacker(2002)
6.Pinkbollworm,Pectinophoragossypiella California,USA Thacker(2002)
7.Bollweevil,Anthonomousgrandis Lousiana,USA Thacker(2002)
8.Housemosquito,Culexquinquefasciatus Florida,USA Thacker(2002)
9.Malarialmosquito,Anophelesludens Elsalvador Thacker(2002)

Key social factors influencing uptake of area-wide management (AWM) integrating the Sterile Insect Technique
(SIT), framed as social barriers, facilitators, institutional mechanisms and personal factors.
(Mankad et al., 2017)
SIDDU LAKSHMI PRASANNA 17

•InIntegratedpestmanagement,pheromonesareusedindifferentwayssuchasmonitoring
throughtrapcatch,killingthroughmasstrapping,matingdisruptionandattracticide(lureandkill)
methods.
•Pheromonetrapsinstoredinsectmanagementcanbeusedtodetectboththepresenceandthedensityofpests.
•Insectssendthesechemicalsignalstohelpattractmates,warnothersofpredators,orfindfood.
•Example:sexpheromones,aggregationpheromones,alarmpheromones,etc.
Pheromones
SIDDU LAKSHMI PRASANNA 18
Fig: Orientation of male moth towards female moth after detecting the pheromone lure

•Push-pullstrategiesinvolvethebehavioralmanipulationofinsectpestsandtheirnaturalenemiesviathe
integrationofstimulithatacttomaketheprotectedresourceunattractiveorunsuitabletothepests(push)while
luringthemtowardanattractivesource(pull)fromwherethepestsaresubsequentlyremoved.
•Pushingandpullingisachievedbyusingrepellent(push)andattractant(pull)cues,usuallyvolatilesincluding
pheromonesandallelochemicals.
(Alkema et al., 2019)
SIDDU LAKSHMI PRASANNA 19

Mating disruption with Pheromone traps
•Matingdisruptionisoneconceptwheresyntheticpheromonecompoundsareemployedto
achievematingfailureofinsectpestsingivenareaorcroptoreducepestpressureandhencepesticideload
onthecrop.
SIDDU LAKSHMI PRASANNA 20

SIDDU LAKSHMI PRASANNA 21
Mechanisms Of Mating Disruption
Disruptantscaninterferewithmatelocationin3principalways:
1.Competition:Malesmayspendtimeandenergyorientingtosourcesofformulation.
•Avariantonthismethodaddsinsecticidetopointsourcesofpheromone,an“attractandkill”strategy(Cork2016).
2.SensoryImpairment:
•Generally,suchimpairmentcanbeduetoadaptationofeithersensoryreceptorsorhabituation,whichisacentral
nervoussystemphenomenon,orbothfactors.
3.Camouflage:
•Thepheromoneplumefromacallingfemalebecomesimperceptibleamongstthebackgroundofdisruptant.

(Arifet al., 2017)
Examples of some of the lures:
SIDDU LAKSHMI PRASANNA 22

Genome editing by CRISPR-Cas9:
•ClusteredRegularlyInterspacedPalindromicRepeats/CRISPR-associatedprotein9,simplyknownasCRISPR/Cas9,
isausefulgenetictoolforefficientsite-directedgenomeediting.
•TheCRISPR/Cas9systemconsistsofaCas9RNA-guidednucleaseandCRISPRRNA(crRNA),whichguidesthe
Cas9enzymespecificallytothetargetsequenceinthegenome.
Functionsininsects:
•UnravellingSexDeterminationPathwaysinInsects
•Site-directedMutagenesisinPestInsectstoEnablePopulationControl
•GeneDriveSystemsforPopulationSuppressionorReplacement
•Knockigoutorknockingdownofthegeneresponsibleformovementandfeedingininsects.
SIDDU LAKSHMI PRASANNA 23

•ThesgRNAdirectstheSpCas9proteintobindgenomicDNAthrougha20-nucleotidesequenceandfurtherguidesitto
introduceaDSB.
•ThisDSBcausesrandommutationswhenrepairedbytheerror-proneNHEJpathwayorprecisegenemodificationwhen
repairedbytheerror-freeHDRpathway.
(Wang et al., 2019)
SIDDU LAKSHMI PRASANNA 24
•CRISPR,clusteredregularly
interspacedshortpalindromic
repeat;
•Cas,CRISPR-associated;
•DSB,double-strandbreak;
•HDR,homology-directed
repair;
•NHEJ,non-homologousend-
joining;
•sgRNA,single-guideRNA

•Insectsrepresentthemostsuccessfultaxonofeukaryoticlife,beingabletocolonizealmostallenvironments.
•Microbialsymbiomesassociatedwithinsects,impactimportantphysiologies,andinfluencenutritionalandimmune
systemstatus,andultimately,fitness.
•Avarietyofbacterialphylaarecommonlypresentininsectguts,includingGammaproteobacteria,
Alphaproteobacteria,Betaproteobacteria,Bacteroidetes,Firmicutes,Clostridia,Spirochetes,Verrucomicrobia,
Actinobacteria,andothers.
•Amongthem,thegenusEnterobacterhasbeenrecognizedasadominantinhabitantofthegutforseveralimportant
insectspecies,indicatinganessentialfunctionalroleforthistaxon.
•EnterobacterisagenusofcommonGram-negative,facultativelyanaerobic,rod-shaped,non-spore-forming
bacteriaofthefamilyEnterobacteriaceae.
Functions of Enterobacter:
•Nitrogen fixation
•Degradation of Plant Cell Wall Components
•Degradation and Biosynthesis of Other Nutrients
•Probiotic Effects of Enterobacter
Insect Gut microbiome
SIDDU LAKSHMI PRASANNA 25

(Qadriet al., 2020)
SIDDU LAKSHMI PRASANNA 26

Functionsofgutmicrobiotaintephritidfruitflies
Essential amino
acids, Protein
synthesis, Egg
production
Recycle urea,
plant derivatives
to protein
Increase male
size, copulatory
success
Carbon, nitrogen
metabolism
Suppress the
pathogenic
bacteria
Reduce rearing
duration,
improved survival
Degrades purines,
polysaccharides to
usable nitrogen
Provides vitamins,
lipids and
aminoacids
Overcome the
host plant
resistance
Resistance to
insecticides
Detoxification of
plant toxins
Work as
diazatrophs for
nitrogen fixation
Larval
development,
pupal weight and
sperm storage
SIDDU LAKSHMI PRASANNA 27

