Area wide integrated pest management is useful for the management of destructive pest in large areas through the use of different techniques such as sterile male technique, mating disruption etc..,
Size: 6.08 MB
Language: en
Added: Sep 12, 2022
Slides: 104 pages
Slide Content
AW-IPM : Development and Field Applications
Siddu Lakshmi Prasanna
Ph.D. Scholar
Department of Plant Pathology
1
SIDDU LAKSHMI PRASANNA 2
Introduction
•Pest control and pest management
•Why we need to stop injudicious use of pesticides?
•Need of IPM
•Constrains in IPM implementations
•Difference between different types of Pest Management
Area Wide Pest Management
•How AWIPM differs from IPM?
•History of AWIPM programmes across the world
•Status or history AWIPM programmes in India
•Approaches of AW-IPM
•Models to be followed in AW-IPM
Case histories of AW-IPM programmes
•Benefits of AWIPM programmes
•Conclusions
Contents
bio-physical
communication
personal
socio-
economic
technological
Constraintsexperience
d byIPMand Non-
IPMfarmers
Constraints of IPM
SIDDU LAKSHMI PRASANNA 4
Conventional Pest Management
•Chemicalintensive
•Largelyreactivetopestoutbreaks
•Lessemphasisonprevention
•Emphasizeskillingpestsdirectly
•Majorpurposeofsitevisitsistoapply
pesticides
•Generalandwidespreaduseofpesticides
Integrated Pest Management
•Knowledgeintensive
•Systematicprogramoflongtermpestcontrol
•Majoremphasisonpreventionofpest
problems
•Emphasizesmodificationofconditionsthat
favorpests
•Majorpurposeofsitevisitsistoinspectand
monitor
•Pesticideuseistolimitintermsoftypes,
amountandlocations
•Itisafieldapproach
SIDDU LAKSHMI PRASANNA 5
Vs
Anarea-wideinsectcontrolprogrammeisalong-termplannedcampaignagainstapestinsectpopulationina
relativelylargepredefinedareawiththeobjectiveofreducingtheinsectpopulationtoanon-economicstatus
(Lindquist,2001).
•AWMisparticularlyrelevantforpestspeciesthataremobile,haveawidehostrange(cropandnon-crop),andare
locallygeneratedinthefarmingsystem,andenablesmanagementstrategiesonalarger-scalethatmaybemore
effectivethanapaddock-by-paddockapproach.
•AWMhastwokeyobjectives:
1.reduceoverallpestpressureinparticipatingregionsbymanipulatingthesizeofthelocalpopulation
2.manageinsecticideresistancethroughcoordinatedrotationofinsecticidegroups.
Area wide-Integrated Pest Management
SIDDU LAKSHMI PRASANNA 6
Area Wide Pest Management
1.ItstreatsallhabitatsofPestinfestation
2.Itisimplementedbyanorganizationsolely
dedicatedtopestmanagementinaregion
3.Itisamultiyearplanningapproachand
proactiveinnature
4.Itreliesonbothtraditionalandadvanced
tacticsofPestmanagement
Conventional approaches
1.ItDefendonlyvaluableentitieslikecrop,
livestockfromdirectpestattack
2.ItisImplementedbyindividualproducers
3.Itrequiresminimalforwardplanningand
reactiveinapproach
4.Itreliesontraditionaltacticsofpest
management
SIDDU LAKSHMI PRASANNA 7
(Lindquist,2000)
Approaches of AW-IPM
Sterile
insect
technique
Mating
disruption
with
pheromones
Genome
editing
through
CRISPR
Enterobacter
(Gut
microbiome
of insects)
Cytoplasmic
incompatibility by
Wolbachia
release of insect
carrying
dominant lethal
(RIDL)
Male
Annihilation
Technique
Inundative
release of
parasitoid
insects
(Biological
control)
SIDDU LAKSHMI PRASANNA 11
There are four
components of Sterile
Insect Technique
1. Mass Rearing
2. Sterilization
3. Release
4. Monitoring
ComponentsofSIT
SIDDU LAKSHMI PRASANNA 13
SIDDU LAKSHMI PRASANNA 14
Fig: Wild type population and Sterile insect technique release population work in a field condition
Generation Natural
population
of Female
(Assumed)
Sterile Male
insect
Released
S:F Male
ratio
Infertile
Progeny(%)
No. of
female in
each
generation
1 1000 2000 2:1 66.7 333
2 333 2000 6:1 85.7 47
3 47 2000 42:1 97.7 1
4 1 2000 2000 99.9 0
Knipling’sSITModel
Knipling(1955)alsoemphasizedonfollowingprerequisitesbeforedevelopingandapplyingSITwhich
includes
•Estimatesofnaturalpopulationoftargetinsectmustbeaccurate
•Rearenoughsterileinsectstooverfloodnaturalpopulation.
•Thereleasedinsectmustbedistributeduniformly
•Irradiationmustproducesterilitywithoutaffectingcompetitivematingabilityandlongevityofinsect.
•Femaleshouldmateonlyonce.
