~In case you blinked and missed something~
• Bailey, R.A. (2008). "6 Row-Column designs and 9 More about Latin squares". Design of Comparative Experiments. Cambridge
University Press. ISBN 978-0-521-68357-9. MR 2422352. Pre-publication chapters are available on-line.
• Dénes, J.; Keedwell, A. D. (1974). Latin squares and their applications. New York-London: Academic Press. pp. 547. ISBN
0-12-209350-X. MR 351850.
• Dénes, J. H.; Keedwell, A. D. (1991). Latin squares: New developments in the theory and applications. Annals of Discrete
Mathematics. 46. Amsterdam: Academic Press. pp. xiv+454. ISBN 0-444-88899-3. MR 1096296.
• Hinkelmann, Klaus; Kempthorne, Oscar (2008). Design and Analysis of Experiments. I , II (Second ed.). Wiley. ISBN 978-0-470-38551-7.
MR 2363107.
–Hinkelmann, Klaus; Kempthorne, Oscar (2008).
Design and Analysis of Experiments, Volume I: Introduction to Experimental Design (Second ed.). Wiley.ISBN 978-0-471-72756-9
. MR 2363107.
–Hinkelmann, Klaus; Kempthorne, Oscar (2005). Design and Analysis of Experiments, Volume 2: Advanced Experimental Design
(First ed.). Wiley. ISBN 978-0-471-55177-5. MR 2129060.
• Knuth, Donald (2011). Volume 4A: Combinatorial Algorithms, Part 1. The Art of Computer Programming (First ed.). Reading,
Massachusetts: Addison-Wesley. pp. xv+883pp. ISBN 0-201-03804-8.
• Laywine, Charles F.; Mullen, Gary L. (1998). Discrete mathematics using Latin squares. Wiley-Interscience Series in Discrete
Mathematics and Optimization. New York: John Wiley & Sons, Inc.. pp. xviii+305. ISBN 0-471-24064-8. MR 1644242.
• Shah, Kirti R.; Sinha, Bikas K. (1989). "4 Row-Column Designs". Theory of Optimal Designs. Lecture Notes in Statistics. 54. Springer-
Verlag. pp. 66–84. ISBN 0-387-96991-8. MR 1016151.
• Shah, K. R.; Sinha, Bikas K. (1996). "Row-column designs". In S. Ghosh and C. R. Rao. Design and analysis of experiments. Handbook
of Statistics. 13. Amsterdam: North-Holland Publishing Co.. pp. 903–937. ISBN 0-444-82061-2. MR 1492586.
• Raghavarao, Damaraju (1988). Constructions and Combinatorial Problems in Design of Experiments (corrected reprint of the 1971 Wiley
ed.). New York: Dover. ISBN 0-486-65685-3. MR 1102899.
• Street, Anne Penfold and Street, Deborah J. (1987). Combinatorics of Experimental Design. New York: Oxford University Press.
pp. 400+xiv pp.. ISBN 0-19-853256-3, 0-19-853255-5. MR 908490.
• J. H. van Lint, R. M. Wilson: A Course in Combinatorics. Cambridge University Press 1992,ISBN 0-521-42260-4, p. 157