•Wolbachia is an obligate intracellular and maternally transmitted α proteobacteria. They reside in reproductive
tissues of invertebrate hosts.
•They are found in 60 per cent of insect species.
•Wolbachia causes reproductive alteration such as
1.Parthenogenetic development
2.Convert genetic males into females
3.Killing males in early developmental stages
4.Cytoplasmic incompatibility
Cytoplasmic Incompatibility (CI) by Wolbachia
Cytoplasmic incompatibility results in mortality of the embryos produced (Bourtzis2007)
Unidirectional CI
Wolbachia Infected males mated to uninfected females. It results in 100 % eggmortality
Bidirectional CI
When both males and females carrying incompatible Wolbachia strain mates
Wolbachia induced cytoplasmic incompatibility
SIDDU LAKSHMI PRASANNA 28

➢CytoplasmicincompatibilityinducedbyWolbachia.
➢Therearefourdifferentmatingcombinationsbetweeninfected
anduninfectedmalesandfemales.
➢However,infectedmales(yellow)matedtouninfectedfemales
producesomeembryoswithearlyembryoniclethality,
characterizedbydefectsinearlymitoticdivisions(CI,lower
left)mostoftenobservedasdefectsinchromosomesegregation
duringlatetelophase(nuclei,arrowhead).
➢Thesedefectsarerescuedwhenthesameinfectedmalesare
matedtoinfectedfemales(Rescue,lowerright).
➢Wolbachiaareseenassmallpunctuatedots,withhigh
concentrationsassociatedwithastralmicrotubules.
B.Loppinand T.L.Karr, 2005
SIDDU LAKSHMI PRASANNA 29

•Itisacontrolstrategyusinggeneticallyengineeredinsectsthathave(carry)alethalgeneintheirgenome(an
organism'sDNA).
•Lethalgenescausedeathinanorganism,andRIDLgenesonlykillyounginsects,usuallylarvaeorpupae.
Male homozygous insect for dominant lethal which was reared under permissive condition when released in the wild population to mate with
wild female then F1 progeny is produced, since these progenies are heterozygous for dominant lethal gene so this gene will express and
cause mortality as also permissive condition is not present under natural condition. Permissive condition like tetracycline in the diet
suppresses the expression of dominant lethal gene in Homozygous male
SIDDU LAKSHMI PRASANNA 30

Figure:Principleofthereleaseofinsectscarryingadominantlethalgene(RIDL).
(A)schemeofthetransgene.
Thetetracyclineactivatorvariant(tTAV)proteinbindstoitsownpromoter,activatesitsowntranscriptionandperturbs
overallgeneexpressioninthecells,resultinginmosquitodeath,unlesstetracyclinethatbindsandinactivatestTAVis
provided.
(B)Duringmassrearingintheproductionunit,mosquitoesdevelopnormallyinthepresenceoftetracycline.Foran
intervention,malesaresortedatthepupalstage(basedonthesmallersizeofmalepupae).
Oncereleased,theymatewithwildfemaleswhoseprogenywilldieduetounrestrictedtTAVactivity
SIDDU LAKSHMI PRASANNA 31

SIDDU LAKSHMI PRASANNA 32
➢Maleannihilationinvolvesthetrappingofmalefruitfliesusingahighdensityoftrappingstations
consistingofamalelurecombinedwithaninsecticide(usuallytechnicalmalathionorspinosad),to
reducethemalepopulationtosuchalowlevelthatmatingdoesnotoccur.
Male Annihilation Technique (MAT)

Models to be followed in AW-IPM:
Fixed area model
•thecontrolareaisfixedinsizeandthere
isnoadvancingpestcontrolfront,
•thereisacoreareatobeprotectedanda
bufferzoneonallsidesofthecorearea.
Rolling carpet model
•thecontrolareaisexpandingaccording
tothe―Rolling-carpetprinciple
•thereisabufferononlyonesideand
pestfreezonesontheothersides.
•Boththesemodelsconsistoftwocomponentssuchasabiologicalcomponent(i.e.,dispersal)andaneconomic
component(break-evenanalysis).
•Thedispersalpartdescribesthemovementoftheinsectsacrossthebufferzoneandwilldeterminethewidth
ofthebufferzone.
•Theeconomiccomponentofthemodelwill,givenacertainwidthofthebufferzonedeterminedbythe
dispersalpart,allowacalculationofcostsandrevenuesofthecontrolprogramandwilldeterminethebreak-
evensizeofthecoreareaatwhichcontrolcostsequalrevenues.
(Barclay et al., 2011)
SIDDU LAKSHMI PRASANNA 33

•Thefirstisthecorearea,inwhichtheaimistoreduce(incaseofasuppressionstrategy)oreliminatethe
pestspecies.
•Thecoreareacontaintheactualresourceofvalue,butinothercases,removalofthepestfromthecorearea
maysimplyhaveastrategicvaluebyprotectingcropssituatedelsewhereorbyprotectinghumansor
livestockagainstdiseasevectors(incaseofacontainmentorapreventionstrategy).
•Thesecondisabufferzonethatbordersthecoreareaononeormoresidesandwithinwhichcontrol
methodsattempttokillthetargetinsectswithinthatzone,includingthosethatenterthezonefrom
outside.
•ThebufferzoneisdefinedastheregionofanAWPMprogramthatislargeenoughtopreventthepestinsect
frommovingfromoutsidethebuffertothecoreareabeforebeingdestroyedbythecontrolmethodsoperating
withinthebufferzone.
(Barclay et al., 2011)
SIDDU LAKSHMI PRASANNA 34
Basic spatial elements of an AW-IPM program:

Dimensions of the area under control:
A is the core area;
T is the total rectangle (core + buffer);
x is the width of the A area;
kxis the length as a multiple of the width;
d is the width of the buffer zone (B) (B = T − A).
(Barclay et al., 2011)
SIDDU LAKSHMI PRASANNA 35

Schematicdiagramoftheexpectedchangesinpestdensityfromaninfestedarea(highpestpressure),
throughthebufferzone(B),intothecorearea(A)inthecaseofaneradicationstrategy.
•Intherolling-carpetapproach,declinesinpestdensityrepresentdeclinesovertime,althoughtheformofthe
slopeisschematic.
(Barclay et al., 2011)
SIDDU LAKSHMI PRASANNA 36

Case studies
SIDDU LAKSHMI PRASANNA 37

Assessment of the Sterile Insect Technique to Manage Red Palm
Weevil Rhynchophorusferrugineusin Coconut
R. KRISHNAKUMAR and P. MAHESWARI
Department of Entomology, College of Agriculture, Vellayani-695522, Thiruvananthapuram,
Kerala, India
SIDDU LAKSHMI PRASANNA 38
Objective:TodeveloptheSITforuseagainsttheredpalmweevilonPoothuruth
IslandnearDalavapuramIslandinKerala.