•Iffemalesmatefrequentlythenmalesshouldalsomatefrequently
SIDDU LAKSHMI PRASANNA 15
SIDDU LAKSHMI PRASANNA 16
Various SIT programmesfollowed
S.noSterileInsecttechniqueagainstInsectPests Countries Reference
1.NewWorldScrewworm,CochliomyiahominivoraxUSAMexicoLibya Lindquistetal.,1992
2.Mediterraneanfruitfly,Ceratitiscapitata VariouspartsofLatinAmerica Hendrichsetal.,1995
3.Codlingmoth,Cydiapomonella Canada,USAandSwitzerlandIAEA,2001andThacker2002
4.Tsetsefly,Glossinapalpalis Zanzibarisland,Tanzania
Joint FAO/IAEA Division www.iaea.or.at:80/programs
5.Onionfly,Deliaantiqua Netherlands Thacker(2002)
6.Pinkbollworm,Pectinophoragossypiella California,USA Thacker(2002)
7.Bollweevil,Anthonomousgrandis Lousiana,USA Thacker(2002)
8.Housemosquito,Culexquinquefasciatus Florida,USA Thacker(2002)
9.Malarialmosquito,Anophelesludens Elsalvador Thacker(2002)
Key social factors influencing uptake of area-wide management (AWM) integrating the Sterile Insect Technique
(SIT), framed as social barriers, facilitators, institutional mechanisms and personal factors.
(Mankad et al., 2017)
SIDDU LAKSHMI PRASANNA 17
•InIntegratedpestmanagement,pheromonesareusedindifferentwayssuchasmonitoring
throughtrapcatch,killingthroughmasstrapping,matingdisruptionandattracticide(lureandkill)
methods.
•Pheromonetrapsinstoredinsectmanagementcanbeusedtodetectboththepresenceandthedensityofpests.
•Insectssendthesechemicalsignalstohelpattractmates,warnothersofpredators,orfindfood.
•Example:sexpheromones,aggregationpheromones,alarmpheromones,etc.
Pheromones
SIDDU LAKSHMI PRASANNA 18
Fig: Orientation of male moth towards female moth after detecting the pheromone lure
•Push-pullstrategiesinvolvethebehavioralmanipulationofinsectpestsandtheirnaturalenemiesviathe
integrationofstimulithatacttomaketheprotectedresourceunattractiveorunsuitabletothepests(push)while
luringthemtowardanattractivesource(pull)fromwherethepestsaresubsequentlyremoved.
•Pushingandpullingisachievedbyusingrepellent(push)andattractant(pull)cues,usuallyvolatilesincluding
pheromonesandallelochemicals.
(Alkema et al., 2019)
SIDDU LAKSHMI PRASANNA 19
Mating disruption with Pheromone traps
•Matingdisruptionisoneconceptwheresyntheticpheromonecompoundsareemployedto
achievematingfailureofinsectpestsingivenareaorcroptoreducepestpressureandhencepesticideload
onthecrop.
SIDDU LAKSHMI PRASANNA 20
SIDDU LAKSHMI PRASANNA 21
Mechanisms Of Mating Disruption
Disruptantscaninterferewithmatelocationin3principalways:
1.Competition:Malesmayspendtimeandenergyorientingtosourcesofformulation.
•Avariantonthismethodaddsinsecticidetopointsourcesofpheromone,an“attractandkill”strategy(Cork2016).
2.SensoryImpairment:
•Generally,suchimpairmentcanbeduetoadaptationofeithersensoryreceptorsorhabituation,whichisacentral
nervoussystemphenomenon,orbothfactors.
3.Camouflage:
•Thepheromoneplumefromacallingfemalebecomesimperceptibleamongstthebackgroundofdisruptant.
(Arifet al., 2017)
Examples of some of the lures:
SIDDU LAKSHMI PRASANNA 22
Genome editing by CRISPR-Cas9:
•ClusteredRegularlyInterspacedPalindromicRepeats/CRISPR-associatedprotein9,simplyknownasCRISPR/Cas9,
isausefulgenetictoolforefficientsite-directedgenomeediting.
•TheCRISPR/Cas9systemconsistsofaCas9RNA-guidednucleaseandCRISPRRNA(crRNA),whichguidesthe
Cas9enzymespecificallytothetargetsequenceinthegenome.
Functionsininsects:
•UnravellingSexDeterminationPathwaysinInsects
•Site-directedMutagenesisinPestInsectstoEnablePopulationControl
•GeneDriveSystemsforPopulationSuppressionorReplacement
•Knockigoutorknockingdownofthegeneresponsibleformovementandfeedingininsects.
SIDDU LAKSHMI PRASANNA 23
•Insectsrepresentthemostsuccessfultaxonofeukaryoticlife,beingabletocolonizealmostallenvironments.
•Microbialsymbiomesassociatedwithinsects,impactimportantphysiologies,andinfluencenutritionalandimmune
systemstatus,andultimately,fitness.
•Avarietyofbacterialphylaarecommonlypresentininsectguts,includingGammaproteobacteria,
Alphaproteobacteria,Betaproteobacteria,Bacteroidetes,Firmicutes,Clostridia,Spirochetes,Verrucomicrobia,
Actinobacteria,andothers.
•Amongthem,thegenusEnterobacterhasbeenrecognizedasadominantinhabitantofthegutforseveralimportant
insectspecies,indicatinganessentialfunctionalroleforthistaxon.
•EnterobacterisagenusofcommonGram-negative,facultativelyanaerobic,rod-shaped,non-spore-forming
bacteriaofthefamilyEnterobacteriaceae.
