En los ejercicios 1 a 12, hallar la derivada direccional de la fun-
ción en en dirección de v.
En los ejercicios 13 a 16, hallar la derivada direccional de la fun-
ción en dirección de
En los ejercicios 17 a 20, hallar la derivada direccional de la fun-
ción en en dirección de
En los ejercicios 21 a 26, hallar el gradiente de la función en el
punto dado.
En los ejercicios 27 a 30, utilizar el gradiente para hallar la
derivada direccional de la función en en la dirección de
En los ejercicios 31 a 40, hallar el gradiente de la función y el
valor máximo de la derivada direccional en el punto dado.
En los ejercicios 41 a 46, utilizar la función
41.
Dibujar la gráfica de en el primer octante y marcar el punto
(3, 2, 1) sobre la superficie.
42.Hallar donde usando cada
valor dado de q.
a) b)
c) d)
43.Hallar donde usando cada vector v dado.
a)
b)
c) es el vector que va de a
d) es el vector que va de a
44.Hallar
45.Hallar el valor máximo de la derivada direccional en (3,2).
46.Hallar un vector unitario de uortogonal a y calcular
Analizar el significado geométrico del resultado.D
u
fs3, 2d.
=fs3, 2d
=fsx, yd.
s4, 5d.s3, 2dv
s22, 6d.s1, 2dv
v523i24j
v5i1j
In Exercises 1–12, find the directional derivative of the function
at in the direction of v.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
In Exercises 13–16, find the directional derivative of the
function in the direction of the unit vector
13.
14.
15.
16.
In Exercises 17–20, find the directional derivative of the
function at in the direction of
17.
18.
19.
20.
In Exercises 21–26, find the gradient of the function at the given
point.
21.
22.
23.
24.
25.
26.
In Exercises 27–30, use the gradient to find the directional
derivative of the function at in the direction of
27.
28.
29.
30.
In Exercises 31–40, find the gradient of the function and the
maximum value of the directional derivative at the given point.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
In Exercises 41– 46, consider the function
41.Sketch the graph of in the first octant and plot the point
on the surface.
42.Find where each given
value of
(a) (b)
(c) (d)
43.Find where using each given vector
(a)
(b)
(c) is the vector from to
(d) is the vector from to
44.Find
45.Find the maximum value of the directional derivative at
46.Find a unit vector orthogonal to and calculate
Discuss the geometric meaning of the result.D
u
f3, 2.
f3, 2u
3, 2.
fx, y.
4, 5.3, 2v
2, 6.1, 2v
v 3i4j
vij
v.u
v
v
,D
u f3, 2,
6
4
3
2
34
.
ucos isenj,D
u
f3, 2,
3, 2, 1
f
fx, y 3
x
3
y
2
.
2, 0, 4f x, y, z xe
yz
2, 1, 1w xy
2
z
2
0, 0, 0w
1
1x
2
y
2
z
2
1, 4, 2f x, y, zx
2
y
2
z
2
1, 2g x, y ln
3
x
2
y
2
0, 5g x, y ye
x
0,
3
hx, yy cosxy
2,
4
hx, yx tan y
0, 1f x, y
xy
y1
1, 0f x, yx
2
2xy
Punto Función
P, 0, Q
2
, f x, y sen 2x cos y,
P0, 0, Q2, 1f x, ye
y
sen x,
P1, 4, Q3, 6f x, y 3x
2
y
2
4,
P1, 2, Q2, 3g x, yx
2
y
2
1,
Q.P
4, 3, 1w x tan yz,
1, 1, 2w3x
2
5y
2
2z
2
,
3, 4zcosx
2
y
2
,
2, 3zlnx
2
y,
2, 0g x, y 2xe
yx
,
2, 1f x, y 3x5y
2
1,
P1, 0, 0 , Q4, 3, 1h x, y, zlnxyz ,
P2, 4, 0 , Q 0, 0, 0g x, y, z xye
z
,
P0, , Q
2
, 0f x, y cosxy,
P1, 1 , Q4, 5f x, yx
2
3y
2
,
Q.P
2
3
gx, y xe
y
,
3
fx, y sen 2xy,
6
fx, y
y
xy
,
4
fx, yx
2
y
2
,
u cos i + sen j.