Area:
•PoothuruthIslandnearDalavapuramIslandinKerala
Sterilization:
•Maleredpalmweevilswereirradiatedimmediatelyaftertheiremergencefromcocoons,sincetheirsperm
remainsimmatureandvulnerabletodominantlethalmutationswhenexposedtogammaradiation.
•Irradiationwascarriedoutinagammaradiationchamber(model900)withacapacityofonelitreandata
doserateof1Gy/16seconds,whichwasascertainedbyFrickedosimetry.
SIDDU LAKSHMI PRASANNA 39
Theentirestudywasconductedintwophases:
(1)throughinitiallaboratorystudiestodeterminetheoptimaldoseofradiationforsterilizinginsects,and
(2)trialreleasesofsterilemaleweevilsinacoconutgardentoascertaintheeffectivenessofthemethodin
thefield.
R. KRISHNAKUMAR and P. MAHESWARI (2007)

Type of
infestatio
n
Development stage
I
Instar
II InstarIII
Instar
IV
Instar
V InstarVI
Instar
VII
Instar
VIII
Instar
IX
Instar
Prepupae
and
pupae
Adults
Crown
infestatio
n
2.22
(1.79)
1
1.09
(1.45)
9.96
(3.31)
1.78
(1.67)
1.72
(1.65)
3.93
(2.22)
14.29
(3.91)
14.29
(3.91)
19.97
(4.58)
29.91
(5.56)
2.96
(1.99)
Stem
infestatio
n
0.72
(1.31)
2.50
(1.88)
2.57
(1.89)
0.56
(1.25)
6.73
(2.78)
9.76
(3.28)
13.83
(3.85)
12.10
(3.62)
19.34
(4.51)
19.97
(4.58)
3.75
(2.18)
Bole
infestatio
n
4.48
(2.34)
4.36
(2.32)
3.75
(2.18)
1.28
(1.51)
8.98
(3.16)
10.56
(3.40)
12.54
(3.68)
26.56
(5.25)
9.96
(3.31)
12.91
(3.73)
6.18
(2.68)
Critical
difference
0.550.680.550.390.690.650.63 0.91 1.05 0.43 0.28
The number of red palm weevil individuals of each life stage present in three types of infested palms (n = 25 for
each type) that were dissected from different red palm weevil infested-coconut plantations of Kerala during 2000-
2001
SIDDU LAKSHMI PRASANNA 40
R. KRISHNAKUMAR and P. MAHESWARI (2007)

Number of sterile male red palm weevils (first generation) released based upon the estimated population density
of wild weevilsin PoothuruthIsland near Dalavapuram, AshtamudiLake in the Kollam district of Kerala.
SIDDU LAKSHMI PRASANNA 41
R. KRISHNAKUMAR and P. MAHESWARI (2007)

Average number of female red palm weevils captured per trap together with native,
sterilized males, or both during each 20-day period after release
SIDDU LAKSHMI PRASANNA 42
R. KRISHNAKUMAR and P. MAHESWARI (2007)

Number of eggs oviposited by native female palm weevils, before and after the release of sterile
insects in each 20-day period after release.
The rate of sterility induced in the native female palm weevil population(as indicated by the percentage egg
hatch) before and after the release of sterile insects in each 20-day period after release.
SIDDU LAKSHMI PRASANNA 43R. KRISHNAKUMAR and P. MAHESWARI (2007)

Estimated number of female red palm weevil present on the island as indicated by mating status
(with native or sterile males) on indicated days after release of sterile males.
SIDDU LAKSHMI PRASANNA 44
R. KRISHNAKUMAR and P. MAHESWARI (2007)

Population development as revealed by trap catches of female palm weevils after seven release sessions (first
generation release).
Number of sterile male red palm weevils (second generation)released based upon the estimated population density of wild
weevils in PoothuruthIsland near Dalavapuram, AshtamudiLake in the Kollam district of Kerala.
SIDDU LAKSHMI PRASANNA 45
R. KRISHNAKUMAR and P. MAHESWARI (2007)

Average number of female red palm weevils captured per trap together with native, sterilized
males, or both during each 20-day period after release (second generation release).
Number of eggs oviposited by native female palm weevils, before and after the release
of sterileinsects in each 20-day period after release (second generation release).
SIDDU LAKSHMI PRASANNA 46
R. KRISHNAKUMAR and P. MAHESWARI (2007)

The rate of sterility induced in the native female palm weevil population (as indicated by the percentage egg hatch)
before and after the release of sterile insects in each 20-day period after release (second generation release).
Estimated number of female red palm weevils present on the island as indicated by mating status (with native
or sterile males) on indicated days after release of sterile males (second generation release).
SIDDU LAKSHMI PRASANNA 47
R. KRISHNAKUMAR and P. MAHESWARI (2007)

Population development as revealed by trap catches of female palm weevils after seven release sessions
(second generation release).
Number of sterile male red palm weevils (third generation) released based upon the estimated population density
of wild weevils in PoothuruthIsland near Dalavapuram, AshtamudiLake in the Kollam district of Kerala.
SIDDU LAKSHMI PRASANNA 48
R. KRISHNAKUMAR and P. MAHESWARI (2007)

Conclusion
•SITwasusedagainsttheredpalmweevilasacomponentofanAW-IPMstrategy.
•Whentheweevilpopulationislow,theSITcanbeaneffectivemethodofmanagementofthepest.
•However,withhigherweevilpopulations,suppressionmethodsofpestmanagementsuchaspheromonetrapsand
chemicalcontrolmeasuresshouldbecarriedouttoreducepestpopulationbeforeinitiatingSITrelease.
SIDDU LAKSHMI PRASANNA 49