Functions of Enterobacter:
•Nitrogen fixation
•Degradation of Plant Cell Wall Components
•Degradation and Biosynthesis of Other Nutrients
•Probiotic Effects of Enterobacter
Insect Gut microbiome
SIDDU LAKSHMI PRASANNA 25
(Qadriet al., 2020)
SIDDU LAKSHMI PRASANNA 26
Functionsofgutmicrobiotaintephritidfruitflies
Essential amino
acids, Protein
synthesis, Egg
production
Recycle urea,
plant derivatives
to protein
Increase male
size, copulatory
success
Carbon, nitrogen
metabolism
Suppress the
pathogenic
bacteria
Reduce rearing
duration,
improved survival
Degrades purines,
polysaccharides to
usable nitrogen
Provides vitamins,
lipids and
aminoacids
Overcome the
host plant
resistance
Resistance to
insecticides
Detoxification of
plant toxins
Work as
diazatrophs for
nitrogen fixation
Larval
development,
pupal weight and
sperm storage
SIDDU LAKSHMI PRASANNA 27
•Wolbachia is an obligate intracellular and maternally transmitted α proteobacteria. They reside in reproductive
tissues of invertebrate hosts.
•They are found in 60 per cent of insect species.
•Wolbachia causes reproductive alteration such as
1.Parthenogenetic development
2.Convert genetic males into females
3.Killing males in early developmental stages
4.Cytoplasmic incompatibility
Cytoplasmic Incompatibility (CI) by Wolbachia
Cytoplasmic incompatibility results in mortality of the embryos produced (Bourtzis2007)
Unidirectional CI
Wolbachia Infected males mated to uninfected females. It results in 100 % eggmortality
Bidirectional CI
When both males and females carrying incompatible Wolbachia strain mates
Wolbachia induced cytoplasmic incompatibility
SIDDU LAKSHMI PRASANNA 28
•Itisacontrolstrategyusinggeneticallyengineeredinsectsthathave(carry)alethalgeneintheirgenome(an
organism'sDNA).
•Lethalgenescausedeathinanorganism,andRIDLgenesonlykillyounginsects,usuallylarvaeorpupae.
Male homozygous insect for dominant lethal which was reared under permissive condition when released in the wild population to mate with
wild female then F1 progeny is produced, since these progenies are heterozygous for dominant lethal gene so this gene will express and
cause mortality as also permissive condition is not present under natural condition. Permissive condition like tetracycline in the diet
suppresses the expression of dominant lethal gene in Homozygous male
SIDDU LAKSHMI PRASANNA 30
SIDDU LAKSHMI PRASANNA 32
➢Maleannihilationinvolvesthetrappingofmalefruitfliesusingahighdensityoftrappingstations
consistingofamalelurecombinedwithaninsecticide(usuallytechnicalmalathionorspinosad),to
reducethemalepopulationtosuchalowlevelthatmatingdoesnotoccur.
Male Annihilation Technique (MAT)
Models to be followed in AW-IPM:
Fixed area model
•thecontrolareaisfixedinsizeandthere
isnoadvancingpestcontrolfront,
•thereisacoreareatobeprotectedanda
bufferzoneonallsidesofthecorearea.
Rolling carpet model
•thecontrolareaisexpandingaccording
tothe―Rolling-carpetprinciple
•thereisabufferononlyonesideand
pestfreezonesontheothersides.
•Boththesemodelsconsistoftwocomponentssuchasabiologicalcomponent(i.e.,dispersal)andaneconomic
component(break-evenanalysis).
•Thedispersalpartdescribesthemovementoftheinsectsacrossthebufferzoneandwilldeterminethewidth
ofthebufferzone.
•Theeconomiccomponentofthemodelwill,givenacertainwidthofthebufferzonedeterminedbythe
dispersalpart,allowacalculationofcostsandrevenuesofthecontrolprogramandwilldeterminethebreak-
evensizeofthecoreareaatwhichcontrolcostsequalrevenues.
(Barclay et al., 2011)
SIDDU LAKSHMI PRASANNA 33
•Thefirstisthecorearea,inwhichtheaimistoreduce(incaseofasuppressionstrategy)oreliminatethe
pestspecies.
•Thecoreareacontaintheactualresourceofvalue,butinothercases,removalofthepestfromthecorearea
maysimplyhaveastrategicvaluebyprotectingcropssituatedelsewhereorbyprotectinghumansor
livestockagainstdiseasevectors(incaseofacontainmentorapreventionstrategy).
•Thesecondisabufferzonethatbordersthecoreareaononeormoresidesandwithinwhichcontrol
methodsattempttokillthetargetinsectswithinthatzone,includingthosethatenterthezonefrom
outside.
•ThebufferzoneisdefinedastheregionofanAWPMprogramthatislargeenoughtopreventthepestinsect
frommovingfromoutsidethebuffertothecoreareabeforebeingdestroyedbythecontrolmethodsoperating
withinthebufferzone.
(Barclay et al., 2011)
SIDDU LAKSHMI PRASANNA 34
Basic spatial elements of an AW-IPM program:
Dimensions of the area under control:
A is the core area;
T is the total rectangle (core + buffer);
x is the width of the A area;
kxis the length as a multiple of the width;
d is the width of the buffer zone (B) (B = T − A).
(Barclay et al., 2011)
SIDDU LAKSHMI PRASANNA 35
Schematicdiagramoftheexpectedchangesinpestdensityfromaninfestedarea(highpestpressure),
throughthebufferzone(B),intothecorearea(A)inthecaseofaneradicationstrategy.
•Intherolling-carpetapproach,declinesinpestdensityrepresentdeclinesovertime,althoughtheformofthe
slopeisschematic.
