BJT Biasing Part 2 electronics analog electronics

deepakkug23ec 77 views 59 slides Sep 01, 2024
Slide 1
Slide 1 of 59
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59

About This Presentation

biasing bjt dc value analog electronics


Slide Content

DC Biasing of BJT

Fig. Common-emitter npntransistor configuration.

Relationship B/W α& β

•Inthisbiasingcircuit,anumberofnetworksareanalyzed,
thereisanunderlyingsimilarityintheanalysisofeach
configurationduetotherecurringuseofthefollowing
importantbasicrelationshipsforatransistor:

•Themaximumratingsareindicated
byahorizontallineforthemaximum
collectorcurrent.
•Averticallineatthemaximum
collector-to-emittervoltage.
•Themaximumpowerconstraintis
definedbythecurve
•Atthelowerendofthescalesare
thecutoffregion,definedby
I_B<=0mA,andthesaturation
region,definedbyVCE<=VCEsat.

•Linear-region operation or active region:
Base–emitter junction forward-biased
Base–collector junction reverse-biased
•Cutoff-region operation:
Base–emitter junction reverse-biased
Base–collector junction reverse-biased
•Saturation-region operation:
Base–emitter junction forward-biased
Base–collector junction forward-biased
•Reverse Active region:
Base–emitter junction reverse-biased
Base–collector junction forward-biased

•TheBJTdevicecouldbebiasedtooperateoutsidethese
maximumlimits,buttheresultofsuchoperationwouldbe
eitheraconsiderableshorteningofthelifetimeofthedevice
ordestructionofthedevice.
•Confiningourselvestotheactiveregion,wecanselectmany
differentoperatingareasorpoints.ThechosenQ-pointoften
dependsontheintendeduseofthecircuit.Still,wecan
considersomedifferencesamongthevariouspointsshownin
earlierslidetopresentsomebasicideasabouttheoperating
pointand,thereby,thebiascircuit.

•Ifnobiaswereused,thedevice
wouldinitiallybecompletely
off,resultinginaQ-pointatA—
namely,zerocurrentthroughthe
device(andzerovoltageacross
it).

•Sinceitisnecessarytobiasadevicesothatitcanrespondtotheentirerangeofan
inputsignal,pointAwouldnotbesuitable.
•ForpointB,ifasignalisappliedtothecircuit,thedevicewillvaryincurrentand
voltagefromoperatingpoint,allowingthedevicetoreactto(andpossibly
amplify)boththepositiveandnegativeexcursionsoftheinputsignal.

•PointCwouldallowsomepositiveandnegativevariationoftheoutputsignal,butthe
peak-to-peakvaluewouldbelimitedbytheproximityofVCE=0VorIC=0mA
•PointDsetsthedeviceoperatingpointnearthemaximumvoltageandpowerlevel.The
outputvoltageswinginthepositivedirectionisthuslimitedifthemaximumvoltageisnot
tobeexceeded.

•Temperaturecausesthedeviceparameterssuchasthe
transistorcurrentgain(βac)andthetransistorleakage
current(ICEO)tochange.
•Highertemperaturesresultinincreasedleakagecurrentsin
thedevice,therebychangingtheoperatingconditionsetby
thebiasingnetwork.
•Theresultisthatthenetworkdesignmustalsoprovidea
degreeoftemperaturestabilitysothattemperaturechanges
resultinminimumchangesintheoperatingpoint.
•Thismaintenanceoftheoperatingpointcanbespecifiedbya
stabilityfactor,S.

FIXED-BIAS CIRCUIT
Fixed-bias circuit. DC equivalent of Fixed-bias
circuit.

Base Emitter Loop

Collector Emitter Loop

Load-Line Analysis
•Itisreferredtoasload-lineanalysisbecausetheload(network
resistors)ofthenetworkdefinedtheslopeofthestraightline
connectingthepointsdefinedbythenetworkparameters.

DC load line Cont…

DC load line Cont..
Movement of the Q-point with increasing level of IB
IfthelevelofIBischangedby
varyingthevalueofRB,theQ-
pointmovesupordown
theloadlineasshowninFig.for
increasingvaluesofIB.

DC load line Cont..
Effect of an increasing level of RCon the load line
and the Q-point.
If VCCis held fixed and RCincreased,
the load line will shift as shown in side
Fig.

Effect of lower values of VCCon the load line and the Q-
point.
DC load line Cont..
If RCis fixed and VCC decreased,
the load line shifts as shown in
side Fig.

Fixed Bias with Emitter Register Configuration
BJT bias circuit with emitter
resistor
Themorestablea
configuration,thelessits
responsewillchangedueto
undesirablechangesin
temperatureandparameter
variations.
Emitter Register provide negative feedback
and try to maintain operating point .