P4, 1, 1 , v1, 2, 1h x, y, zx arctan yz,
P2, 1, 1 , v2, 1, 2h(x, y, z xyz,
P1, 2, 1, v2ijkf x, y, z xy yz xz,
P1, 1, 1, v
3
3
ijkf x, y, zx
2
y
2
z
2
,
P0, 0 , vijh x, ye
x
2
y
2
,
P3, 4 , v3i4jg x, yx
2
y
2
,
P1, 0 , vjg x, y arccos xy,
P1,
2
, vih x, ye
x
sen y,
P1, 1 , vjf x, y
x
y
,
P0, 2, v
1
2
i 3jf x, y xy,
P4, 3 , v
2
2
ijf x, yx
3
y
3
,
P1, 2 , v
3
5
i
4
5
jf x, y 3x4xy9y,
P
942 Chapter 13Functions of Several Variables
13.6ExercisesSee www.CalcChat.com for worked-out solutions to odd-numbered exercises.
1053714_1306.qxp 10/27/08 12:08 PM Page 942
D
u
fs3, 2d,
u52
p
6
u5
4
p
3
u5
2
p
3
u5
p
4
In Exercises 1–12, find the directional derivative of the function
at in the direction of v.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
In Exercises 13–16, find the directional derivative of the
function in the direction of the unit vector
13.
14.
15.
16.
In Exercises 17–20, find the directional derivative of the
function at in the direction of
17.
18.
19.
20.
In Exercises 21–26, find the gradient of the function at the given
point.
21.
22.
23.
24.
25.
26.
In Exercises 27–30, use the gradient to find the directional
derivative of the function at in the direction of
27.
28.
29.
30.
In Exercises 31–40, find the gradient of the function and the
maximum value of the directional derivative at the given point.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
In Exercises 41– 46, consider the function
41.Sketch the graph of in the first octant and plot the point
on the surface.
42.Find where each given
value of
(a) (b)
(c) (d)
43.Find where using each given vector
(a)
(b)
(c) is the vector from to
(d) is the vector from to
44.Find
45.Find the maximum value of the directional derivative at
46.Find a unit vector orthogonal to and calculate
Discuss the geometric meaning of the result.D
u
f3, 2.
f3, 2u
3, 2.
fx, y.
4, 5.3, 2v
2, 6.1, 2v
v 3i4j
vij
v.u
v
v
,D
u f3, 2,
6
4
3
2
34
.
u
cos isenj,D
u
f3, 2,
3, 2, 1
f
fx, y 3
x
3
y
2
.
2, 0, 4f x, y, z xe
yz
2, 1, 1w xy
2
z
2
0, 0, 0w
1
1x
2
y
2
z
2
1, 4, 2f x, y, zx
2
y
2
z
2
1, 2g x, y ln
3
x
2
y
2
0, 5g x, y ye
x
0,
3
hx, yy cosxy
2,
4
hx, yx tan y
0, 1f x, y
xy
y1
1, 0f x, yx
2
2xy
Punto Función
P, 0, Q
2
, f x, y sen 2x cos y,
P0, 0, Q2, 1f x, ye
y
sen x,
P1, 4, Q3, 6f x, y 3x
2
y
2
4,
P1, 2, Q2, 3g x, yx
2
y
2
1,
Q.P
4, 3, 1w x tan yz,
1, 1, 2w3x
2
5y
2
2z
2
,
3, 4zcosx
2
y
2
,
2, 3zlnx
2
y,
2, 0g x, y 2xe
yx
,
2, 1f x, y 3x5y
2
1,
P1, 0, 0 , Q4, 3, 1h x, y, zlnxyz ,
P2, 4, 0 , Q 0, 0, 0g x, y, z xye
z
,
P0, , Q
2
, 0f x, y cosxy,
P1, 1 , Q4, 5f x, yx
2
3y
2
,
Q.P
2
3
gx, y xe
y
,
3
fx, y sen 2xy,
6
fx, y
y
xy
,
4
fx, yx
2
y
2
,
u cos i + sen j.
P4, 1, 1 , v1, 2, 1h x, y, zx arctan yz,
P2, 1, 1 , v2, 1, 2h(x, y, z xyz,
P1, 2, 1, v2ijkf x, y, z xy yz xz,
P1, 1, 1, v
3
3
ijkf x, y, zx
2
y
2
z
2
,
P0, 0 , vijh x, ye
x
2
y
2
,
P3, 4 , v3i4jg x, yx
2
y
2
,
P1, 0 , vjg x, y arccos xy,
P1,
2
, vih x, ye
x
sen y,
P1, 1 , vjf x, y
x
y
,
P0, 2, v
1
2
i 3jf x, y xy,
P4, 3 , v
2
2
ijf x, yx
3
y
3
,
P1, 2 , v
3
5
i
4
5
jf x, y 3x4xy9y,
P
942 Chapter 13Functions of Several Variables
13.6ExercisesSee www.CalcChat.com for worked-out solutions to odd-numbered exercises.