(Barclay et al., 2011)
SIDDU LAKSHMI PRASANNA 36
Case studies
SIDDU LAKSHMI PRASANNA 37
Assessment of the Sterile Insect Technique to Manage Red Palm
Weevil Rhynchophorusferrugineusin Coconut
R. KRISHNAKUMAR and P. MAHESWARI
Department of Entomology, College of Agriculture, Vellayani-695522, Thiruvananthapuram,
Kerala, India
SIDDU LAKSHMI PRASANNA 38
Objective:TodeveloptheSITforuseagainsttheredpalmweevilonPoothuruth
IslandnearDalavapuramIslandinKerala.
Area:
•PoothuruthIslandnearDalavapuramIslandinKerala
Sterilization:
•Maleredpalmweevilswereirradiatedimmediatelyaftertheiremergencefromcocoons,sincetheirsperm
remainsimmatureandvulnerabletodominantlethalmutationswhenexposedtogammaradiation.
•Irradiationwascarriedoutinagammaradiationchamber(model900)withacapacityofonelitreandata
doserateof1Gy/16seconds,whichwasascertainedbyFrickedosimetry.
SIDDU LAKSHMI PRASANNA 39
Theentirestudywasconductedintwophases:
(1)throughinitiallaboratorystudiestodeterminetheoptimaldoseofradiationforsterilizinginsects,and
(2)trialreleasesofsterilemaleweevilsinacoconutgardentoascertaintheeffectivenessofthemethodin
thefield.
R. KRISHNAKUMAR and P. MAHESWARI (2007)
Type of
infestatio
n
Development stage
I
Instar
II InstarIII
Instar
IV
Instar
V InstarVI
Instar
VII
Instar
VIII
Instar
IX
Instar
Prepupae
and
pupae
Adults
Crown
infestatio
n
2.22
(1.79)
1
1.09
(1.45)
9.96
(3.31)
1.78
(1.67)
1.72
(1.65)
3.93
(2.22)
14.29
(3.91)
14.29
(3.91)
19.97
(4.58)
29.91
(5.56)
2.96
(1.99)
Stem
infestatio
n
0.72
(1.31)
2.50
(1.88)
2.57
(1.89)
0.56
(1.25)
6.73
(2.78)
9.76
(3.28)
13.83
(3.85)
12.10
(3.62)
19.34
(4.51)
19.97
(4.58)
3.75
(2.18)
Bole
infestatio
n
4.48
(2.34)
4.36
(2.32)
3.75
(2.18)
1.28
(1.51)
8.98
(3.16)
10.56
(3.40)
12.54
(3.68)
26.56
(5.25)
9.96
(3.31)
12.91
(3.73)
6.18
(2.68)
Critical
difference
0.550.680.550.390.690.650.63 0.91 1.05 0.43 0.28
The number of red palm weevil individuals of each life stage present in three types of infested palms (n = 25 for
each type) that were dissected from different red palm weevil infested-coconut plantations of Kerala during 2000-
2001
SIDDU LAKSHMI PRASANNA 40
R. KRISHNAKUMAR and P. MAHESWARI (2007)
Number of sterile male red palm weevils (first generation) released based upon the estimated population density
of wild weevilsin PoothuruthIsland near Dalavapuram, AshtamudiLake in the Kollam district of Kerala.
SIDDU LAKSHMI PRASANNA 41
R. KRISHNAKUMAR and P. MAHESWARI (2007)
Average number of female red palm weevils captured per trap together with native,
sterilized males, or both during each 20-day period after release
SIDDU LAKSHMI PRASANNA 42
R. KRISHNAKUMAR and P. MAHESWARI (2007)
Number of eggs oviposited by native female palm weevils, before and after the release of sterile
insects in each 20-day period after release.
The rate of sterility induced in the native female palm weevil population(as indicated by the percentage egg
hatch) before and after the release of sterile insects in each 20-day period after release.
SIDDU LAKSHMI PRASANNA 43R. KRISHNAKUMAR and P. MAHESWARI (2007)
Estimated number of female red palm weevil present on the island as indicated by mating status
(with native or sterile males) on indicated days after release of sterile males.
SIDDU LAKSHMI PRASANNA 44
R. KRISHNAKUMAR and P. MAHESWARI (2007)
Population development as revealed by trap catches of female palm weevils after seven release sessions (first
generation release).
Number of sterile male red palm weevils (second generation)released based upon the estimated population density of wild
weevils in PoothuruthIsland near Dalavapuram, AshtamudiLake in the Kollam district of Kerala.
SIDDU LAKSHMI PRASANNA 45
R. KRISHNAKUMAR and P. MAHESWARI (2007)
Average number of female red palm weevils captured per trap together with native, sterilized
males, or both during each 20-day period after release (second generation release).
Number of eggs oviposited by native female palm weevils, before and after the release
of sterileinsects in each 20-day period after release (second generation release).
SIDDU LAKSHMI PRASANNA 46
R. KRISHNAKUMAR and P. MAHESWARI (2007)
The rate of sterility induced in the native female palm weevil population (as indicated by the percentage egg hatch)
before and after the release of sterile insects in each 20-day period after release (second generation release).
Estimated number of female red palm weevils present on the island as indicated by mating status (with native
or sterile males) on indicated days after release of sterile males (second generation release).
SIDDU LAKSHMI PRASANNA 47
R. KRISHNAKUMAR and P. MAHESWARI (2007)
Population development as revealed by trap catches of female palm weevils after seven release sessions
(second generation release).
Number of sterile male red palm weevils (third generation) released based upon the estimated population density
of wild weevils in PoothuruthIsland near Dalavapuram, AshtamudiLake in the Kollam district of Kerala.
