Biology for engineers Module 4 pdf.pdf

2,418 views 59 slides Sep 07, 2023
Slide 1
Slide 1 of 59
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59

About This Presentation

Biology for Engineers is an interdisciplinary textbook designed for the students of various engineering streams to appreciate the link between biological science and engineering.
Organised into eleven chapters, the book begins with a chapter that discusses the significance of biology in the engineer...


Slide Content

MODULE 4
BIOLOGY FOR ENGINEERS
NATURE -BIOINSPIRED
MATERIALS AND MECHANISMS
(QUALITATIVE)
Prepared by
Dr. Pavan K J
GMIT, Davanagere

Title: Ultrasonography in
Medical Diagnosis
Dr. Pavan K J
Date

INTRODUCTION
Brief overview of
ultrasonography
Importance in medical
diagnostics
Purpose of the presentation

Ultrasound
Ultrasoundisanoninvasiveimagingtestthatshowsstructures
insideyourbodyusinghigh-intensitysoundwaves.
Healthcareprovidersuseultrasoundexamsforseveral
purposes,includingduringpregnancy,fordiagnosingconditions
andforimageguidanceduringcertainprocedures.

PRINCIPLES OF
ULTRASOUND IMAGING
•Explanation of sound waves and frequencies
•Generation and transmission of ultrasound
waves
•Interaction with tissues and reflections

ULTRASOUND MACHINE
COMPONENTS
•Transducer: Emitting and receiving
ultrasound waves
•Display monitor: Visualizing ultrasound
images
•Control panel: Adjusting settings and
parameters

•Reflection,transmission,andabsorptionof
ultrasoundwaves
•Echogenicity:Tissuedifferentiationbasedon
soundwavereflections
•Creationof2D,3D,andDopplerimages
IMAGE FORMATION PROCESS

CLINICAL APPLICATIONS
Obstetrics and Gynecology: Monitoring pregnancies, fetal development, and
detecting abnormalities
Abdominal Imaging: Visualizing organs like the liver, kidneys, and pancreas
Cardiac Imaging: Assessing heart structure, function, and blood flow
Musculoskeletal Imaging: Diagnosing injuries and conditions affecting muscles
and joints

BENEFITS OF
ULTRASONOGRAPHY IN
DIAGNOSIS
•Non-invasive and radiation-free imaging
•Real-time visualization
•Safe for sensitive patient groups
•Dynamic imaging for functional
assessments

LIMITATIONS AND CONSIDERATIONS
Limited penetration
through bone and
air
Operator expertise
and interpretation
skills
Variability in image
quality

C O M PA R AT I V E A N A LY S I S
•Ultrasound vs. X-rays, CT scans,
and MRI
•Strengths and weaknesses of
each modality
•Situations where ultrasound
excels

FUTURE TRENDS AND
INNOVATIONS
•Advancementsintechnology:High-frequency
transducers,3D/4Dimaging,elastography
•Point-of-careultrasound:Increasinguseoutside
traditionalclinicalsettings
•Potentialintegrationwithartificialintelligencefor
automateddiagnosis

SONARS:
Sonar(soundnavigationandrangingorsonicnavigation
andranging)isatechniquethatusessoundpropagation
(usuallyunderwater,asinsubmarinenavigation)to
navigate,measuredistances(ranging),communicatewithor
detectobjectsonorunderthesurfaceofthewater,suchas
othervessels.

"Sonar" can refer to one of two types
of technology:
passive sonar means listening for
the sound made by vessels;
active sonar means emitting pulses
of sounds and listening for echoes.

Sonarmaybeusedasameansofacousticlocationandofmeasurementofthe
echocharacteristicsof"targets"inthewater.
Acousticlocationintheairwasusedbeforetheintroductionofradar.
Sonarmayalsobeusedforrobotnavigation,andSODAR(anupward-looking
in-airsonar)isusedforatmosphericinvestigations.
Thetermsonarisalsousedfortheequipmentusedtogenerateandreceivethe
sound.
Theacousticfrequenciesusedinsonarsystemsvaryfromverylow(infrasonic)to
extremelyhigh(ultrasonic).Thestudyofunderwatersoundisknownas
underwateracousticsorhydroacoustics.

