Initial Lower bound will be= [(1+3)+(3+6)+(1+2)+(3+4)+(2+3)]/2=28/2=14 for the root node. ( a,b )= [(1+3)+(3+6)+(1+2)+(3+4)+(2+3)]/2=28/2=14 ( a,b,c )= [(1+3)+(3+6)+(1+6)+(3+4)+(2+3)]/2=32/2=16 ( a,d )= [(1+5)+(3+6)+(1+2)+(3+5)+(2+3)]/2=31/2=16 ( a,b,d )= [(1+3)+(3+7)+(1+2)+(3+7)+(2+3 )]/2=32/2=16 ( a,e )= [(1+8)+(3+6)+(1+2)+(3+4)+(2+8)]/2=38/2=19 ( a,b,e )= [(1+3)+(3+9)+(1+2)+(3+4)+(2+9)]/2=37/2=19 ( a,b,c,d ,( e,a ))=3+6+4+3+8=24 ( a,b,c,e ,( d,a ))=3+6+2+3+5=19 ( a,b,d,c ,( e,a ))=3+7+4+2+8=24 ( a,b,d,e ,( c,a ))= 3+7+3+2+1=16 ------- optimal Tour.