SIDDU LAKSHMI PRASANNA 48
R. KRISHNAKUMAR and P. MAHESWARI (2007)
Conclusion
•SITwasusedagainsttheredpalmweevilasacomponentofanAW-IPMstrategy.
•Whentheweevilpopulationislow,theSITcanbeaneffectivemethodofmanagementofthepest.
•However,withhigherweevilpopulations,suppressionmethodsofpestmanagementsuchaspheromonetrapsand
chemicalcontrolmeasuresshouldbecarriedouttoreducepestpopulationbeforeinitiatingSITrelease.
SIDDU LAKSHMI PRASANNA 49
Community approach for implementation of eco-friendly IPM technology for fruit
fly management in fruits and vegetables in agri-export zones of south Gujarat
Organization:
•RashtriyaKrishiVikasYojanaisthekeytosupportstate
anddistrictactionplansfundedbytheMinistryof
Agriculture,GOI.
•NavsariAgriculturalUniversity
TechnologyUsed:
•MaleAnnihilationTechnique(MAT)byusingsexual
lures
Managementtechnique:
•NAUhasdesignedandcommercializedaneco-friendly,
economicalandeasilyadoptablefruitflytrappopularly
knownas"Nauroji-StonehouseFruitFlyTrap“in
2008.
SIDDU LAKSHMI PRASANNA 50
NAU,2008
Sr.
No.
DistrictNo. of
Villages
No. of
Farmers
Area (ha) No. of
Traps
MangoSapota Cucurbit
vegetables
Navsari
1 Gandevi 32 2325 890 952 - 20612
2 Chikhali 55 3799 1136 719 395 25091
Valsad
3 Valsad 35 2822 1390 304 - 21343
4 Parda 28 1864 1406 223 - 20001
5Dharampur 37 2280 814 - 162 11481
6Kaparada 22 2249 819 - 272 12112
Total 209 15339 6485 1196 579 110642
Table: Beneficiaries of villages and number of farmers using the traps against fruit fly in two districts of south Gujarat
Implemented during the year 2008-09 and 2009-10
SIDDU LAKSHMI PRASANNA 51
NAU,2008
SIDDU LAKSHMI PRASANNA 52
Male and female fruit flies Infected and healthy fruits of Mango
NAU,2008
Result:
Sr. No.Crop Infestation In per centagePer cent
yield
increased
Treated
Orchards
Untreated
orchards
1 Mango 3.06
(0 to 4%)
30.34
(30 to 35 %)
27.27
2 Cucurbits 2.5 -4.6
(0 to 4%)
19 -32
(30.50%)
27
•This Project costs around Rs 7.86 crores and benefitted farmers to the tune of 49 crores.
•An estimated benefit of Rs 81,840 per hectare is achieved by spending a mere Rs 350.
Benefit: cost (233.8: 1).
Conclusion:
SIDDU LAKSHMI PRASANNA 53
NAU,2008
CRISPR/Cas9 mediated knockout of theabdominal-Ahomeotic gene in
the global pest, diamondback moth (Plutellaxylostella)
(Huang et al., 2016)
Objective:Genefunctionstudiesbasedongenomeeditinganddevelopingnovelapproaches
forgeneticcontrolofthegloballyimportantpestinsectdiamondbackmoth(Plutellaxylostella)
SIDDU LAKSHMI PRASANNA 54
YupingHuang,YazhouChen,BaoshengZeng, YajunWang, Anthony A. James,Geoff M. Gurr,
GuangYang, XijianLin, YongpingHuang And MinshengYou
Materialsandmethods:
Experimental DBM strain: The experimental DBM strain (Fuzhou-S)was derived from insecticide-
susceptible insects collected from a cabbage (Brassica oleracea var. capitata) crop in Fuzhou (26.08°N,
119.28°E)
Cloning of Pxabd-A gene
SIDDU LAKSHMI PRASANNA 55
(Huang et al., 2016)
Figure:
(A)GenestructureoftheP.xylostella
abdominal-Aortholog(Pxabd-A).
(B)Phylogenetictreeofabd-Abasedonthe
alignmentofaminoacidsequencesof12
species.
Thetreeinvolvesthreemajorbranches:
Insecta,MyriapodaandCestoidea
(Huang et al., 2016)Phylogenetictreeconstructedusingmaximumlikelihoodmethod
SIDDU LAKSHMI PRASANNA 56
Figure:PhenotypesofPxabd-AG0chimericmutants.
(A)Wild-type1stinstarlarvaeofP.xylostellashowing
threepairsofthoracicappendageslocatedonthe
thoracicsegments(T1-3,whitearrowheads)andfour
abdominalappendagesonfourofthenineabdominal
segments21(A1-10,yellowarrowheads);
(B),(C)and(D)showsdisorderofbodyin1stinstar
larvae(redarrowheads),4thinstarlarvaeandpupae,
respectively.
Wild-type:WT;
CRISPR-treated-disruptionofPxabd-Aindividuals;
(Huang et al., 2016)
SIDDU LAKSHMI PRASANNA 58
(E)ThedifferenceofprolegsbetweenWTandG0mutants.
TheredarrowssignifytheblackcrochetdisappearedfromsomeprolegsinCRISPR-treatedmutants;
(F)IllustrationforformedtestisinA5-A6abdominalsegmentsofthe4thinstarmalelarvae.
Theredarrowsshowthepositionoftestis.
Thewild-typetestisoflarvaeisbacilliformmainlypresentinginA5andpotentiallyextendingtoA6.