1053714_1306.qxp 10/27/08 12:08 PM Page 942
D
u
fs3, 2d,
f
fxx, yc532
x
3
2
y
2
.
Q.P
Q.P
u5cos ui1sin uj.
P
13.6Ejercicios
942 CAPÍTULO 13 Funciones de varias variables
In Exercises 1–12, find the directional derivative of the function
at in the direction of v.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
In Exercises 13–16, find the directional derivative of the
function in the direction of the unit vector
13.
14.
15.
16.
In Exercises 17–20, find the directional derivative of the
function at in the direction of
17.
18.
19.
20.
In Exercises 21–26, find the gradient of the function at the given
point.
21.
22.
23.
24.
25.
26.
In Exercises 27–30, use the gradient to find the directional
derivative of the function at in the direction of
27.
28.
29.
30.
In Exercises 31–40, find the gradient of the function and the
maximum value of the directional derivative at the given point.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
In Exercises 41– 46, consider the function
41.Sketch the graph of in the first octant and plot the point
on the surface.
42.Find where each given
value of
(a) (b)
(c) (d)
43.Find where using each given vector
(a)
(b)
(c) is the vector from to
(d) is the vector from to
44.Find
45.Find the maximum value of the directional derivative at
46.Find a unit vector orthogonal to and calculate
Discuss the geometric meaning of the result.D
u
f3, 2.
f3, 2u
3, 2.
fx, y.
4, 5.3, 2v
2, 6.1, 2v
v 3i4j
vij
v.u
v
v
,D
u f3, 2,
6
4
3
2
34
.
ucos isenj,D
u
f3, 2,
3, 2, 1
f
fx, y 3
x
3
y
2
.
2, 0, 4f x, y, z xe
yz
2, 1, 1w xy
2
z
2
0, 0, 0w
1
1x
2
y
2
z
2
1, 4, 2f x, y, zx
2
y
2
z
2
1, 2g x, y ln
3
x
2
y
2
0, 5g x, y ye
x
0,
3
hx, yy cosxy
2,
4
hx, yx tan y
0, 1f x, y
xy
y1
1, 0f x, yx
2
2xy
Punto Función
P, 0, Q
2
, f x, y sen 2x cos y,
P0, 0, Q2, 1f x, ye
y
sen x,
P1, 4, Q3, 6f x, y 3x
2
y
2
4,
P1, 2, Q2, 3g x, yx
2
y
2
1,
Q.P
4, 3, 1w x tan yz,
1, 1, 2w3x
2
5y
2
2z
2
,
3, 4zcosx
2
y
2
,
2, 3zlnx
2
y,
2, 0g x, y 2xe
yx
,
2, 1f x, y 3x5y
2
1,
P1, 0, 0 , Q4, 3, 1h x, y, zlnxyz ,
P2, 4, 0 , Q 0, 0, 0g x, y, z xye
z
,
P0, , Q
2
, 0f x, y cosxy,
P1, 1 , Q4, 5f x, yx
2
3y
2
,
Q.P
2
3
gx, y xe
y
,
3
fx, y sen 2xy,
6
fx, y
y
xy
,
4
fx, yx
2
y
2
,
u cos i + sen j.
P
4, 1, 1, v1, 2, 1hx, y, zx arctan yz,
P2, 1, 1, v2, 1, 2h(x, y, zxyz,
P1, 2, 1, v2ijkfx, y, zxyyzxz,
P1, 1, 1, v
3
3
ijkfx, y, zx
2
y
2
z
2
,
P0, 0, vijhx, y e
x
2
y
2
,
P3, 4, v3i4jgx, y x
2
y
2
,
P1, 0, vjgx, y arccos xy,
P1,
2
, v ihx, y e
x
sen y,
P1, 1, v jfx, y
x
y
,
P0, 2, v
1
2
i 3jfx, y xy,
P4, 3, v
2
2
ijfx, y x
3
y
3
,
P1, 2, v
3
5
i
4
5
jfx, y 3x4xy9y,
P
942 Chapter 13Functions of Several Variables
13.6ExercisesSee www.CalcChat.com for worked-out solutions to odd-numbered exercises.
1053714_1306.qxp 10/27/08 12:08 PM Page 942
In Exercises 1–12, find the directional derivative of the function
at in the direction of v.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
In Exercises 13–16, find the directional derivative of the
function in the direction of the unit vector
13.
14.
15.
16.
In Exercises 17–20, find the directional derivative of the
function at in the direction of
17.
18.
19.
20.
In Exercises 21–26, find the gradient of the function at the given
point.
21.
22.
23.
24.
25.
26.
In Exercises 27–30, use the gradient to find the directional
derivative of the function at in the direction of
27.
