block diagram reduction with examples

11,991 views 46 slides Feb 02, 2021
Slide 1
Slide 1 of 46
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46

About This Presentation

block diagram reduction with examples


Slide Content

Rule 1: For blocks in cascade Gain of blocks connected in cascade gets multiplied with each other. Block Diagram Reduction Techniques G1 R( s ) R1(s) G2 C(s) G1G2 R( s ) C(s) .. .. 1

Rule 2: For blocks in Parallel Gain of blocks connected in parallel gets added algebraically. Block Diagram Reduction Techniques C(s)= (G1-G2+G3) R(s) G1-G2+G3 R( s ) C ( s) G1 G2 R( s ) C ( s) G3 R1(s) R3(s) + + R2(s) - C(s)= R1(s)-R2(s)+R3(s) = G1R(s)-G2R(s)+G3R(s) C(s)=(G1-G2+G3) R(s) .. .. 2

Rule 3: Eliminate Feedback Loop Block Diagram Reduction Techniques C(s) G H R(s) + + - R( s ) C ( s) G 1  GH B(s) E( s ) C ( s) R ( s) 1  GH G  In General .. .. 3

Rule 4: Associative Law for Summing Points The order of summing points can be changed if two or more summing points are in series Block Diagram Reduction Techniques C ( s) B2 R(s) + X + - C ( s) B1 R(s) + X + - .. .. 4

Rule 5: Shift summing point before block Block Diagram Reduction Techniques R( s ) C(s) X + G C(s)=R(s)G+X C(s)=G{R(s)+X/G} =GR(s)+X + C(s) R(s) + G 1/G X + .. .. 5

Rule 6: Shift summing point after block Block Diagram Reduction Techniques C(s) R(s) + G X + R( s ) C(s) X + G G + .. .. 6

Block Diagram Reduction Techniques Rule 7: Shift a take off point before block R( s ) C(s) G X R (s ) C(s) X G G .. .. 7

Rule 8: Shift a take off point after block Block Diagram Reduction Techniques R( s ) C(s) X G R( s ) C(s) G X 1/G .. 116

Block Diagram Reduction Techniques First Choice First Preference: Rule 1 (For series) Second Preference: Rule 2 (For parallel) Third Preference: Rule 3 (For FB loop) .. .. 9

Block Diagram Reduction Techniques Second Choice (Equal Preference) Rule 4 Adjusting summing order Rule 5/ 6 Sh i ft i n g su m m i n g po i n t b e f o r e / a f t er b l ock Rule7/8 Shifting take off point before/after block .. .. 10

H1 G2 G3 H2 C(s) R(s) + + + + - - G1 G4 G5 Example 3 .. .. 11

H1 G2 G3 H2 C(s) R(s) + + + - G1 G4 G5 Apply Rule 3 Elimination of feedback loop Example 3 co n t …. + .. .. 12 -

G3 H2 C(s) R(s) + + + - G1 G4 G5 Apply Rule 1 Blocks in series G 2 1  G 2 H 1 Example 3 co n t …. .. .. 13

H2 C ( s) R(s) + + + - G4 G5 Apply Rule 2 Blocks in parallel G 1 G 2 G 3 1  G 2 H 1 Example 3 co n t …. .. .. 14

H2 C(s) R(s) + - G4 Apply Rule 1 Blocks in series G 5  G 1 G 2 G 3 1  G 2 H 1 Example 3 co n t …. .. .. 15

H2 C(s) R(s) + - Apply Rule 3 Elimination of feedback loop G 4( G 5  G 1 G 2 G 3 ) 1  G 2 H 1 Example 3 co n t …. .. .. 16

R(s) C(s) G 4 G 5  G 2 G 4 G 5 H 1  G 1 G 2 G 3 G 4 1  G 2 H 1  G 4 G 5 H 2  G 2 G 4 G 5 H 1 H 2  G 1 G 2 G 3 G 4 H 2 Example 3 co n t …. .. .. 17

C ( s )  G 4 G 5  G 2 G 4 G 5 H 1  G 1 G 2 G 3 G 4 R ( s ) 1  G 2 H 1  G 4 G 5 H 2  G 2 G 4 G 5 H 1 H 2  G 1 G 2 G 3 G 4 H 2 Example 3 co n t …. .. .. 18

G1 H2 G2 H1 C(s) R(s) + + - - - + Example 4 .. .. 19

G1 H2 G2 H1 C(s) R(s) + + - - + Apply Rule 3 Elimination of feedback loop Example 4 co n t …. - .. .. 20

G1 H1 C(s) R(s) + + - - G 2 1  G 2 H 2 Example 4 co n t …. .. .. 21

G1 H1 C(s) + - - Apply Rule 4 Exchange summing order G 2 1  G 2 H 2 1 R(s) + 2 Example 4 co n t …. .. .. 22

