Basic Concepts of Probability_updated_Tm_31_5_2.ppt

MdFahimAbdullah22215 15 views 27 slides Jun 11, 2024
Slide 1
Slide 1 of 27
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27

About This Presentation

STA


Slide Content

Chapter 9
Basic Concepts of Probability

Learning Outcomes
Whenyouwillcompletethischapter,youwouldbe
ableto-
Basictermsandcontentofprobability
Calculateprobabilitybetweentwoevents
Estimateandinterpretdifferenttypesofrulesofprobability
Identifytherelationanddifferenttypesofprobability
Identifytherelationanddifferenttypesofprobabilitywith
practicalexamples

Lecture Contents
BasicTerminologyofProbability
DifferentApproachesofProbability
ApplicationandSignificanceofProbability
LawsofProbability
ProbabilityRules
Joint,MarginalandConditionalProbability
VariousMathematicalProblemsofProbability

Probability:Avaluebetweenzeroandone,inclusive,describingtherelativepossibility(chanceor
likelihood)aneventwilloccur.
Experiment:Experimentisanactthatcanberepeatedundergivenconditions.
Trial:Unitofanexperimentisknownastrial.Thismeansthattrialisaspecialcaseofexperiment.
Experimentmaybeatrialortwoormoretrials.
Outcomes:Theresultofanexperimentisknownasoutcomes.
Example:Throwingadieisatrialandgetting1or2or3or4or5or6isanoutcome.
EquallylikelyOutcomes:Outcomesofatrialaresaidtobeequallylikelyifwehavenoreasonto
expectanyoneratherthantheother.Example-1)Intossingafaircoin,theoutcomesheadandtailare
equallylikely,2)Inthrowingabalanceddieallthesixfacesareequallylikely.
Basic Terminology of
Probability

Basic Terminology of
Probability
MutuallyExclusiveOutcomes:Outcomesorcasesaresaidtobemutuallyexclusiveifthehappening
ofanyoneofthemprecludesthehappeningofallothers.Example-1)Intossingacoin,theoutcomes
hearandtailaremutuallyexclusive.2)Inthrowingadie,thesixoutcomeswhicharethedifferentpoints
onthefacesofthedieismutuallyexclusive.
Exhaustiveoutcomes:Outcomesofanexperimentaresaidtobeexhaustiveiftheyincludeallpossible
outcomes.Example-inthrowingadieexhaustivenumberofoutcomesare6.
Samplespace:Thecollectionofallpossibleoutcomesofarandomexperimentiscalledsamplespace.
SamplespaceisusuallydenotedbySorΩ.Example:1)Ifwetossacoin,thesamplespaceis,Ω={H,T}.
WhereHandTdenotethehearandtailofthecoin,respectively,2)Ifasix–sideddieisthrown,the
samplespaceis,Ω={1,2,3,4,5,6}.

Probability

Probability

Probability

Application and
Significance of Probability
Probabilityisthebackboneofstatistics.Ithasvastapplicationineveryfieldof
statistics.Thevariouspracticalapplicationsoftheprobabilityare:
a)Instatisticalinference,theproblemofestimationandthetestofhypothesisare
basedonprobabilitytheory.
b)Thevarioustestofsignificance,viz-Z-test,Chi-squaretest,F-test,t-testare
derivedfromthetheoryofprobability.
c)Decisiontheoriesarebasedonfundamentallawsofprobabilityandexpected
value.
d)Theuseofprobabilitytheoryisincreasingineconomicdecisionmaking.
e)Theuseofsubjectiveprobabilitiesismadewhenactualmeasurementisnot
possible.

Laws of Probability

Addition Rules
AdditiveLawofProbability:Therearetworulesofaddition,thespecialruleofadditionandthe
generalruleofaddition.
SpecialRuleofAddition:Toapplythespecialruleofaddition,theeventsmustbemutuallyexclusive.If
twoeventsAandBaremutuallyexclusive,thespecialruleofadditionstatesthattheprobabilityofoneor
theotherevent’soccurringequalsthesumoftheirprobabilities.Thisruleisexpressedinthefollowing
formula:
P(A or B)= P(A U B)= P(A) + P(B)
GeneralRuleofAddition:Whentwoeventsbothoccur,theprobabilityiscalledajointprobability.Inthis
situation,weusethegeneralruleofaddition.IfAandBaretwoeventsin,then
P(A or B)= P(A U B)= P(A) + P(B) –P(A∩B)

Example:Mr.Alifeelsthattheprobabilitythathewillpassmathematicsis2/3andstatisticsis5/6.Ifthe
probabilitythathewillpassboththecourseis3/5,whatistheprobabilitythathewillpassatleastoneof
thecourse?
Solution:LetMandSbetheeventsthathewillpassthecoursemathematicsandstatistics,respectively.
TheeventMUSmeansthatatleastoneofMorSoccurs.Therefore,accordingtotheadditionrulewe
get,
P(A or B)= P(A U B)= P(A) + P(B) –P(A∩B)
= 2/3 + 5/6 –3/5
= 9/10
Addition Rules