28.
29.
30.
In Exercises 31–40, find the gradient of the function and the
maximum value of the directional derivative at the given point.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
In Exercises 41– 46, consider the function
41.Sketch the graph of in the first octant and plot the point
on the surface.
42.Find where each given
value of
(a) (b)
(c) (d)
43.Find where using each given vector
(a)
(b)
(c) is the vector from to
(d) is the vector from to
44.Find
45.Find the maximum value of the directional derivative at
46.Find a unit vector orthogonal to and calculate
Discuss the geometric meaning of the result.D
u
f3, 2.
f3, 2u
3, 2.
fx, y.
4, 5.3, 2v
2, 6.1, 2v
v 3i4j
vij
v.u
v
v
,D
u f3, 2,
6
4
3
2
34
.
ucos isenj,D
u
f3, 2,
3, 2, 1
f
fx, y 3
x
3
y
2
.
2, 0, 4f x, y, z xe
yz
2, 1, 1w xy
2
z
2
0, 0, 0w
1
1x
2
y
2
z
2
1, 4, 2f x, y, zx
2
y
2
z
2
1, 2g x, y ln
3
x
2
y
2
0, 5g x, y ye
x
0,
3
hx, yy cosxy
2,
4
hx, yx tan y
0, 1f x, y
xy
y1
1, 0f x, yx
2
2xy
Punto Función
P, 0, Q
2
, f x, y sen 2x cos y,
P0, 0, Q2, 1f x, ye
y
sen x,
P1, 4, Q3, 6f x, y 3x
2
y
2
4,
P1, 2, Q2, 3g x, yx
2
y
2
1,
Q.P
4, 3, 1w x tan yz,
1, 1, 2w3x
2
5y
2
2z
2
,
3, 4zcosx
2
y
2
,
2, 3zlnx
2
y,
2, 0g x, y 2xe
yx
,
2, 1f x, y 3x5y
2
1,
P1, 0, 0 , Q4, 3, 1h x, y, zlnxyz ,
P2, 4, 0 , Q 0, 0, 0g x, y, z xye
z
,
P0, , Q
2
, 0f x, y cosxy,
P1, 1 , Q4, 5f x, yx
2
3y
2
,
Q.P
2
3
gx, y xe
y
,
3
fx, y sen2xy,
6
fx, y
y
xy
,
4
fx, y x
2
y
2
,
u cos i + sen j.
P4, 1, 1 , v1, 2, 1h x, y, zx arctan yz,
P2, 1, 1 , v2, 1, 2h(x, y, z xyz,
P1, 2, 1, v2ijkf x, y, z xy yz xz,
P1, 1, 1, v
3
3
ijkf x, y, zx
2
y
2
z
2
,
P0, 0 , vijh x, ye
x
2
y
2
,
P3, 4 , v3i4jg x, yx
2
y
2
,
P1, 0 , vjg x, y arccos xy,
P1,
2
, vih x, ye
x
sen y,
P1, 1 , vjf x, y
x y
,
P0, 2, v
1
2
i 3jf x, y xy,
P4, 3 , v
2
2
ijf x, yx
3
y
3
,
P1, 2 , v
3
5
i
4
5
jf x, y 3x4xy9y,
P
942 Chapter 13Functions of Several Variables
13.6ExercisesSee www.CalcChat.com for worked-out solutions to odd-numbered exercises.
1053714_1306.qxp 10/27/08 12:08 PM Page 942
In Exercises 1–12, find the directional derivative of the function
at in the direction of v.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
In Exercises 13–16, find the directional derivative of the
function in the direction of the unit vector
13.
14.
15.
16.
In Exercises 17–20, find the directional derivative of the
function at in the direction of
17.
18.
19.
20.
In Exercises 21–26, find the gradient of the function at the given
point.
21.
22.
23.
24.
25.
26.
In Exercises 27–30, use the gradient to find the directional
derivative of the function at in the direction of
27.
28.
29.
30.
In Exercises 31–40, find the gradient of the function and the
maximum value of the directional derivative at the given point.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
In Exercises 41– 46, consider the function
41.Sketch the graph of in the first octant and plot the point
on the surface.
42.Find where each given
value of
(a) (b)
(c) (d)
43.Find where using each given vector
(a)
(b)
(c) is the vector from to
(d) is the vector from to
44.Find
45.Find the maximum value of the directional derivative at
46.Find a unit vector orthogonal to and calculate
Discuss the geometric meaning of the result.D
u
f3, 2.
f3, 2u
3, 2.
fx, y.