Community approach for implementation of eco-friendly IPM technology for fruit
fly management in fruits and vegetables in agri-export zones of south Gujarat
Organization:
•RashtriyaKrishiVikasYojanaisthekeytosupportstate
anddistrictactionplansfundedbytheMinistryof
Agriculture,GOI.
•NavsariAgriculturalUniversity
TechnologyUsed:
•MaleAnnihilationTechnique(MAT)byusingsexual
lures
Managementtechnique:
•NAUhasdesignedandcommercializedaneco-friendly,
economicalandeasilyadoptablefruitflytrappopularly
knownas"Nauroji-StonehouseFruitFlyTrap“in
2008.
SIDDU LAKSHMI PRASANNA 50
NAU,2008

Sr.
No.
DistrictNo. of
Villages
No. of
Farmers
Area (ha) No. of
Traps
MangoSapota Cucurbit
vegetables
Navsari
1 Gandevi 32 2325 890 952 - 20612
2 Chikhali 55 3799 1136 719 395 25091
Valsad
3 Valsad 35 2822 1390 304 - 21343
4 Parda 28 1864 1406 223 - 20001
5Dharampur 37 2280 814 - 162 11481
6Kaparada 22 2249 819 - 272 12112
Total 209 15339 6485 1196 579 110642
Table: Beneficiaries of villages and number of farmers using the traps against fruit fly in two districts of south Gujarat
Implemented during the year 2008-09 and 2009-10
SIDDU LAKSHMI PRASANNA 51
NAU,2008

SIDDU LAKSHMI PRASANNA 52
Male and female fruit flies Infected and healthy fruits of Mango
NAU,2008

Result:
Sr. No.Crop Infestation In per centagePer cent
yield
increased
Treated
Orchards
Untreated
orchards
1 Mango 3.06
(0 to 4%)
30.34
(30 to 35 %)
27.27
2 Cucurbits 2.5 -4.6
(0 to 4%)
19 -32
(30.50%)
27
•This Project costs around Rs 7.86 crores and benefitted farmers to the tune of 49 crores.
•An estimated benefit of Rs 81,840 per hectare is achieved by spending a mere Rs 350.
Benefit: cost (233.8: 1).
Conclusion:
SIDDU LAKSHMI PRASANNA 53
NAU,2008

CRISPR/Cas9 mediated knockout of theabdominal-Ahomeotic gene in
the global pest, diamondback moth (Plutellaxylostella)
(Huang et al., 2016)
Objective:Genefunctionstudiesbasedongenomeeditinganddevelopingnovelapproaches
forgeneticcontrolofthegloballyimportantpestinsectdiamondbackmoth(Plutellaxylostella)
SIDDU LAKSHMI PRASANNA 54
YupingHuang,YazhouChen,BaoshengZeng, YajunWang, Anthony A. James,Geoff M. Gurr,
GuangYang, XijianLin, YongpingHuang And MinshengYou

Materialsandmethods:
Experimental DBM strain: The experimental DBM strain (Fuzhou-S)was derived from insecticide-
susceptible insects collected from a cabbage (Brassica oleracea var. capitata) crop in Fuzhou (26.08°N,
119.28°E)
Cloning of Pxabd-A gene
SIDDU LAKSHMI PRASANNA 55
(Huang et al., 2016)

Figure:
(A)GenestructureoftheP.xylostella
abdominal-Aortholog(Pxabd-A).
(B)Phylogenetictreeofabd-Abasedonthe
alignmentofaminoacidsequencesof12
species.
Thetreeinvolvesthreemajorbranches:
Insecta,MyriapodaandCestoidea
(Huang et al., 2016)Phylogenetictreeconstructedusingmaximumlikelihoodmethod
SIDDU LAKSHMI PRASANNA 56

Figure:qRT-PCR-basedexpressionofPxabd-Aatdifferentdevelopmentalstagesandsexesoftheadult.Statistically-significant
differenceswerelabeledwithdifferentlettersorlettersinparenthesesasanalyzedwithone-wayANOVA(Duncan’smultiple
rangetest,P<0.05,n=3).
(Huang et al., 2016)
Abbreviations:
•E,eggs;
•L1,L2-1st,2ndinstarlarvae;
•L3M,L3F,L4MandL4F-3rdand
4thmale/femaleinstarlarvae,
respectively;
•PPMandPPF-maleandfemale
prepupae;
•PMandPF-maleandfemalepupae;
•MandF-maleandfemaleadults.
SIDDU LAKSHMI PRASANNA 57

Figure:PhenotypesofPxabd-AG0chimericmutants.
(A)Wild-type1stinstarlarvaeofP.xylostellashowing
threepairsofthoracicappendageslocatedonthe
thoracicsegments(T1-3,whitearrowheads)andfour
abdominalappendagesonfourofthenineabdominal
segments21(A1-10,yellowarrowheads);
(B),(C)and(D)showsdisorderofbodyin1stinstar
larvae(redarrowheads),4thinstarlarvaeandpupae,
respectively.
Wild-type:WT;
CRISPR-treated-disruptionofPxabd-Aindividuals;
(Huang et al., 2016)
SIDDU LAKSHMI PRASANNA 58

(E)ThedifferenceofprolegsbetweenWTandG0mutants.
TheredarrowssignifytheblackcrochetdisappearedfromsomeprolegsinCRISPR-treatedmutants;
(F)IllustrationforformedtestisinA5-A6abdominalsegmentsofthe4thinstarmalelarvae.
Theredarrowsshowthepositionoftestis.
Thewild-typetestisoflarvaeisbacilliformmainlypresentinginA5andpotentiallyextendingtoA6.
CRISPR-treatedmalelarvaeshowdefectiveshapesoftestis9
(Huang et al., 2016)
SIDDU LAKSHMI PRASANNA 59

Figure:CRISPR-treatedmaleadultsweresterileandabnormalgenitals.
(A)TheexternalgenitaliaofwildtypeandG0mutatedmaleadults.
Theredarrowsindicatethattheexternalgenitaliaofallmutatedmalesweredeviatedfromtheoriginallocation;
(B)Theinternalgenitalia(testis)werehighlyabnormal.
Testisofthewildtypemaleshowsoneregularlyspheroidal(leftlane).
Theredarrowsindicatethatirregularsphericaltestis(middlelane)inCRISPR-treatedmales,andsomehavetwospheroidal
testes(rightlane). (Huang et al., 2016)
SIDDU LAKSHMI PRASANNA 60