CRISPR-treatedmalelarvaeshowdefectiveshapesoftestis9
(Huang et al., 2016)
SIDDU LAKSHMI PRASANNA 59
Figure:CRISPR-treatedmaleadultsweresterileandabnormalgenitals.
(A)TheexternalgenitaliaofwildtypeandG0mutatedmaleadults.
Theredarrowsindicatethattheexternalgenitaliaofallmutatedmalesweredeviatedfromtheoriginallocation;
(B)Theinternalgenitalia(testis)werehighlyabnormal.
Testisofthewildtypemaleshowsoneregularlyspheroidal(leftlane).
Theredarrowsindicatethatirregularsphericaltestis(middlelane)inCRISPR-treatedmales,andsomehavetwospheroidal
testes(rightlane). (Huang et al., 2016)
SIDDU LAKSHMI PRASANNA 60
Conclusion:
SIDDU LAKSHMI PRASANNA 61
•MutationsofPxabd-Aweretransmissibletotheprogenyindicatingthefeasibilityofthe
CRISPR/Cas9systeminnon-modelorganisms
•CRISPR/Cas9mediatedgenomeeditingforP.xylostellagenefunctionstudiesisstillchallenging
becausemostgenesarerecessivesoonlyhomozygousmutantsdisplayphenotypes
SIDDU LAKSHMI PRASANNA 62
Successful Area Wide Eradication Of The Invading Mediterranean
Fruit Fly In The Dominican Republic
J.L.Zavala-lópez,G.Marte-diazAndF.Martínezpujols
Objective: To eradicate the Mediterranean fruit fly in the Dominican Republic
Technologyused:
•SIT-Sterileinsecttechniquetoreleasemaleinsects
•Pheromonetrapsforthedetectionoffruitflylarvaeandadults
(Zavala-lópezet al., 2019)
SIDDU LAKSHMI PRASANNA 63
PhasesandactionsoftheeradicationprocessfollowedduringtheMediterraneanfruitflyeradicationcampaign
2015-2017intheDominicanRepublic(dottedlineisatheoreticalrepresentationofpopulationdensity)
(Zavala-lópezet al., 2019)
SIDDU LAKSHMI PRASANNA 64
MaximumnumberoftrapsusedinthenationalMediterraneanfruitfly
trappingnetworkestablishedin2015intheDominicanRepublic
(Zavala-lópezet al., 2019)
SIDDU LAKSHMI PRASANNA 65
Numbersofinstalledtraps(solidbars)andservicinglevelsofthesetraps(line)intheeastern
region,includingLaAltagraciaProvince,duringthe2015-2017eradicationcampaign.
(Zavala-lópezet al., 2019)
SIDDU LAKSHMI PRASANNA 66
Numbers of detected wild adult flies (black bars) and larvae(line) of Ceratitis capitata per week
during the 2015-2017 eradication campaign in the eastern region of the Dominican Republic
(Zavala-lópezet al., 2019)
SIDDU LAKSHMI PRASANNA 67
Numbers of fruit samples collected (black bars) and Mediterranean
fruit fly larvae detected(brown line) during 2015-2017.
(Zavala-lópezet al., 2019)
SIDDU LAKSHMI PRASANNA 68
Exports of horticultural products from the Dominican Republic to
the USA between 2011 and 2017, including the export ban in March
2015 because of the Mediterranean fruit fly invasion.
(Zavala-lópezet al., 2019)
Technology Used By Field Managers For Pink Boll Worm Eradication With Its
Successful Outcome In The United States And Mexico
R.T.StatenAndM.L.Walters
SIDDU LAKSHMI PRASANNA 70
R.T.StatenAndM.L.Walters(2020)
Objective:Toeradicateakeypestofcottonpinkbollwormoveralargegeographicareaintegratingsterile
insecttechniqueincontiguousinfestedareasi.e.,Chihuahua,Sonora,andBajaCaliforniainMexicoandalsoin
thestatesofTexas,NewMexico,Arizona,andCaliforniaintheUSA.
•TheprogrammecoveredallactivitiesincludingextensiveGPSmapping,pheromonetrapmonitoring
foradultpopulations,andtheintegrationofallcontroloperations.
•ControltoolsincludedBt-cotton,thereleaseofsterilemoths,pheromonematingdisruption,cultural
control,andonaverylimitedbasisconventionalinsecticideapplication.
•Criticalarea-wideresistancemanagementusingsterilemothrelease,ratherthanplantingsusceptible
cottoninrefugia,waspioneeredinthisprogramme.