4, 5.3, 2v
2, 6.1, 2v
v 3i4j
vij
v.u
v
v
,D
u f3, 2,
6
4
3
2
34
.
ucos isenj,D
u
f3, 2,
3, 2, 1
f
fx, y 3
x
3
y
2
.
2, 0, 4f x, y, z xe
yz
2, 1, 1w xy
2
z
2
0, 0, 0w
1
1x
2
y
2
z
2
1, 4, 2f x, y, zx
2
y
2
z
2
1, 2g x, y ln
3
x
2
y
2
0, 5g x, y ye
x
0,
3
hx, yy cosxy
2,
4
hx, yx tan y
0, 1f x, y
xy
y1
1, 0f x, yx
2
2xy
Punto Función
P, 0, Q
2
, f x, y sen 2x cos y,
P0, 0, Q2, 1f x, ye
y
sen x,
P1, 4, Q3, 6f x, y 3x
2
y
2
4,
P1, 2, Q2, 3g x, yx
2
y
2
1,
Q.P
4, 3, 1w x tan yz,
1, 1, 2w3x
2
5y
2
2z
2
,
3, 4zcosx
2
y
2
,
2, 3zlnx
2
y,
2, 0g x, y 2xe
yx
,
2, 1f x, y 3x5y
2
1,
P
1, 0, 0, Q4, 3, 1hx, y, zlnxyz,
P2, 4, 0, Q0, 0, 0gx, y, zxye
z
,
P0, , Q
2
, 0fx, y cosxy,
P1, 1, Q4, 5fx, y x
2
3y
2
,
Q.P
2
3
gx, y xe
y
,
3
fx, y sen 2xy,
6
fx, y
y
xy
,
4
fx, yx
2
y
2
,
u cos i + sen j.
P4, 1, 1 , v1, 2, 1h x, y, zx arctan yz,
P2, 1, 1 , v2, 1, 2h(x, y, z xyz,
P1, 2, 1, v2ijkf x, y, z xy yz xz,
P1, 1, 1, v
3
3
ijkf x, y, zx
2
y
2
z
2
,
P0, 0 , vijh x, ye
x
2
y
2
,
P3, 4 , v3i4jg x, yx
2
y
2
,
P1, 0 , vjg x, y arccos xy,
P1,
2
, vih x, ye
x
sen y,
P1, 1 , vjf x, y
x y
,
P0, 2, v
1
2
i 3jf x, y xy,
P4, 3 , v
2
2
ijf x, yx
3
y
3
,
P1, 2 , v
3
5
i
4
5
jfx, y 3x4xy9y,
P
942 Chapter 13Functions of Several Variables
13.6ExercisesSee www.CalcChat.com for worked-out solutions to odd-numbered exercises.
1053714_1306.qxp 10/27/08 12:08 PM Page 942
In Exercises 1–12, find the directional derivative of the function
at in the direction of v.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
In Exercises 13–16, find the directional derivative of the
function in the direction of the unit vector
13.
14.
15.
16.
In Exercises 17–20, find the directional derivative of the
function at in the direction of
17.
18.
19.
20.
In Exercises 21–26, find the gradient of the function at the given
point.
21.
22.
23.
24.
25.
26.
In Exercises 27–30, use the gradient to find the directional
derivative of the function at in the direction of
27.
28.
29.
30.
In Exercises 31–40, find the gradient of the function and the
maximum value of the directional derivative at the given point.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
In Exercises 41– 46, consider the function
41.Sketch the graph of in the first octant and plot the point
on the surface.
42.Find where each given
value of
(a) (b)
(c) (d)
43.Find where using each given vector
(a)
(b)
(c) is the vector from to
(d) is the vector from to
44.Find
45.Find the maximum value of the directional derivative at
46.Find a unit vector orthogonal to and calculate
Discuss the geometric meaning of the result.D
u
f3, 2.
f3, 2u
3, 2.
fx, y.
4, 5.3, 2v
2, 6.1, 2v
v 3i4j
vij
v.u
v
v
,D
u f3, 2,
6
4
3
2
34
.
ucos isenj,D
u
f3, 2,
3, 2, 1
f
fx, y 3
x
3
y
2
.