Fixed Bias with Emitter Register

Fixed
Bias
Circuit

Output Loop

Example: For the emitter-bias network of as shown in figure, determine:

Example:Fixedbiascircuit(1)withoutemitterregisterand(2)withemitter
registerforthegivenvalueofβ50andforanewvalueofβ100.Comparethe
changesinICandVCEforthesameincreaseinβ.
Table:Effectofβvariationonthe
responseofthefixed-biasconfigurationof
showninsideFig.
The BJT collector current is seen to change
by 100% due to the 100% change in the
value of β. The value of IBis the same, and
VCEdecreased by 76% (1) Fixed Bias cktwithout emitter register

NowtheBJTcollectorcurrentincreasesby
about81%duetothe100%increaseinβ.
NoticethatIBdecreased,helpingmaintainthe
valueofIC—oratleastreducingtheoverall
changeinICduetothechangeinβ.The
changeinVCEhasdroppedtoabout35%.The
networkofsideFig.isthereforemorestable
thanthatofwithoutemitterregisterforthe
samechangeinβ.
Effect of βvariation on the response of the
emitter-bias configuration of side Fig. .
(2) Fixed Bias cktwith emitter register

Voltage-divider bias configuration

Voltage-divider bias configuration cont..
vInthepreviousbiasconfigurationsthebiascurrentICQandvoltageVCEQ
wereafunctionofthecurrentgainβofthetransistor.However,becauseβis
temperaturesensitive,especiallyforsilicontransistors.
vTheactualvalueofbetaisusuallynotwelldefined,itwouldbedesirableto
developabiascircuitthatislessdependenton,orinfactisindependentof,the
transistorbeta.
vThevoltage-dividerbiasconfigurationissuchanetwork.Ifanalyzedonan
exactbasis,thesensitivitytochangesinbetaisquitesmall.Ifthecircuit
parametersareproperlychosen,theresultinglevelsofICQandVCEQcanbe
almosttotallyindependentofbeta.
vThefirsttobedemonstratedistheexactmethod,whichcanbe
appliedtoanyvoltage-dividerconfiguration.Thesecondisreferredtoasthe
approximatemethodandcanbeappliedonlyifspecificconditionsare
satisfied.Theapproximateapproachpermitsamoredirectanalysiswitha
savingsintimeandenergy.

Exact Analysis:

Exact Analysis cont.:
vTheinputsideofthenetworkcanthenbe
redrawnasshowninsideFigureforthedc
analysis.
vTheThéveninequivalentnetworkforthe
networktotheleftofthebaseterminalcanthen
befound:
vRThThevoltagesourceisreplacedbyashort-
circuitequivalentasshowninsideFigure:

Exact Analysis cont.:
vThevoltagesourceVCCisreturnedtothe
networkandtheopen-circuitThévenin
voltageofFig.determinedbyApplyingthe
voltage-dividerrule:

Exact Analysis cont.:
vTheThéveninnetworkisthen
redrawnasshowninFig.,andIBQcan
bedeterminedbyfirstapplying
Kirchhoff’svoltagelawintheclockwise
directionfortheloopindicated:

vOnceIBisknown,theremaining
quantitiesofthenetworkcanbefound
inthesamemannerasdevelopedfor
theemitter-biasconfiguration.
EXAMPLE: Determine the DC bias
voltageVCEandthecurrentICfor
thevoltagedividerconfigurationof
asshowninsideFigure.

Approximate Analysis:

EX 4.9: Repeat the analysis of Fig. 4.35 using the approximate technique, and compare
solutions for ICQ and VCEQ.
EX4.11:DeterminethelevelsofICQandVCEQforthevoltage-dividerconfigurationof
Fig.4.37usingtheexactandapproximatetechniquesandcomparesolutions.
Ex: Repeat the exact analysis of Ex if βis reduced to 50, and compare solutions for ICQ
and VCEQ.
(Solved it form Boylestad11 edition.)

Table. Effect of βvariation on the response
of the voltage-divider configuration
Theresultsclearlyshowtherelativeinsensitivityofthecircuittothechangeinβ.Eventhough
βisdrasticallycutinhalf,from100to50,thelevelsofICQandVCEQareessentiallythesame.

Field-Effect Transistors

Field-Effect Transistors

Field-Effect Transistors
The BJT transistor is a current-controlled device as depicted in Fig. 6.1a , whereas the
JFET transistor is a voltage-controlled device as shown in Fig. 6.1b .

vBJT transistor is a bipolar device-the prefix bi indicates that the
conduction level is a function of two charge carriers, electrons and
holes.
vThe FETis a unipolardevice depending solely on either electron (n-channel) or hole (p-channel) conduction.
vFETsare more temperature stable than BJTs, and FETs are usually
smaller than BJTs, making them particularly useful in integrated-circuit
(IC) chips
vOne of the most important characteristics of the FETis its high
input impedance.

Types of FET

Junction Field Effect Transistor (JFET)

VGS=0V, VDSSome Positive Value:

•Pinch-off condition of JFET(VGS= 0 V, VDS= VP).
•IDSSisthemaximumdraincurrentfor
aJFETandisdefinedbytheconditions
VGS=0VandVDS>abs(VP).

qVGS< 0 V
Application of a negative voltage to
the gate of a JFET
qThe level of VGSthat results in ID=0mA
is defined by VGS=VP, with VPbeing a
negative voltage for n-channel devices and
a positive voltage for p-channel JFETs.

p-Channel JFET

p-Channel JFET

Symbols:
JFET symbols: (a) n-channel; (b) p-channel

Thank You