Materials and methods:
SIDDU LAKSHMI PRASANNA 71
R.T.StatenAndM.L.Walters(2020)
Figure: Pink bollworm eradication phases, dates, and areas in south-western USA and north-western Mexico
SIDDU LAKSHMI PRASANNA 72
R.T.StatenAndM.L.Walters(2020)
ENTITIESINUSA CONTRIBUTIONS
USDA-APHIS Allsterileinsectproduction,USArelease
cost,andUSAregulatoryenforcement
Theproducercommunities: Within-statecostofallnon-SIT2in-field
treatmentsandoperations(includesBt-
cotton,pheromonematingdisruption,and
insecticides)
1.TexasBollWeevilFoundation
(TBWF)1
Allfieldmanagementoftreatments,
monitoring,evaluationandreporting
2.NewMexicoPBWandBW
Foundation1
Allfieldmanagementoftreatments,
monitoring,evaluationandreporting
3.ArizonaCottonResearchand
ProtectionCouncil(ACRPC)
Allfieldmanagementoftreatments,
monitoring,evaluationandreporting
4.CaliforniaCottonPestControlBoard
(CCPCB),fundsmanagedbyCDFA
Allfieldmanagementoftreatments,
monitoring,evaluationandreporting
Brief outline of management entities involved in the USA and their contributions to the
pink bollworm eradication programme
SIDDU LAKSHMI PRASANNA 73
R.T.StatenAndM.L.Walters(2020)
ENTITIESINMEXICO CONTRIBUTIONS
SAGARPA(MinistryofAgriculture,Livestock,
RuralDevelopment,FisheriesandFood),
SENASICA(NationalServiceofHealth,Food
Safety,andAgricultureQuality)
Leadership,Technicalandmanagerialsupport,
criticalfunds(variedyeartoyeardependenton
needsandavailabilityatnationallevel)
USDA-APHIS-InternationalServicesandPlant
ProtectionandQuarantine(PPQ)
Technicalandinformationtechnologysupport,
logisticalsupport,bi-nationalcoordination,
coordinationwithUSAembassyforsecurity,
procurementofsomesupplies,andsomefield
personnelandSIT2coordination
1.ComitéEstataldeSanidadVegetal(stateplant
protectioncommittee)deChihuahua1
Statelevelmanagementofoperations(treatment,
survey,andcontrol),fundingviagrower
assessmentsanddirectcontributions
2.ComitéEstataldeSanidadVegetal(stateplant
protectioncommittee)deSonora1
Statelevelmanagementofoperations(treatment,
survey,andcontrol),fundingviagrower
assessmentsanddirectcontributions
3.ComitéEstataldeSanidadVegetal(stateplant
protectioncommittee)deBajaCalifornia
Statelevelmanagementofoperations(treatment,
survey,andcontrol),fundingviagrower
assessmentsanddirectcontributionsSIDDU LAKSHMI PRASANNA 74
R.T.Staten
AndM.L.
Walters(2020)
Brief outline of management entities involved in the Mexico and their contributions to the pink bollworm eradication
programme
Technology used:
All activities were sub-divided into three activities:
1.mapping and data management,
2.surveying (trapping and larval sampling), and
3.control.
1.PreciseGPSlocationsofallfieldswithuniqueidentificationnumbersforeveryfieldanditstraportraps
2.BarcodedidentificationofalltrapswithGPSlocationwithintheprogramme
3.Storageandaccesstoalltrapandcapturedataforsterileandnon-sterilespecimens
4.PreciselocationofallBtandnon-Btcotton(GossypiumhirsutumL.)fields,includingadistinctionforPimacotton,GossypiumbarbadenseL.
5.Accesstodetailedinformationonallprogramme-appliedpheromonematingdisruptiontreatments,conventionalinsecticides,andsterilemoth
releases–thisincludedaccesstoneededregulatorynotificationswithineachstateandflightrecordingsforallsprayandsterilereleaseaircraft,
and
6.Reportsgeneratedfromcompletedatabyservicingdateoranyotherneededtimeintervalandgeographically-definedparameter.
Theuseofthisharmonizedsystemexpeditedcommunicationwithinandbetweenstateprogrammes.
SIDDU LAKSHMI PRASANNA 75
Mapping and data management:
R.T.StatenAndM.L.Walters(2020)
Summary data pink bollworm programmein Texas 2000
through 2004
Summary data pink bollworm eradication programmein
Texas through 2005-2012
SIDDU LAKSHMI PRASANNA 78
R.T.StatenAndM.L.Walters(2020)
Summary data pink bollworm eradication programmefor
the Ascensiónarea of the state of Chihuahua
Summary data pink bollworm eradication programmefor
the Meoquiarea of Chihuahua
SIDDU LAKSHMI PRASANNA 79
R.T.StatenAndM.L.Walters(2020)
Summary data pink bollworm eradication programme
for the Ojinagaarea of Chihuahua
Summary data pink bollworm eradication
programmefor the Juárez area of Chihuahua
SIDDU LAKSHMI PRASANNA 80
R.T.StatenAndM.L.Walters(2020)
Summary data pink bollworm eradication programmein New
Mexico (Phase I)
Summary data pink bollworm eradication programmein
Arizona (Phase II -Arizona Zone 1)
SIDDU LAKSHMI PRASANNA 81
R.T.StatenAndM.L.Walters(2020)
Summary data pink bollworm eradication programmein
Arizona (Phase IIIa -Arizona Zone 2)
Summary data pink bollworm eradication programmein
Arizona (Phase IIIb-Arizona Zone 3)
SIDDU LAKSHMI PRASANNA 82
R.T.StatenAndM.L.Walters(2020)
Summary data pink bollworm eradication programmein
southern California
Northern Sonora, Mexico pink bollworm
eradication programmesummary data (Phase IIIb)
SIDDU LAKSHMI PRASANNA 83
R.T.StatenAndM.L.Walters(2020)
Mexicali valley, Baja California, Mexico pink bollworm
eradication programmesummary data
SIDDU LAKSHMI PRASANNA 84
R.T.StatenAndM.L.Walters(2020)
SIDDU LAKSHMI PRASANNA 86
Area Wide Management Of Mediterranean Fruit Fly With The Sterile Insect Technique In
South Africa: New Production And Management Techniques Pay Dividends
J-H. Venter , C. W. L. Baard and B. N. Barnes
Technologyused:
•SIT(Sterileinsecttechnique)
•SterilemalesproducedwithgeneticsexingstrainVIENNA8havingmorequalitybasedonthetemperature
sensitivelethal(tsl)mutation
•FruitflydensitiesincommercialorchardsaremonitoredwithChempac®buckettrapsbaitedwithathree-
componentlure(Biolure)thataredeployedatadensityof1trapper20ha
•“Attractandkill”baitstationslimitedtobackyardsandhotspotsonfarms.