PHOTOSYNTHESIS:
MostlifeonEarthdependsonphotosynthesis.Theprocessiscarried
outbyplants,algae,andsometypesofbacteria,whichcaptureenergy
fromsunlighttoproduceoxygen(O2)andchemicalenergystoredin
glucose(asugar).
Herbivoresthenobtainthisenergybyeatingplants,andcarnivores
obtainitbyeatingherbivores.

TheProcess:
•Duringphotosynthesis,plantstakeincarbondioxide(CO2)andwater(H2O)fromthe
airandsoil.
•Withintheplantcell,thewaterisoxidized,meaningitloseselectrons,whilethe
carbondioxideisreduced,meaningitgainselectrons.
•Thistransformsthewaterintooxygenandthecarbondioxideintoglucose.
•Theplantthenreleasestheoxygenbackintotheair,andstoresenergywithinthe
glucosemolecules.
Chlorophyll:
•Insidetheplantcellaresmallorganellescalledchloroplasts,whichstoretheenergyof
sunlight.
•Withinthethylakoidmembranesofthechloroplastisalight-absorbingpigmentcalled
chlorophyll,whichisresponsibleforgivingtheplantitsgreencolor.
•Duringphotosynthesis,chlorophyllabsorbsenergyfromblue-andred-lightwavesand
reflectsgreen-lightwaves,makingtheplantappeargreen.

PHOTOVOLTAIC CELLS:
WHATISPHOTOVOLTAIC?
Thesun’scopiousenergyiscapturedbytwoengineeringsystems:photosyntheticplant
cellsandphotovoltaiccells(PV).
Photosynthesisconvertssolarenergyintochemicalenergy,deliveringdifferenttypesof
productssuchasbuildingblocks,biofuels,andbiomass;photovoltaicsturnitinto
electricitywhichcanbestoredandusedtoperformwork.
Understandingbetterthewaybywhichnaturalphotosyntheticcomplexesperformthese
processesmayleadtoinsightintothedesignofartificialphotosyntheticsystemsandthe
developmentofnewtechnologiesforsolarenergyconversion..

•Abroadvarietyofbio-inspiredconceptsandapplicationsareemerging,
rangingfromlight-inducedwatersplitting,PlantandMicrobialFuel
Cellstohybridsystems.
•Theselattercombinephotosynthesisandphotovoltaicsandhavegreat
potentialinagriphotovoltaicconceptssuchastheside-by-side
arrangementofsolarcellsandplants,andsystemsconsistingof
transparentsolarcellswhichareplacedinfrontorabovetheplant.
•Oneoftheapplicationsthatcancontributetobringingtogetherthe
worldsofphotosynthesisand photovoltaicsisthephotovoltaiccell

•Asolarcell,orphotovoltaiccell,isanelectronicdevicethat
convertstheenergyoflightdirectlyintoelectricitybythe
photovoltaiceffect,whichisaphysicalandchemical
phenomenon.
•Itisaformofphotoelectriccell,definedasadevicewhose
electricalcharacteristics,suchascurrent,voltage,or
resistance,varywhenexposedtolight.Individualsolarcell
devicesareoftentheelectricalbuildingblocksof
photovoltaicmodules,knowncolloquiallyassolarpanels.
•Thecommonsingle-junctionsiliconsolarcellcanproducea
maximumopen-circuitvoltageofapproximately0.5voltsto
0.6volts.
•Application:
•RemoteLocations
•Stand-AlonePower.
•PowerinSpace.
•Building-RelatedNeeds.
•MilitaryUses.
•Transportation.
https://www.youtube.com/watch?app
=desktop&v=X0OZ6tpZ3Mc

•BIONICLEAF:

•TheBionicLeafisabiomimeticsystemthatgatherssolarenergyvia
photovoltaiccellsthatcanbestoredorusedinseveraldifferentfunctions.
•Bionicleavescanbecomposedofbothsynthetic(metals,ceramics,polymers,
etc.)andorganicmaterials(bacteria),orsolelymadeofsyntheticmaterials.
•TheBionicLeafhasthepotentialtobeimplementedincommunities,suchas
urbanizedareastoprovidecleanairaswellasprovidingneededcleanenergy.