2, 0, 4f x, y, z xe
yz
2, 1, 1w xy
2
z
2
0, 0, 0w
1
1x
2
y
2
z
2
1, 4, 2f x, y, zx
2
y
2
z
2
1, 2g x, y ln
3
x
2
y
2
0, 5g x, y ye
x
0,
3
hx, yy cosxy
2,
4
hx, yx tan y
0, 1f x, y
xy
y1
1, 0f x, yx
2
2xy
Punto Función
P, 0, Q
2
, f x, y sen 2x cos y,
P0, 0, Q2, 1f x, ye
y
sen x,
P1, 4, Q3, 6f x, y 3x
2
y
2
4,
P1, 2, Q2, 3g x, yx
2
y
2
1,
Q.P
4, 3, 1wx tanyz,
1, 1, 2w3x
2
5y
2
2z
2
,
3, 4zcosx
2
y
2
,
2, 3zlnx
2
y,
2, 0gx, y 2xe
yx
,
2, 1fx, y 3x5y
2
1,
P1, 0, 0 , Q4, 3, 1h x, y, zlnxyz ,
P2, 4, 0 , Q 0, 0, 0g x, y, z xye
z
,
P0, , Q
2
, 0f x, y cosxy,
P1, 1 , Q4, 5f x, yx
2
3y
2
,
Q.P
2
3
gx, y xe
y
,
3
fx, y sen 2xy,
6
fx, y
y
xy
,
4
fx, yx
2
y
2
,
u cos i + sen j.
P4, 1, 1 , v1, 2, 1h x, y, zx arctan yz,
P2, 1, 1 , v2, 1, 2h(x, y, z xyz,
P1, 2, 1, v2ijkf x, y, z xy yz xz,
P1, 1, 1, v
3
3
ijkf x, y, zx
2
y
2
z
2
,
P0, 0 , vijh x, ye
x
2
y
2
,
P3, 4 , v3i4jg x, yx
2
y
2
,
P1, 0 , vjg x, y arccos xy,
P1,
2
, vih x, ye
x
sen y,
P1, 1 , vjf x, y
x y
,
P0, 2, v
1
2
i 3jf x, y xy,
P4, 3 , v
2
2
ijf x, yx
3
y
3
,
P1, 2 , v
3
5
i
4
5
jf x, y 3x4xy9y,
P
942 Chapter 13Functions of Several Variables
13.6ExercisesSee www.CalcChat.com for worked-out solutions to odd-numbered exercises.
1053714_1306.qxp 10/27/08 12:08 PM Page 942
In Exercises 1–12, find the directional derivative of the function
at in the direction of v.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
In Exercises 13–16, find the directional derivative of the
function in the direction of the unit vector
13.
14.
15.
16.
In Exercises 17–20, find the directional derivative of the
function at in the direction of
17.
18.
19.
20.
In Exercises 21–26, find the gradient of the function at the given
point.
21.
22.
23.
24.
25.
26.
In Exercises 27–30, use the gradient to find the directional
derivative of the function at in the direction of
27.
28.
29.
30.
In Exercises 31–40, find the gradient of the function and the
maximum value of the directional derivative at the given point.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
In Exercises 41– 46, consider the function
41.Sketch the graph of in the first octant and plot the point
on the surface.
42.Find where each given
value of
(a) (b)
(c) (d)
43.Find where using each given vector
(a)
(b)
(c) is the vector from to
(d) is the vector from to
44.Find
45.Find the maximum value of the directional derivative at
46.Find a unit vector orthogonal to and calculate
Discuss the geometric meaning of the result.D
u
f3, 2.
f3, 2u
3, 2.
fx, y.
4, 5.3, 2v
2, 6.1, 2v
v 3i4j
vij
v.u
v
v
,D
u f3, 2,
6
4
3
2
34
.
ucos isenj,D
u
f3, 2,
3, 2, 1
f
fx, y 3
x
3
y
2
.
2, 0, 4f x, y, z xe
yz
2, 1, 1w xy
2
z
2
0, 0, 0w
1
1x
2
y
2
z
2
1, 4, 2f x, y, zx
2
y
2
z
2
1, 2g x, y ln
3
x
2
y
2
0, 5g x, y ye
x
0,
3
hx, yy cosxy
2,
4
hx, yx tan y
0, 1f x, y
xy
y1
1, 0f x, yx
2
2xy
Punto Función
P
, 0, Q
2
, fx, y sen 2x cos y,
P0, 0, Q2, 1fx, y e
y
sen x,
P1, 4, Q3, 6fx, y 3x
2
y
2
4,
P1, 2, Q2, 3gx, y x
2
y
2
1,
Q.P
4, 3, 1w x tan yz,
1, 1, 2w3x
2
5y
2
2z
2
,
3, 4zcosx
2
y
2
,
2, 3zlnx
2
y,
2, 0g x, y 2xe
yx
,
2, 1f x, y 3x5y
2
1,
P1, 0, 0 , Q4, 3, 1h x, y, zlnxyz ,
P2, 4, 0 , Q 0, 0, 0g x, y, z xye
z
,
P0, , Q
2
, 0f x, y cosxy,
P1, 1 , Q4, 5f x, yx
2
3y
2
,
Q.P
2
3
gx, y xe
y
,
3
fx, y sen 2xy,
6
fx, y
y
xy
,
4
fx, yx
2
y
2
,
u cos i + sen j.