Conclusion:
SIDDU LAKSHMI PRASANNA 61
•MutationsofPxabd-Aweretransmissibletotheprogenyindicatingthefeasibilityofthe
CRISPR/Cas9systeminnon-modelorganisms
•CRISPR/Cas9mediatedgenomeeditingforP.xylostellagenefunctionstudiesisstillchallenging
becausemostgenesarerecessivesoonlyhomozygousmutantsdisplayphenotypes

SIDDU LAKSHMI PRASANNA 62
Successful Area Wide Eradication Of The Invading Mediterranean
Fruit Fly In The Dominican Republic
J.L.Zavala-lópez,G.Marte-diazAndF.Martínezpujols
Objective: To eradicate the Mediterranean fruit fly in the Dominican Republic
Technologyused:
•SIT-Sterileinsecttechniquetoreleasemaleinsects
•Pheromonetrapsforthedetectionoffruitflylarvaeandadults
(Zavala-lópezet al., 2019)

SIDDU LAKSHMI PRASANNA 63
PhasesandactionsoftheeradicationprocessfollowedduringtheMediterraneanfruitflyeradicationcampaign
2015-2017intheDominicanRepublic(dottedlineisatheoreticalrepresentationofpopulationdensity)
(Zavala-lópezet al., 2019)

SIDDU LAKSHMI PRASANNA 64
MaximumnumberoftrapsusedinthenationalMediterraneanfruitfly
trappingnetworkestablishedin2015intheDominicanRepublic
(Zavala-lópezet al., 2019)

SIDDU LAKSHMI PRASANNA 65
Numbersofinstalledtraps(solidbars)andservicinglevelsofthesetraps(line)intheeastern
region,includingLaAltagraciaProvince,duringthe2015-2017eradicationcampaign.
(Zavala-lópezet al., 2019)

SIDDU LAKSHMI PRASANNA 66
Numbers of detected wild adult flies (black bars) and larvae(line) of Ceratitis capitata per week
during the 2015-2017 eradication campaign in the eastern region of the Dominican Republic
(Zavala-lópezet al., 2019)

SIDDU LAKSHMI PRASANNA 67
Numbers of fruit samples collected (black bars) and Mediterranean
fruit fly larvae detected(brown line) during 2015-2017.
(Zavala-lópezet al., 2019)

SIDDU LAKSHMI PRASANNA 68
Exports of horticultural products from the Dominican Republic to
the USA between 2011 and 2017, including the export ban in March
2015 because of the Mediterranean fruit fly invasion.
(Zavala-lópezet al., 2019)

SIDDU LAKSHMI PRASANNA 69
•ThelastadultMediterraneanfruitflywasdetectedintheDominicanRepublicinthesecondweekof
January2017.
•EradicationofthepestfromtheDominicanRepublicusinganIPMapproachincludingarea-wideSIT
applicationwasconfirmedinApril2017afteraperiodofatleastthreefulllifecycleswithzero
captures.
•TheofficialdeclarationoferadicationtookplaceinJuly2017aftersixgenerationsofzerocatchesand
anadditionalverificationtrappingnetworkestablishedinhighriskareas,includingpreviousdetection
sites
Conclusion

Technology Used By Field Managers For Pink Boll Worm Eradication With Its
Successful Outcome In The United States And Mexico
R.T.StatenAndM.L.Walters
SIDDU LAKSHMI PRASANNA 70
R.T.StatenAndM.L.Walters(2020)
Objective:Toeradicateakeypestofcottonpinkbollwormoveralargegeographicareaintegratingsterile
insecttechniqueincontiguousinfestedareasi.e.,Chihuahua,Sonora,andBajaCaliforniainMexicoandalsoin
thestatesofTexas,NewMexico,Arizona,andCaliforniaintheUSA.

•TheprogrammecoveredallactivitiesincludingextensiveGPSmapping,pheromonetrapmonitoring
foradultpopulations,andtheintegrationofallcontroloperations.
•ControltoolsincludedBt-cotton,thereleaseofsterilemoths,pheromonematingdisruption,cultural
control,andonaverylimitedbasisconventionalinsecticideapplication.
•Criticalarea-wideresistancemanagementusingsterilemothrelease,ratherthanplantingsusceptible
cottoninrefugia,waspioneeredinthisprogramme.
Materials and methods:
SIDDU LAKSHMI PRASANNA 71
R.T.StatenAndM.L.Walters(2020)

Figure: Pink bollworm eradication phases, dates, and areas in south-western USA and north-western Mexico
SIDDU LAKSHMI PRASANNA 72
R.T.StatenAndM.L.Walters(2020)

ENTITIESINUSA CONTRIBUTIONS
USDA-APHIS Allsterileinsectproduction,USArelease
cost,andUSAregulatoryenforcement
Theproducercommunities: Within-statecostofallnon-SIT2in-field
treatmentsandoperations(includesBt-
cotton,pheromonematingdisruption,and
insecticides)
1.TexasBollWeevilFoundation
(TBWF)1
Allfieldmanagementoftreatments,
monitoring,evaluationandreporting
2.NewMexicoPBWandBW
Foundation1
Allfieldmanagementoftreatments,
monitoring,evaluationandreporting
3.ArizonaCottonResearchand
ProtectionCouncil(ACRPC)
Allfieldmanagementoftreatments,
monitoring,evaluationandreporting
4.CaliforniaCottonPestControlBoard
(CCPCB),fundsmanagedbyCDFA
Allfieldmanagementoftreatments,
monitoring,evaluationandreporting
Brief outline of management entities involved in the USA and their contributions to the
pink bollworm eradication programme
SIDDU LAKSHMI PRASANNA 73
R.T.StatenAndM.L.Walters(2020)

