Bioengineered Hydrogels with Tunable Stiffness for Modulating Stem Cell Fate in Neural Regeneration for Spinal Cord Injuries..pptx

juliewrights99 35 views 21 slides Jun 17, 2024
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

Bioengineered Hydrogels with Tunable Stiffness for Modulating Stem Cell Fate in Neural Regeneration for Spinal Cord Injuries.


Slide Content

Tissue Engineering Bioengineered Hydrogels with Tunable Stiffness for Modulating Stem Cell Fate in Neural Regeneration for Spinal Cord Injuries (Student’s Name)

Introduction Spinal cord injuries (SCI): Lead to paralysis Loss of function Stem cell therapy offers promise: For regeneration Importance of the study: Enhancing patient outcomes Transforming SCI treatment ( NurExone , 2023)

Spinal Cord Injury Overview Annual cases: 17,000 new cases 282,000 living with SCI Causes : Motor accidents Falls Sports injuries Lifelong paralysis Loss of function, High healthcare expenses

Stem Cell Therapy Stem cell types explored for their potential in SCI treatment (Zheng, 2023)

Challenges in Stem Cell Therapy Key Challenges Guiding stem cells into specific lineages Survival, migration, and integration difficulties Inflammation, scarring, altered chemical signals

Modulating Stem Cell Fate in Neural Regeneration O ptimizing hydrogel properties for stem cell therapy Influencing stem cell fate within hydrogel scaffolds (Yin & Cao, 2021)

Bioengineered Hydrogels Key Features: Mimic natural extracellular matrix. (Zhao et al., 2022)

Bioengineered Hydrogels Key Features: Favorable environment for cell adhesion, migration, and development (Yang et al., 2022)

Bioengineered Hydrogels Modifiable stiffness for controlling stem cell activity (Walsh et al., 2020)

Understanding Stem Cell-Hydrogel Interactions Mechanotransduction pathways Hydrogel composition M icrostructure Stiffness Influencing stem cell fate within hydrogel scaffolds ( Thi et al., 2023)

Rheological Characterization Understanding Hydrogel Mechanics : Storage modulus Loss modulus Shear viscosity Insights into viscoelastic behavior and stiffness (Ng et al., 2022)

Swelling Behavior Analysis Hydrogel Water Absorption Swelling studies: Determines swelling kinetics t hrough: Changes in dimensions Weight (Zhang et al., 2022)

Degradation Rate Analysis Monitoring Hydrogel Scaffold Kinetics Mass loss Structural changes over time Techniques: Mass loss measurements Imaging

Tuning Hydrogel Stiffness Stiffness Adjustment Parameters: Adjusting crosslinking density Polymer concentration Matrix composition This would determine- Influence on mechanical characteristics Stem cell activity (Yang et al., 2022)

Microstructural Analysis Examining Hydrogel Morphology Microstructural analysis uses: SEM C onfocal microscopy (Han et al., 2018)

Gradient Hydrogel Designs Techniques: Photolithography 3D printing (Zhang et al., 2023)

Evaluating Therapeutic Efficacy In Vivo Animal Models Behavioral tests H istological analysis (Wang et al., 2023)

Tissue Regeneration Evaluation Evaluation of axonal development I nflammation response (Liu et al., 2022)

References Han, L., Wang, M., Li, P., Gan , D., Yan, L., Xu, J., ... & Lu, X. (2018). Mussel-inspired tissue-adhesive hydrogel based on the polydopamine –chondroitin sulfate complex for growth-factor-free cartilage regeneration.  ACS applied materials & interfaces ,  10 (33), 28015-28026. Liu, H., Feng, Y., Che , S., Guan, L., Yang, X., Zhao, Y., ... & Lin, Q. (2022). An electroconductive hydrogel scaffold with injectability and biodegradability to manipulate neural stem cells for enhancing spinal cord injury repair.  Biomacromolecules ,  24 (1), 86-97. Learn about sci - NurExone description; explanation; background; . NurExone . (2023, February 23). https://nurexone.com/learn-about-sci/ Ng, J. Y., Zhu, X., Mukherjee, D., Zhang, C., Hong, S., Kumar, Y., ... & Ee , P. L. R. (2021). Pristine gellan gum–collagen interpenetrating network hydrogels as mechanically enhanced anti-inflammatory biologic wound dressings for burn wound therapy.  ACS Applied Bio Materials ,  4 (2), 1470-1482. Thi , T. T. H., Laney, M., Zhang, H., Martinez, F., Lee, Y., & Jang, Y. C. (2023). Designing biofunctional hydrogels for stem cell biology and regenerative medicine applications.  Journal of Industrial and Engineering Chemistry . Walsh, C. M., Wychowaniec , J. K., Brougham, D. F., & Dooley, D. (2022). Functional hydrogels as therapeutic tools for spinal cord injury: New perspectives on immunopharmacological interventions.  Pharmacology & therapeutics ,  234 , 108043. Wang, R., Wu, X. X., Tian, Z., Hu, T., Cai , C., Wu, G. P., ... & Liu, B. (2023). Sustained release of hydrogen sulfide from anisotropic ferrofluid hydrogel for the repair of spinal cord injury.  Bioactive Materials ,  23 , 118-128.

References Yang , B., Liang, C., Chen, D., Cheng, F., Zhang, Y., Wang, S., ... & Chen, Q. (2022). A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair.  Bioactive Materials ,  15 , 103-119. Yin, S., & Cao, Y. (2021). Hydrogels for large-scale expansion of stem cells.  Acta biomaterialia ,  128 , 1-20 . Zhang, Y. C., Xue , Y. Q., Ogawa, T., Wada, S., & Wang, J. Y. (2023). 3D Printed Alginate Hydrogels with Stiffness-Gradient Structure in a Carbomer Supporting Bath by Controlled Ca2+ Diffusion.  ACS Applied Engineering Materials ,  1 (2), 802-812 . Zhang, C., Qi, Y., & Zhang, Z. (2022). Swelling behaviour of polystyrene microsphere enhanced PEG-based hydrogels in seawater and evolution mechanism of their three-dimensional network microstructure.  Materials ,  15 (14), 4959. Zhao, T., Wei, Z., Zhu, W., & Weng , X. (2022). Recent developments and current applications of hydrogels in osteoarthritis.  Bioengineering ,  9 (4), 132 . Zeng, C. W. (2023). Advancing spinal cord injury treatment through stem cell therapy: A comprehensive review of cell types, challenges, and emerging technologies in regenerative medicine.  International Journal of Molecular Sciences ,  24 (18), 14349.

Thank you!