Addition Rules
Example:
Inasampleof500students,320saidtheyhadastereo,175saidtheyhadaTV,and100saidtheyhad
both.5saidtheyhadneither.Ifastudentisselectedatrandom,whatistheprobabilitythatthestudent
hasonlyastereoorTV?WhatistheprobabilitythatthestudenthasbothastereoandTV?
Solution:LetSandTbetheeventsthatstudentshadstereoandTV,respectively.Thentheprobability
thatstudenthasonlystereoorTVis-
P (S or T) = P(S) + P (T) –P (S and T)
= 320/500 + 175/500 –100/500
= 0.79
TheprobabilitythatthestudenthasbothastereoandTV:
P (S and TV) = 100/500
= 0.20

Joint Probability
Jointprobabilityistheprobabilityoftwoeventsinconjunction.Thatis,itistheprobabilityofbothevents
together.ThejointprobabilityofAandBiswrittenP(A∩B),P(AB)orP(A,B).
Example:Thequestion,"DoyoulikewatchingTV?"wasaskedof100people.Resultsareshowninthe
table.WhatistheprobabilityofarandomlyselectedindividualbeingamalewholikeswatchingTV?
Yes No Total
Male 19 41 60
Female12 28 40
Total31 69 100
Solution:Thisisjustajointprobability.Thenumberof"MaleandlikewatchingTV"dividedbythetotal=
19/100=0.19

Marginal Probability
MarginalprobabilityistheprobabilityofA,regardlessofwhethereventBdidordidnotoccur.IfBcanbe
thoughtofastheeventofarandomvariableXhavingagivenoutcome,themarginalprobabilityofAcanbe
obtainedbysummingthejointprobabilitiesoveralloutcomesforX.
Example:Thequestion,"DoyoulikewatchingTV?"wasaskedof100people.Resultsareshowninthe
table.WhatistheprobabilityofarandomlyselectedindividuallikewatchingTV?
Solution:Sincenomentionismadeofgender,thisisamarginalprobability,thetotalwholikewatchingTV
dividedbythetotal=31/100=0.31
Yes No Total
Male 19 41 60
Female12 28 40
Total31 69 100

Conditional Probability

Example:Thequestion,"DoyoulikewatchingTV?"wasaskedof100people.Resultsareshowninthe
table.Whatistheprobabilityofarandomlyselectedindividualisamaleifitisgiventhathelikeswatching
TV?
Yes No Total
Male 19 41 60
Female12 28 40
Total31 69 100
Solution: The conditional probability M given Y is-
Conditional Probability

Conditional Probability

Multiplication Rule

Multiplication Rule

Complement Rule

Chapter Exercise
1. The following table gives a two-way classification of all basketball players at a state university who began
their college careers between 2001 and 2005, based on gender and whether or not they graduated.
Graduat
ed
Did Not
Graduat
e
Total
Male 126 55 181
Female133 32 165
Total259 87 346
If one of these players is selected at random, find the following probabilities.
a. P (female or did not graduate)
b. P (graduated and male)
c. P (Graduated | female)

1.Inaclassof120students,60arestudyingEnglish,50arestudyingFrenchand20arestudyingbothEnglish
andFrench.Ifastudentisselectedatrandomfromthisclass,whatistheprobabilitythatheisstudying
EnglishifitisgiventhatheisstudyingFrench?
2.Jackcanhitatarget5outof7chances.Andycanhitatarget6outof11.Findthechancesthatthetargetis
hitoncetheybothtry?
3.Russellisplayinginacricketmatchandagameoffootballattheweekend.Theprobabilitythathisteam
willwinthecricketmatchis0.7,andtheprobabilityofwinningis0.9inthefootball.Whatistheprobabilitythat
histeamwillwininbothmatches?Whatistheprobabilitythathisteamwillnotwininbothmatches?
4.Supposeyouhaveaboxwith3bluemarbles,2redmarbles,and4yellowmarbles.Youaregoingtopull
outonemarble,recorditscolor,putitbackintheboxanddrawanothermarble.Findtheprobabilitythatthe
firstmarbleisredandsecondmarbleisyellow.
5.TheprobabilitythatMr.Xwilldieinthenext20yearsis1/5andtheprobabilitythatMr.Ywilldieinthenext
20yearsis1/7.Whatistheprobabilitythat
i.Bothwilldieinthenext20years.ii.Atleastonewilldieinthenext20years.iii.Neitherwilldieinthenext
20years.
Chapter Exercise

Thank You
Tags