Objective: To manage some of the fruit production areas of south Africa as areas of low
pest prevalence by Mediterranean fruit fly.
(Venteretal.,2021)
SIDDU LAKSHMI PRASANNA 88
AreaWideFruitFlyProgrammesInLatinAmerica
P. Rendónand W. Enkerlin
Technologyused:
•SIT(Sterileinsecttechnique)
P. Rendónand W. Enkerlin(2021)
FactorsthatContributetoPestMovementandEstablishment
•GlobalTradeandTransport
•HumanMovementandTravel
•ClimateChange
Organizationsinvolved:
•IPPC-InternationalPlantProtectionConvention
•FAO-FoodandAgricultureOrganization
•IAEA-InternationalAtomicEnergyAgency
SIDDU LAKSHMI PRASANNA 89
Introductions, establishment and spread of non-native tephritid
fruit fly species in the Americas.
P. Rendónand W. Enkerlin(2021)
SIDDU LAKSHMI PRASANNA 90
FruitflyAW-IPMprogrammesintheLACregion
P. Rendónand W. Enkerlin(2021)
Putting The Sterile Insect Technique Into The Modern Integrated Pest
Management Tool Box To Control The Codling Moth In Canada
C. Nelson , E. Esch, S. Kimmi, M. Tesche, H. Philip And S. Arthur
SIDDU LAKSHMI PRASANNA 91
(Nelsonetal.,2021)
Objective:Tointegratechemical,culturalandbiologicaltechniquesthat
complementtheSITintoorchardandregionalpestmanagementprogramme
and/orindividualgrowers.
Results:
•Thedashedlineindicatestherecommendedthreshold(twocodlingmothspertrap/weekfortwoconsecutiveweeks)at
whichinsecticidecontrolssupplementarytotheSITwouldberequired.
Mean wild codling moth captures per trap per week from 1995 to 2017
SIDDU LAKSHMI PRASANNA 95
(Nelsonetal.,2021)
Percentofprogrammeareawith>0.2%offruitdamagedbythecodlingmoth.
The dashed line indicates 10% of the programmearea, an economic target set by the Programme’sBoard;
SIDDU LAKSHMI PRASANNA 96
(Nelsonetal.,2021)
Estimated pesticide active ingredient (kg or L) applied per ha per year for all zones
managed by the SIR programmefrom 1991 to 2016
SIDDU LAKSHMI PRASANNA 97
(Nelsonetal.,2021)
Biologicalcontrol:
DEVELOPMENT AND AREA WIDE APPLICATION OF BIOLOGICAL CONTROL USING
THE PARASITOID AphidusGifuensisAGAINST MyzusPersicaeIN CHINA
•AphidiusgifuensisAshmead(Hymenoptera:Braconidae)isanimportantendoparasitoidofmanyaphids.
•Theaugmentativeuseofthisparasitoidhasachievedarea-widesuppressionofM.persicaeintobaccoandother
cropsinChina.Thisapproachisbeingappliedonlargeareas,coveringmorethan3millionhabetween2010and
2015.
•Thistechnologyhaseffectivelycontrolledtheaphidontobacco,whileotherbeneficialinsectshaveincreasedin
theabsenceofinsecticideapplications,furtherprotectingbiodiversityinthefieldsandprovidinglong-term
ecologicalbenefitsandsolvedinsecticideresistanceproblems
SIDDU LAKSHMI PRASANNA 99
Y.B.Yu,H.L.Yang,Z.Lin,S.Y.Yang,L.M.Zhang,X.H.Gu,C.M.LiAndX.Wang
Comparison of costs of biological and chemical control of aphids
SIDDU LAKSHMI PRASANNA 100
Biological Control: Cornerstone Of The Area Wide Integrated Pest
Management For The Cassava Mealy Bug In Tropical Asia
K.A.G.Wyckhuys,W.Orankanok,J.W.Ketelaar,A.Rauf,G.GoergenAndP.Neuenschwander
•ThecassavamealybugPhenacoccusmanihotiMat.‐Ferr.(Hemiptera:Pseudococcidae)isagloballyimportantpest
ofcassava(ManihotesculentaCrantz),acropthatiscultivatedonnearly25millionhaacrossthetropics.
•TheendophagousparasitoidAnagyruslopeziDeSantis(Hymenoptera:Encyrtidae)introducedinThailandin
2009
•Thehost-specificA.lopezieffectivelysuppressesthecassavamealybugacrossarangeofagro-climatic,biophysical
andsocio-economiccontextsintropicalAsia,andconstitutesacentralcomponentofarea-wideintegratedpest
management(AW-IPM)forthisglobalpestinvader.
SIDDU LAKSHMI PRASANNA 101
SIDDU LAKSHMI PRASANNA 102
Benefits of wide area management:
•Itenablesmanyproducerstopoolresourcestoutilizetechnologiesandexpertisethat
aretooexpensiveforindividual.
•Itcanavoidexternalcostsduetocoordination.
•Costofpestmonitoring,detectionandsuppressionbeenminimized.
•Helpfulinfirmcommunicationanddecisionmakingofriskmanagementofpest
control
•Automaticcontributionoflegalauthorityasitisabsolutelyessential.