P4, 1, 1 , v1, 2, 1h x, y, zx arctan yz,
P2, 1, 1 , v2, 1, 2h(x, y, z xyz,
P1, 2, 1, v2ijkf x, y, z xy yz xz,
P1, 1, 1, v
3
3
ijkf x, y, zx
2
y
2
z
2
,
P0, 0 , vijh x, ye
x
2
y
2
,
P3, 4 , v3i4jg x, yx
2
y
2
,
P1, 0 , vjg x, y arccos xy,
P1,
2
, vih x, ye
x
sen y,
P1, 1 , vjf x, y
x y
,
P0, 2, v
1
2
i 3jf x, y xy,
P4, 3 , v
2
2
ijf x, yx
3
y
3
,
P1, 2 , v
3
5
i
4
5
jfx, y 3x4xy9y,
P
942 Chapter 13Functions of Several Variables
13.6ExercisesSee www.CalcChat.com for worked-out solutions to odd-numbered exercises.
1053714_1306.qxp 10/27/08 12:08 PM Page 942
In Exercises 1–12, find the directional derivative of the function
at in the direction of v.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
In Exercises 13–16, find the directional derivative of the
function in the direction of the unit vector
13.
14.
15.
16.
In Exercises 17–20, find the directional derivative of the
function at in the direction of
17.
18.
19.
20.
In Exercises 21–26, find the gradient of the function at the given
point.
21.
22.
23.
24.
25.
26.
In Exercises 27–30, use the gradient to find the directional
derivative of the function at in the direction of
27.
28.
29.
30.
In Exercises 31–40, find the gradient of the function and the
maximum value of the directional derivative at the given point.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
In Exercises 41– 46, consider the function
41.Sketch the graph of in the first octant and plot the point
on the surface.
42.Find where each given
value of
(a) (b)
(c) (d)
43.Find where using each given vector
(a)
(b)
(c) is the vector from to
(d) is the vector from to
44.Find
45.Find the maximum value of the directional derivative at
46.Find a unit vector orthogonal to and calculate
Discuss the geometric meaning of the result.D
u
f3, 2.
f3, 2u
3, 2.
fx, y.
4, 5.3, 2v
2, 6.1, 2v
v 3i4j
vij
v.u
v
v
,D
u f3, 2,
6
4
3
2
34
.
ucos isenj,D
u
f3, 2,
3, 2, 1
f
fx, y 3
x
3
y
2
.
2, 0, 4fx, y, z xe
yz
2, 1, 1wxy
2
z
2
0, 0, 0w
1
1x
2
y
2
z
2
1, 4, 2fx, y, z x
2
y
2
z
2
1, 2gx, y ln
3
x
2
y
2
0, 5gx, y ye
x
0,
3
hx, y y cosxy
2,
4
hx, y x tan y
0, 1fx, y
xy
y1
1, 0fx, y x
2
2xy
Punto Función
P, 0, Q
2
, f x, y sen 2x cos y,
P0, 0, Q2, 1f x, ye
y
sen x,
P1, 4, Q3, 6f x, y 3x
2
y
2
4,
P1, 2, Q2, 3g x, yx
2
y
2
1,
Q.P
4, 3, 1w x tan yz,
1, 1, 2w3x
2
5y
2
2z
2
,
3, 4zcosx
2
y
2
,
2, 3zlnx
2
y,
2, 0g x, y 2xe
yx
,
2, 1f x, y 3x5y
2
1,
P1, 0, 0 , Q4, 3, 1h x, y, zlnxyz ,
P2, 4, 0 , Q 0, 0, 0g x, y, z xye
z
,
P0, , Q
2
, 0f x, y cosxy,
P1, 1 , Q4, 5f x, yx
2
3y
2
,
Q.P
2
3
gx, y xe
y
,
3
fx, y sen 2xy,
6
fx, y
y
xy
,
4
fx, yx
2
y
2
,
u cos i + sen j.
P4, 1, 1 , v1, 2, 1h x, y, zx arctan yz,
P2, 1, 1 , v2, 1, 2h(x, y, z xyz,
P1, 2, 1, v2ijkf x, y, z xy yz xz,
P1, 1, 1, v
3
3
ijkf x, y, zx
2
y
2
z
2
,
P0, 0 , vijh x, ye
x
2
y
2
,
P3, 4 , v3i4jg x, yx
2
y
2
,
P1, 0 , vjg x, y arccos xy,
P1,
2
, vih x, ye
x
sen y,
P1, 1 , vjf x, y
x y
,
P0, 2, v
1
2
i 3jf x, y xy,
P4, 3 , v
2
2
ijf x, yx
3
y
3
,
P1, 2 , v
3
5
i
4
5
jf x, y 3x4xy9y,
P
942 Chapter 13Functions of Several Variables
13.6ExercisesSee www.CalcChat.com for worked-out solutions to odd-numbered exercises.