•Mechanics:
•NaturalPhotosynthesisvs.TheBionicLeaf atitssimplestform.
•BionicLeaf,isapproximately10timesmoreefficientthannaturalphotosynthesis.Usingacatalyst,the
BionicLeafcanremoveexcesscarbondioxideintheairandconvertthattousealcoholfuels,like
isopropanolandisobutanol.
•TheefficiencyoftheBionicLeaf'sartificialphotosynthesisistheresultofbypassingobstaclesinnatural
photosynthesisthroughitsartificiality.Innaturalsystems,numerousenergyconversionbottleneckslimit
theoverallefficiencyofphotosynthesis.
•Asaresult,mostplantsdonotexceed1%efficiencyandevenmicroalgaegrowninbioreactorsdonot
exceed3%.Existingartificialphotosyntheticsolar-to-fuelscyclesmayexceednaturalefficienciesbut
cannotcompletethecycleviacarbonfixation.
•WhenthecatalystsoftheBionicLeafarecoupledwiththebacteriumRalstoniaeutropha,thisresultsina
hybridsystemcapableofcarbondioxidefixation.Thissystemcanstoremorethanhalfofitsinputenergyas
productsofcarbondioxidefixation.
•Overall,thehybriddesignallowsforartificialphotosynthesiswithefficienciesrivalingthatofnatural
photosynthesis.

•BIRDFLYING:

•Birdflightistheprimarymodeoflocomotionusedbymostbirdspeciesin
whichbirdstakeoffandfly.Flightassistsbirdswithfeeding,breeding,
avoidingpredators,andmigrating.
•Birdflightisoneofthemostcomplexformsoflocomotionintheanimal
kingdom.Eachfacetofthistypeofmotion,includinghovering,takingoff,
andlanding,involvesmanycomplexmovements.
•Asdifferentbirdspeciesadaptedovermillionsofyearsthroughevolution
forspecificenvironments,prey,predators,andotherneeds,theydeveloped
specializationsintheirwingsandacquireddifferentformsofflight.

•GPS:

•GPSisasystem.It’smadeupofthreeparts:satellites,groundstations,andreceivers.
Satellitesactlikestarsinconstellations—weknowwheretheyaresupposedtobeatany
giventime.
•Thegroundstationsuseradartomakesuretheyareactuallywherewethinktheyare.A
receiver,asyoumightfindinyourphoneoryourcar,isconstantlylisteningforasignal
fromthesesatellites.
•Thereceiverfiguresouthowfarawaytheyarefromsomeofthem.
•Oncethereceivercalculatesitsdistancefromfourormoresatellites,itknowsexactly
whereyouare.

GPSANDBIRDFLIGHT:

GPSANDBIRDFLIGHT:
Scientistshavelongknownthatbirdsnavigateusingtheearth’smagneticfield.
Now,anewstudyhasfoundsubtlemechanicsinthebrainofpigeonsthatallow
themtofindtheirway.
AteamatBaylorCollegeofMedicineintheU.S.identifiedagroupof53cellsina
pigeon’sbrainthatrecorddetailedinformationontheEarth’smagneticfield,akind
ofinternalglobalpositioningsystem(GPS).