ENTITIESINMEXICO CONTRIBUTIONS
SAGARPA(MinistryofAgriculture,Livestock,
RuralDevelopment,FisheriesandFood),
SENASICA(NationalServiceofHealth,Food
Safety,andAgricultureQuality)
Leadership,Technicalandmanagerialsupport,
criticalfunds(variedyeartoyeardependenton
needsandavailabilityatnationallevel)
USDA-APHIS-InternationalServicesandPlant
ProtectionandQuarantine(PPQ)
Technicalandinformationtechnologysupport,
logisticalsupport,bi-nationalcoordination,
coordinationwithUSAembassyforsecurity,
procurementofsomesupplies,andsomefield
personnelandSIT2coordination
1.ComitéEstataldeSanidadVegetal(stateplant
protectioncommittee)deChihuahua1
Statelevelmanagementofoperations(treatment,
survey,andcontrol),fundingviagrower
assessmentsanddirectcontributions
2.ComitéEstataldeSanidadVegetal(stateplant
protectioncommittee)deSonora1
Statelevelmanagementofoperations(treatment,
survey,andcontrol),fundingviagrower
assessmentsanddirectcontributions
3.ComitéEstataldeSanidadVegetal(stateplant
protectioncommittee)deBajaCalifornia
Statelevelmanagementofoperations(treatment,
survey,andcontrol),fundingviagrower
assessmentsanddirectcontributionsSIDDU LAKSHMI PRASANNA 74
R.T.Staten
AndM.L.
Walters(2020)
Brief outline of management entities involved in the Mexico and their contributions to the pink bollworm eradication
programme

Technology used:
All activities were sub-divided into three activities:
1.mapping and data management,
2.surveying (trapping and larval sampling), and
3.control.
1.PreciseGPSlocationsofallfieldswithuniqueidentificationnumbersforeveryfieldanditstraportraps
2.BarcodedidentificationofalltrapswithGPSlocationwithintheprogramme
3.Storageandaccesstoalltrapandcapturedataforsterileandnon-sterilespecimens
4.PreciselocationofallBtandnon-Btcotton(GossypiumhirsutumL.)fields,includingadistinctionforPimacotton,GossypiumbarbadenseL.
5.Accesstodetailedinformationonallprogramme-appliedpheromonematingdisruptiontreatments,conventionalinsecticides,andsterilemoth
releases–thisincludedaccesstoneededregulatorynotificationswithineachstateandflightrecordingsforallsprayandsterilereleaseaircraft,
and
6.Reportsgeneratedfromcompletedatabyservicingdateoranyotherneededtimeintervalandgeographically-definedparameter.
Theuseofthisharmonizedsystemexpeditedcommunicationwithinandbetweenstateprogrammes.
SIDDU LAKSHMI PRASANNA 75
Mapping and data management:
R.T.StatenAndM.L.Walters(2020)

Survey Technology
TrapSelectionandUse
•Deltatrapused
•ThroughoutthePBWprogramme,trapdensitystandardsweresetatonetrapper80acres(32.4ha)intheUSAandonetrapper
20hainMexicoforallBt-cotton(cottongeneticallymodifiedtoexpresstheendotoxinsofBacillusthuringiensisBerliner)(Bt).
•Allcottonfieldswhichdidnotexpresstheseresistanttraitsweretrappedatonetrapper10acres(4.05ha)intheUSAorone
trapper4hainMexico.
TrapLureFormulation
•ThediscoveryanddevelopmentofthefemalesexattractantofthePBWwasthesinglemostimportantentomological
breakthroughofthemid1970’swithrespecttoPBWcontrol.Thename“gossyplure”anditscharacteristicswerefirst
publishedbyHummeletal.in1973.
•Gossyplureisanear50/50ratiomixtureof(ZZ)and(ZE)-7,11hexadecadien-1-olacetateisomers.
MothIdentification
•Theprogrammehadtofacetwocriticalissues,namelyspeciesidentification(taxonomic)andseparationofsterilefromnative
insectspecimens.FromthefirststerilemothreleasesintheSanJoaquinValleyin1968,mothtaxonomicidentificationused
labialpalpbands,andgenitalclaspercharacteristicstoseparateP.gossypiellamalesfromotherspecies.
Larvalsampling:
•Twodifferentsamplingmethodswereused.Bollscollectedfromthefieldcouldbeprocessedwithinbollholdingboxes(Fye
1976)orbydirectexaminationofbollscutopenimmediatelyafterfieldcollection.
SIDDU LAKSHMI PRASANNA 76
R.T.StatenAndM.L.Walters(2020)

Control Technologies
TransgenicCotton
MatingDisruption
•Withinthiseradicationprogramme,matingdisruptionwasusedonallnon-Btcottonduringatleastthefirstfouryears
ofeachstate’soperations.Thehand-appliedPBWRopewaspreferred.
•AeriallyappliedNoMateFiber,NoMateMec(ScentryBiologicals)andCheckMate(Suterra),werealsousedwhen
circumstancesrequired.Theselatterformulationshadaneffectivedisruptiontimeof8to14days.
SterileInsectRelease
•Releasesofsterilemothsinthisprogrammehadtwopurposes:asuppressiontacticinandofitself,andasaresistance
preventionstrategy
•ThereleaseofsterilePBWwasstartedin1968intheSanJoaquinValleyofCaliforniaaspartofa
containment/exclusionstrategytopreventestablishmentofthepest(Statenetal.1993,1999).
•Releaseswerecontinuousinareasofdetectionfrom1970through2011.
Conventionalinsecticides
Culturalcontrol
SIDDU LAKSHMI PRASANNA 77
R.T.StatenAndM.L.Walters(2020)

Summary data pink bollworm programmein Texas 2000
through 2004
Summary data pink bollworm eradication programmein
Texas through 2005-2012
SIDDU LAKSHMI PRASANNA 78
R.T.StatenAndM.L.Walters(2020)

Summary data pink bollworm eradication programmefor
the Ascensiónarea of the state of Chihuahua
Summary data pink bollworm eradication programmefor
the Meoquiarea of Chihuahua
SIDDU LAKSHMI PRASANNA 79
R.T.StatenAndM.L.Walters(2020)

Summary data pink bollworm eradication programme
for the Ojinagaarea of Chihuahua
Summary data pink bollworm eradication
programmefor the Juárez area of Chihuahua
SIDDU LAKSHMI PRASANNA 80
R.T.StatenAndM.L.Walters(2020)

Summary data pink bollworm eradication programmein New
Mexico (Phase I)
Summary data pink bollworm eradication programmein
Arizona (Phase II -Arizona Zone 1)
SIDDU LAKSHMI PRASANNA 81
R.T.StatenAndM.L.Walters(2020)