1053714_1306.qxp 10/27/08 12:08 PM Page 942
InvestigationIn Exercises 47 and 48, (a) use the graph to
estimate the components of the vector in the direction of the
maximum rate of increase in the function at the given point. (b)
Find the gradient at the point and compare it with your
estimate in part (a). (c) In what direction would the function be
decreasing at the greatest rate? Explain.
47. 48.
49.InvestigationConsider the function
at the point
(a) Use a computer algebra system to graph the surface
represented by the function.
(b) Determine the directional derivative as a
function of where Use a computer
algebra system to graph the function on the interval
(c) Approximate the zeros of the function in part (b) and
interpret each in the context of the problem.
(d) Approximate the critical numbers of the function in part (b)
and interpret each in the context of the problem.
(e) Find and explain its relationship to your
answers in part (d).
(f) Use a computer algebra system to graph the level curve
of the function at the level On this curve, graph
the vector in the direction of and state its
relationship to the level curve.
50.InvestigationConsider the function
(a) Analytically verify that the level curve of at the level
is a circle.
(b) At the point on the level curve for which
sketch the vector showing the direction of the greatest rate
of increase of the function. (To print an enlarged copy of
the graph, go to the website www.mathgraphs.com.)
(c) At the point on the level curve, sketch a vector
such that the directional derivative is 0.
(d) Use a computer algebra system to graph the surface to
verify your answers in parts (a)–(c).
In Exercises 51–54, find a normal vector to the level curve
at
51. 52.
53. 54.
In Exercises 55–58, (a) find the gradient of the function at
(b) find a unit normal vector to the level curve at
(c) find the tangent line to the level curve at
and (d) sketch the level curve, the unit normal vector, and the
tangent line in the plane.
55. 56.
57. 58.
65.Temperature DistributionThe temperature at the point
on a metal plate is
Find the direction of greatest increase in heat from the point
3, 4.
T
x
x
2
y
2
.
x, y
c40, P2, 1c1, P1, 1
fx, y 9x
2
4y
2
fx, y 3x
2
2y
2
c3, P4, 1c6, P2, 10
fx, yxy
2
fx, y 4x
2
y
xy-
P,f x, yc
P,f x, yc
P,
P1, 1c
1
2
,P1, 3c 3,
f x, y
x
x
2
y
2
f x, y xy
P3, 4c25,P0, 0c6,
fx, yx
2
y
2
fx, y 62x3y
P.f x, yc
3, 2
c2,3, 2
c2
fx, y
fx, y
8y
1x
2
y
2
.
f4, 3,
c7.f
f4, 3
0, 2.
ucos isen j.,
D
u
f4, 3
4, 3, 7.
fx, yx
2
y
2
3
3
x
y
1
1
2
2
Generated by Maple
z
1
3
3
x
y
Generated by Maple
z
1, 21, 2
fx, y
1
2
yx,f x, y
1
10
x
2
3xy y
2
,
13.6Directional Derivatives and Gradients
943
59.Define the derivative of the function in the
direction
60.Write a paragraph describing the directional derivative
of the function in the direction when
(a) and (b)
61.Define the gradient of a function of two variables. State the
properties of the gradient.
62.Sketch the graph of a surface and select a point on the
surface. Sketch a vector in the plane giving the direction
of steepest ascent on the surface at
63.Describe the relationship of the gradient to the level curves
of a surface given by zfx, y.
P.
xy-
P
90 .0
ucos isen jf
ucos isen j.
zfx, y
WRITING ABOUT CONCEPTS
64.Consider the function
(a) Sketch the graph of in the first octant and plot the
point on the surface.
(b) Find where for
(c) Repeat part (b) for
(d) Find and
(e) Find a unit vector orthogonal to and calculate
Discuss the geometric meaning of the result.D
u
f1, 2.
f1, 2u
f1, 2.f1, 2
3.
4.
ucos isen j,D
u
f1, 2,
1, 2, 4
f
fx, y 9x
2
y
2
.
CAPSTONE
CAS
CAS
1053714_1306.qxp 10/27/08 12:08 PM Page 943
sen
Larson-13-06.qxd 3/12/09 19:00 Page 942