AIRCRAFT:
•MECHANISM:

Lift,Drag,andThrust:
•Thefundamentalsofbirdflightaresimilartothoseofaircraft,inwhichtheaerodynamicforcessustain
flightlift,drag,andthrust.Liftforceisproducedbytheactionofairflowonthewing,whichisan
airfoil.
•Theairfoilisshapedsuchthattheairprovidesanetupwardforceonthewing,whilethemovementof
airisdirecteddownward.Theadditionalnetliftmaycomefromairflowaroundthebird'sbodyinsome
species,especiallyduringintermittentflightwhilethewingsarefoldedorsemi-folded(cf.liftingbody).
•Aerodynamicdragistheforceoppositetothedirectionofmotion,andhencethesourceofenergylossin
flight.
•Thedragforcecanbeseparatedintotwoportions,lift-induceddrag,whichistheinherentcostofthe
wingproducinglift(thisenergyendsupprimarilyinthewingtipvortices),andparasiticdrag,including
skinfrictiondragfromthefrictionofairandbodysurfacesandformdragfromthebird'sfrontalarea.
•Thestreamliningofthebird'sbodyandwingsreducestheseforces.Unlikeaircraft,whichhaveengines
toproducethrust,birdsflaptheirwingswithagivenflappingamplitudeandfrequencytogenerate
thrust.

LOTUSLEAFEFFECT:
Thelotusleafiswell-knownforhavingahighlywater-repellent,orsuperhydrophobic,
surface,thusgivingthenametothelotuseffect.
Waterrepellencyhasreceivedmuchattentioninthedevelopmentofself-cleaning
materials,andithasbeenstudiedinbothnaturalandartificialsystems.

SUPERHYDROPHOBIC ANDSELF-CLEANINGSURFACES:
Theself-cleaningfunctionofsuperhydrophobicsurfacesisconventionallyattributedtothe
removalofcontaminatingparticlesbyimpactingorrollingwaterdroplets,whichimpliesthe
actionofexternalforcessuchasgravity.
Here,wedemonstrateauniqueself-cleaningmechanismwherebythecontaminated
superhydrophobicsurfaceisexposedtocondensingwatervapor,andthecontaminantsare
autonomouslyremovedbytheself-propelledjumpingmotionoftheresultingliquid
condensate,whichpartiallycoversorfullyenclosesthecontaminatingparticles.
Thejumpingmotionofthesuperhydrophobicsurfaceispoweredbythesurfaceenergy
releaseduponthecoalescenceofthecondensedwaterphasearoundthecontaminants.
Thejumping-condensatemechanismisshowntospontaneouslycleansuperhydrophobic
cicadawings,wherethecontaminatingparticlescannotberemovedbygravity,wing
vibration,orwindflow.Ourfindingsofferinsightsintothedevelopmentofself-cleaning
materials.

PLANT BURRS:
•A bur (also spelled burr) is a seed or dry fruit or infructescence that has hooks or
teeth. The main function of the bur is to spread the seeds of the bur plant, often
through epizoochory.
•The hooks of the bur are used to catch on to for example fur or fabric, so that the
bur, which contains seeds, then can be transported along with the thing it attached
itself to.
•Another use for the spines and hooks is physical protection against herbivores. Their
ability to stick to animals and fabrics has shaped their reputation as bothersome.
•Some other forms of diaspores, such as the stems of certain species of cactus also
are covered with thorns and may function as burs.

•Bur-bearing plants such as Xanthium species
are often single-stemmed when growing in
dense groups, but branch and spread when
growing singly.
•The number of burs per fruit along with the size
and shape can vary largely between different
bur plants.


•VELCRO:

•Mr.deMestralexaminedtheburrunderamicroscopeandrealizedthesmallhooksofthe
burrandloopsofthefur/fabricallowedtheburrtoadhereexceedinglywell.Thissparked
hisideatomimicthestructureasapotentialfastener.
•OriginallyVELCROisenvisionedasafastenerforclothing,today,Velcroisusedacross
awidearrayofindustriesandapplications;includinghealthcare,themilitary,land
vehicles,aircraft,andevenspacecraft.