G1 H1 C(s) + - - Apply Rule 3 Elimination feedback loop G 2 1  G 2 H 2 1 2 R(s) + Example 4 co n t …. .. .. 23

C(s) - Apply Rule 1 Bocks in series G 2 1  G 2 H 2 2 R(s) + G 1 1  G 1 H 1 Example 4 co n t …. .. .. 24

C(s) - 2 R(s) + Now which Rule will be applied -------It is blocks in parallel -------It is feed back loop OR G 1 G 2 1  G 1 H 1  G 2 H 2  G 1 G 2 H 1 H 2 Example 4 co n t …. .. .. 25

C(s) - 2 R(s) + Let us rearrange the block diagram to understand Apply Rule 3 Elimination of feed back loop G 1 G 2 1  G 1 H 1  G 2 H 2  G 1 G 2 H 1 H 2 Example 4 co n t …. .. .. 26

R(s) C(s) G 1 G 2 1  G 1 H 1  G 2 H 2  G 1 G 2 H 1 H 2  G 1 G 2 Example 4 co n t …. .. .. 27

C ( s )  G 1 G 2 R ( s ) 1  G 1 H 1  G 2 H 2  G 1 G 2 H 1 H 2  G 1 G 2 Example 4 co n t …. .. .. 28

Note 1: According to Rule 4 B y c o r ollar y , on e c an spli t a summin g poi n t to two summing point and sum in any order G H + - R(s) + C ( s) B G H + - R( s ) C ( s) + + B .. .. 29

G1 H1 C(s) R(s) + + - G2 G3 H2 H3 - Simplify, by splitting second summing point as said in note 1 Example 5 - .. .. 30

G1 H1 C(s) + + - - G2 G3 H2 H3 + - R(s) Apply rule 3 Elimination of feedback loop Example 5 co n t …. .. .. 31

C(s) + - G2 G3 H2 H3 + - R ( s) Apply rule 1 Blocks in series G 1 1  G 1 H 1 Example 5 co n t …. .. .. 32

C(s) + - G3 H2 H3 + - R ( s) Apply rule 3 Elimination of feedback loop G 1 1  G 1 H G 2 1 Example 5 co n t …. .. .. 33

C ( s) G3 H3 + - R ( s) Apply rule 1 Blocks in series G 1 G 2 1  G 1 H 1  G 1 G 2 H 2 Example 5 co n t …. .. .. 34

C(s) H3 + - R ( s) Apply rule 3 Elimination of feedback loop G 1 G 2 G 3 1  G 1 H 1  G 1 G 2 H 2 Example 5 co n t …. .. .. 35

C ( s) R ( s) G 1 G 2 G 3 1  G 1 H 1  G 1 G 2 H 2  G 1 G 2 G 3 H 3 Example 5 co n t …. .. .. 36

C ( s )  G 1 G 2 G 3 R ( s ) 1  G 1 H 1  G 1 G 2 H 2  G 1 G 2 G 3 H 3 Example 5 co n t …. .. .. 37

H3 G2 H1 C ( s) R(s) + + - - G1 G3 H2 - + Apply rule 8 Shift take off point after block G4 G4 Example 7 .. .. 38

H3 G2 H1 C ( s) R(s) + + - - G1 G3 H2 - + Apply rule 1 Blocks in series G4 1/G4 Example 7 co n t …. .. .. 39

H3 G2 H1 C ( s) R(s) + + - - G1 G3G4 - + Apply rule 3 Feedback loop H2/ G4 Example 7 co n t …. .. .. 40

G2 H1 C ( s) R(s) + + - - G1 Apply rule 1 Blocks in series H2/ G4 G 3 G 4 1  G 3 G 4 H 3 Example 7 co n t …. .. .. 41

H1 C ( s) R(s) + + - - G1 Apply rule 3 Feedback loop H2/ G4 G 2 G 3 G 4 1  G 3 G 4 H 3 Example 7 co n t …. .. .. 42

H1 C(s) R(s) + - G1 Apply rule 1 Blocks in series G 2 G 3 G 4 1  G 3 G 4 H 3  G 2 G 3 H 2 Example 7 co n t …. .. .. 43

H1 C(s) R(s) + - Apply rule 3 Feedback loop G 1 G 2 G 3 G 4 1  G 3 G 4 H 3  G 2 G 3 H 2 Example 7 co n t …. .. .. 44

R(s) C(s) G 1 G 2 G 3 G 4 1  G 3 G 4 H 3  G 2 G 3 H 2  G 1 G 2 G 3 G 4 H 1 Example 7 co n t …. .. .. 45

C (S)  G 1 G 2 G 3 G 4 R ( S) 1  G 3 G 4 H 3  G 2 G 3 H 2  G 1 G 2 G 3 G 4 H 1 Example 7 co n t …. .. .. 46
Tags