Summary data pink bollworm eradication programmein
Arizona (Phase IIIa -Arizona Zone 2)
Summary data pink bollworm eradication programmein
Arizona (Phase IIIb-Arizona Zone 3)
SIDDU LAKSHMI PRASANNA 82
R.T.StatenAndM.L.Walters(2020)

Summary data pink bollworm eradication programmein
southern California
Northern Sonora, Mexico pink bollworm
eradication programmesummary data (Phase IIIb)
SIDDU LAKSHMI PRASANNA 83
R.T.StatenAndM.L.Walters(2020)

Mexicali valley, Baja California, Mexico pink bollworm
eradication programmesummary data
SIDDU LAKSHMI PRASANNA 84
R.T.StatenAndM.L.Walters(2020)

Conclusions
•OnNovember22,2012tenmunicipalitiesinnorth-westernChihuahuaweredeclaredfreeofPBW(asofficially
eradicated).
•Ascensiónworkareawhichhadnothadadetectedpopulationfor5years.Subsequently,onDecember8,2014,
eradicationwasdeclaredfortheremainderofthestateofChihuahua.
•OnFebruary3,2016,PBWwasdeclarederadicatedfromSonoraandBajaCalifornia(SENASICA2018).
•ThestateofTamaulipas,whichiscontiguoustoTexasandhaslikewisebeeninvolvedinPBWeradication
activities,alsohadnoPBWcapturesin2018,buthasnotyetbeendeclaredPBW-free(SADER2018).
•IntheUSA,eradicationcouldonlybedeclaredafterBt-cottonlabellingissuesforrefugia(growervariety
selection)wereresolved.
SIDDU LAKSHMI PRASANNA 85

SIDDU LAKSHMI PRASANNA 86
Area Wide Management Of Mediterranean Fruit Fly With The Sterile Insect Technique In
South Africa: New Production And Management Techniques Pay Dividends
J-H. Venter , C. W. L. Baard and B. N. Barnes
Technologyused:
•SIT(Sterileinsecttechnique)
•SterilemalesproducedwithgeneticsexingstrainVIENNA8havingmorequalitybasedonthetemperature
sensitivelethal(tsl)mutation
•FruitflydensitiesincommercialorchardsaremonitoredwithChempac®buckettrapsbaitedwithathree-
componentlure(Biolure)thataredeployedatadensityof1trapper20ha
•“Attractandkill”baitstationslimitedtobackyardsandhotspotsonfarms.
Objective: To manage some of the fruit production areas of south Africa as areas of low
pest prevalence by Mediterranean fruit fly.
(Venteretal.,2021)

SIDDU LAKSHMI PRASANNA 87
Figure:AveragenumbersofwildMediterraneanfruitflies/trap/day(FTD)trappedinthreefruitproduction
areasunderSITapplicationduringthefirst20weeksoftheyear(=harvestperiod)from2007/2010to2017
•WhencomparingtheaverageFTDfor2007-2008
(periodbeforetheMoU)withthatof2015-2017,
theFTDsintheHexRiverValleydecreasedby
73%fromanaverageof4.32to1.14.This
averageincludeshotspotsthatarefocally
supressed.
•ThesamecomparisonfortheElgin/Grabouwarea
indicatesapopulationreductionof19%(although
thereductionfromthe3-yearperiodimmediately
followingtheMoUis32%),fromaFTDof0.50
to0.41.
•WhencomparingtheaverageFTDfor2010-2011
withthatoftheperiod2015-17,theFTDsinthe
WarmBokkevelddecreasedby78%froman
averageof1.46to0.32.
(Venteretal.,2021)

SIDDU LAKSHMI PRASANNA 88
AreaWideFruitFlyProgrammesInLatinAmerica
P. Rendónand W. Enkerlin
Technologyused:
•SIT(Sterileinsecttechnique)
P. Rendónand W. Enkerlin(2021)
FactorsthatContributetoPestMovementandEstablishment
•GlobalTradeandTransport
•HumanMovementandTravel
•ClimateChange
Organizationsinvolved:
•IPPC-InternationalPlantProtectionConvention
•FAO-FoodandAgricultureOrganization
•IAEA-InternationalAtomicEnergyAgency

SIDDU LAKSHMI PRASANNA 89
Introductions, establishment and spread of non-native tephritid
fruit fly species in the Americas.
P. Rendónand W. Enkerlin(2021)

SIDDU LAKSHMI PRASANNA 90
FruitflyAW-IPMprogrammesintheLACregion
P. Rendónand W. Enkerlin(2021)

Putting The Sterile Insect Technique Into The Modern Integrated Pest
Management Tool Box To Control The Codling Moth In Canada
C. Nelson , E. Esch, S. Kimmi, M. Tesche, H. Philip And S. Arthur
SIDDU LAKSHMI PRASANNA 91
(Nelsonetal.,2021)
Objective:Tointegratechemical,culturalandbiologicaltechniquesthat
complementtheSITintoorchardandregionalpestmanagementprogramme
and/orindividualgrowers.

OKANAGAN-KOOTENAYSTERILEINSECTRELEASEPROGRAMME (OKSIRprogramme)
Programarea:
•Approximately600km
2
,andatitsonsetservicedapproximately8900ha(22000acres)ofpomefruit
•Thelargeareatobeserviced,andtheneedforpre-releasesanitation,requiredtheprogrammetobe
implementedsequentiallyacrossthreezones.
•Pre-releasesanitationandconstructionoftherearingfacilitybeganinzone1in1992followedbymoth
releasein1994.
•Pre-releasesanitationstartedin1998and2000inzones2and3,respectively,withmothreleaseoccurringafter
twoyearsofsanitationefforts.
Programservices:
•TheOKSIRprogrammeservicesincludepre-releasesanitation,mandatorySITapplication,surveillance,
enforcementandeducation
SIDDU LAKSHMI PRASANNA 92
(Nelsonetal.,2021)

Figure:LocationoftheOKSIRprogramme.ThemapofCanada(right)indicateswherethe
OKSIRProgrammeislocatedinBritishColumbia,andtheinset(left)illustrateshowthe
programmearea,coveringalineardistanceofca.175km,wasdividedintothreezones.
SIDDU LAKSHMI PRASANNA 93
(Nelsonetal.,2021)