•SHARKSKIN:


•Thetextureisroughsinceithassmallscalessimilartoteeth,calledDermal
Denticles.Eachspecieshasauniquelyshapeddenticle.
•Theyhaveacoveringofdentine,acentralpulpcanalcontainingbloodvessels,anda
singlenerve.\
•Thedenticlesplayanimportantpartinswimmingefficiency.
•Thewaterischanneledbythe‘skinteeth'andflowsacrossthefinsandaroundthe
body.
•Theteethalsobreakuptheinterfacebetweenskinandwater,reducingthefriction
betweenthetwoentities.
•Theteethandskinalsohelpprotectthesharkfrominjuriesandseveralelementsin
thewater.It'slikeasuitofarmorforsharks.

Relevancetohumans:
Itistypicallymadewithacetateandrayonyarns,aswellaswithworstedwoolandvarious
syntheticblends.Thecombinationofthecoloroftheyarnsandthetwillweavingpatternin
whichthecoloredthreadsrundiagonallytothewhiteyarnsresultsinthefinishforwhich
sharkskinfabricisknown.Ithasasmoothbutcrisptextureandatwo-tonelustrous
appearance.Lightweightandwrinkle-free,sharkskinisidealforcurtains,tablecloths,and
napkins.Sharkskinfabricispopularforbothmen’sandwomen’sworstedsuits,lightwinter
jackets,andcoats.Sharkskiniscommonlyusedasalinerindivingsuitsandwetsuits.
SHARKSKINANDSWIMSUITS:
Scientistshavebeenabletoreplicatethedermaldenticlesinswimsuitsandalsothebottom
ofshipsorboats.Whencargoshipscansqueezeoutevenasinglepercentinefficiency,they
burnlessbunkeroilanddon’trequirecleaningchemicalsfortheirhulls.Besidesthat,this
sharkskinmechanismisalsoappliedtocreatesurfacesinhospitalsthatresistbacteria
growthsincethebacteriacan’tcatchholdoftheroughsurface.
Sharkskin-inspiredswimsuitsreceivedalotofmediaattentionduringthe2008Summer
Olympics

KINGFISHERBEAK:
Thekingfishershavelong,dagger-likebills.Thebillisusuallylongerandmore
compressedinspeciesthathuntfish,andshorterandbroaderinspecies.
Relationshipwithhumans:
•Kingfishersaregenerallyshybirds,butdespitethis,theyfeatureheavilyinhuman
culture,generallyduetothelargeheadsupportingitspowerfulmouth,theirbright
plumage,orsomespecies'interestingbehavior.
•FortheDusunpeopleofBorneo,theOrientaldwarfkingfisherisconsideredabad
omen,andwarriorswhoseeoneonthewaytobattleshouldreturnhome.
AnotherBorneantribeconsidersthebandedkingfisheranomenbird,albeit
generallyagoodomen.Thesacredkingfisher,alongwithotherPacifickingfishers,
wasveneratedbythePolynesians,whobelievedithadcontrolovertheseasand
waves.

THEBEAKTHATINSPIREDABULLETTRAIN:
TheStrategy:
Thesecretisintheshapeofthekingfisher’sbeak.Alongandnarrowcone,the
kingfisher’sbeakpartsandentersthewaterwithoutcreatingacompressionwave
belowthesurfaceoranoisysplashabove.
Thefinepointoftheconicalbeakpresentslittlesurfaceareaorresistancetothe
wateruponentry,andtheevenlyandgraduallyenlargingcross-sectionofthebeak
keepsfluidflowingsmoothlyarounditasitpenetratesfurtherintothewater
column.
Thisbuysthebirdcrucialmillisecondstoreachthefishbeforethefishknowsto
flee.Thelengthofthebeakiscriticalhere:thelongeritis,themoregraduallythe
angleofthewedgeexpands.Ashorter,fatter,orrounderbeakwouldincreasethe
wedgeangle,resultinginasplash,acompressionwave,andafleeingfish.