Pre-ReleaseSanitation:
•Thefirstphaseoftheprogrammewaspre-releasesanitation.Thisentailedtheremovalofthousandsof
unmanaged/abandonedhosttreestoreducerefugiaforthecodlingmoth.
•Theprogrammealsocoordinatedandsupportedthesuppressionofcodlingmothpopulationsinorchardsthroughtheuseof
conventionalinsecticides,culturalpracticesandpheromone-mediatedmatingdisruption.
•Wildcodlingmothpopulationshadtobereducedasmuchaspossiblethroughoutallcommunitiestoincreasetheefficiency
ofsubsequentSITapplication.
MandatorySITApplication
•Theprogrammedeliversamandatoryarea-widecontrolapplicationofsterilecodlingmothstoeveryorchardproperty,i.e.
2000sterilecodlingmothsofmixedsex(1:1)/ha/weekforapproximately20weeksperseason.
Surveillance
•Everyorchardpropertyismonitoredwithpheromone-baitedtraps(1trap/ha)thatarecheckedonceaweek.
•Othermonitoringtechniquesinclude:in-seasonfruitinspections,end-of-seasonassessmentoffruitdamage,andbandingof
hosttrees(corrugatedcardboardstripswrappedaroundtreestotrapmaturelarvae;laterthestripsareremovedand
destroyed).
SIDDU LAKSHMI PRASANNA 94(Nelsonetal.,2021)

Results:
•Thedashedlineindicatestherecommendedthreshold(twocodlingmothspertrap/weekfortwoconsecutiveweeks)at
whichinsecticidecontrolssupplementarytotheSITwouldberequired.
Mean wild codling moth captures per trap per week from 1995 to 2017
SIDDU LAKSHMI PRASANNA 95
(Nelsonetal.,2021)

Percentofprogrammeareawith>0.2%offruitdamagedbythecodlingmoth.
The dashed line indicates 10% of the programmearea, an economic target set by the Programme’sBoard;
SIDDU LAKSHMI PRASANNA 96
(Nelsonetal.,2021)

Estimated pesticide active ingredient (kg or L) applied per ha per year for all zones
managed by the SIR programmefrom 1991 to 2016
SIDDU LAKSHMI PRASANNA 97
(Nelsonetal.,2021)

Conclusions:
•TheOKSIRprogrammeclearlyillustratesthatarea-wideintegrationoftheSITcansuccessfullymanagecodling
mothpopulationsinanenvironmentallysoundway.
•Inaddition,itcaneasilybeintegratedwithotherbiologicalcontrolmethodssuchaspheromone-mediated
matingdisruptionandCpGV.
•Mostimportantly,theSITcanreplacecontrolproductsthatarenolongerenvironmentallyoreconomically
viable,andhenceprovideanexcellentbiologicallysustainablesolutionforcontrollinginsectpests.
SIDDU LAKSHMI PRASANNA 98
(Nelsonetal.,2021)

Biologicalcontrol:
DEVELOPMENT AND AREA WIDE APPLICATION OF BIOLOGICAL CONTROL USING
THE PARASITOID AphidusGifuensisAGAINST MyzusPersicaeIN CHINA
•AphidiusgifuensisAshmead(Hymenoptera:Braconidae)isanimportantendoparasitoidofmanyaphids.
•Theaugmentativeuseofthisparasitoidhasachievedarea-widesuppressionofM.persicaeintobaccoandother
cropsinChina.Thisapproachisbeingappliedonlargeareas,coveringmorethan3millionhabetween2010and
2015.
•Thistechnologyhaseffectivelycontrolledtheaphidontobacco,whileotherbeneficialinsectshaveincreasedin
theabsenceofinsecticideapplications,furtherprotectingbiodiversityinthefieldsandprovidinglong-term
ecologicalbenefitsandsolvedinsecticideresistanceproblems
SIDDU LAKSHMI PRASANNA 99
Y.B.Yu,H.L.Yang,Z.Lin,S.Y.Yang,L.M.Zhang,X.H.Gu,C.M.LiAndX.Wang

Comparison of costs of biological and chemical control of aphids
SIDDU LAKSHMI PRASANNA 100

Biological Control: Cornerstone Of The Area Wide Integrated Pest
Management For The Cassava Mealy Bug In Tropical Asia
K.A.G.Wyckhuys,W.Orankanok,J.W.Ketelaar,A.Rauf,G.GoergenAndP.Neuenschwander
•ThecassavamealybugPhenacoccusmanihotiMat.‐Ferr.(Hemiptera:Pseudococcidae)isagloballyimportantpest
ofcassava(ManihotesculentaCrantz),acropthatiscultivatedonnearly25millionhaacrossthetropics.
•TheendophagousparasitoidAnagyruslopeziDeSantis(Hymenoptera:Encyrtidae)introducedinThailandin
2009
•Thehost-specificA.lopezieffectivelysuppressesthecassavamealybugacrossarangeofagro-climatic,biophysical
andsocio-economiccontextsintropicalAsia,andconstitutesacentralcomponentofarea-wideintegratedpest
management(AW-IPM)forthisglobalpestinvader.
SIDDU LAKSHMI PRASANNA 101

SIDDU LAKSHMI PRASANNA 102
Benefits of wide area management:
•Itenablesmanyproducerstopoolresourcestoutilizetechnologiesandexpertisethat
aretooexpensiveforindividual.
•Itcanavoidexternalcostsduetocoordination.
•Costofpestmonitoring,detectionandsuppressionbeenminimized.
•Helpfulinfirmcommunicationanddecisionmakingofriskmanagementofpest
control
•Automaticcontributionoflegalauthorityasitisabsolutelyessential.

SIDDU LAKSHMI PRASANNA 103
Conclusions:
•Theuseofchemicalinsecticideshasbecomeincreasinglycomplexduetopestresistance,
environmentalconcerns,andrestrictionsonresiduelevelsbyimportingcountries.
•Intheinterestsofreducinginsecticideuse,aswellaspre-andpost-harvestcroplosses,while
maintainingsustainableagriculturalsystems,AW-IPMprogrammesintegratingtheSIThave
provedeffectiveinsupportingsafeandenvironment-friendlyinternationaltrade.
•Makingacommunityaspestfreeareathroughthistechnology
•ThisalsousedinLivestockpestmanagementandhumandiseasesvectorsetc.,

104SIDDU LAKSHMI PRASANNA
Tags