ThePotential:
EijiNakatsu,thechiefengineerofthecompanyoperatingJapan’sfastesttrains,
wonderedifthekingfisher’sbeakmightserveasamodelforhowtoredesigntrainsnotto
createsuchathunderousnoisewhenleavingtunnelsandbreakingthroughthebarrier
oftunnelairandoutside-air.
Sureenough,ashisteamtesteddifferentshapesforthefrontofthenewtrain,thetrain
becamequieterandmoreefficientasthegeometryofitsnosebecamemoreliketheshape
ofakingfisher’sbeak,requiring15%lessenergywhiletravelingevenfasterthan
before.

•HUMANBLOODSUBSTITUTES:

•Shortagesinbloodsuppliesandconcernsaboutthesafetyofdonated
bloodhavefueledthedevelopmentofso-calledbloodsubstitutes.
•Thetwomajortypesofbloodsubstitutesarevolumeexpanders,
whichincludesolutionssuchassalinethatareusedtoreplacelost
plasmavolume,andoxygentherapeutics,whichareagentsdesigned
toreplaceoxygennormallycarriedbythehemoglobininredblood
cells.
•Ofthesetwotypesofbloodsubstitutes,thedevelopmentofoxygen
therapeuticshasbeenthemostchallenging.Oneofthefirstgroupsof
agentsdevelopedandtested

Hemoglobin-basedoxygencarriers(HBOCs)ANDPerfluorocarbons(PFC):
PharmaceuticalcompaniesattemptedtodevelopHBOCs(alsocalledoxygen
therapeutics)andPFCsstartinginthe1980sandatfirst,seemedtohavesomesuccess.
However,theresultsofmosthumanclinicaltrialshavebeendisappointing.
Astudypublishedin2008intheJournaloftheAmericanMedicalAssociation
summarizedtheresultsof16clinicaltrialsonfivedifferentbloodsubstitutes
administeredto3,500patients.
Thosereceivingbloodsubstituteshadathreefoldincreaseintheriskofheartattacks
comparedwiththecontrolgroupgivenhumandonorblood.However,acloseranalysisof
theresultsshowedthatsomeofthenegativestatisticsweremisleading.
Theartificialbloodproductsreviewedinthisstudyvariedintheirbenefitsandrisks,and
somebloodsubstituteshadveryfewserioussideeffects.Thefindingssuggestthatsome
bloodsubstitutesmaybesaferandmorebeneficialthanscientistsoriginallythought.

1)HBOCs:
Hemoglobin-basedoxygencarriers(HBOCs)are“madeof”natural
hemoglobinsthatwereoriginallydevelopedasbloodsubstitutesbuthavebeen
extendedtoavarietyofhypoxicclinicalsituationsduetotheirabilityto
releaseoxygen.
Comparedwithtraditionalpreservationprotocols,theadditionofHBOCsto
traditionalpreservationprotocolsprovidesmoreoxygentoorganstomeet
theirenergymetabolicneeds,prolongspreservationtime,reducesischemia-
reperfusioninjurytografts,improvesgraftquality,andevenincreasesthe
numberoftransplantabledonors.
ThefocusofthepresentstudywastoreviewthepotentialapplicationsofHBOCsinsolid
organpreservationandprovidenewapproachestounderstandingthemechanismof
promisingstrategiesfororganpreservation.

1)PFCs:
PFCsremaininthebloodstreamforabout48hours.Becauseof
theiroxygen-dissolvingability,PFCswerethefirstgroupof
artificialbloodproductsstudiedbyscientists.
Theyarefirst-generationbloodsubstitutes.Unlikethered-
coloredHBOCs,PFCsareusuallywhite.However,sincetheydo
notmixwithbloodtheymustbeemulsifiedbeforetheycanbe
giventopatients.
PFCsaresuchgoodoxygencarriersthatresearchersarenow
tryingtofindoutiftheycanreduce.
swollenbraintissueintraumaticbraininjury.PFCparticlesmaycauseflu-likesymptomsinsome
patientswhen they exhale thesecompounds.