Calibration of Uncertainty Measurement .

sindhusankar3031 145 views 41 slides May 19, 2024
Slide 1
Slide 1 of 41
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41

About This Presentation

Measurement Uncertainty


Slide Content

FOR MEASUREMENT
DATA TO BE RELIABLE
MEASUREMENT SHOULD BE
ACCURATE
PRECISE
REPRODUCIBLE

ACCURACY ISTHECLOSENESS OF
AGREEMENT BETWEEN THERESULTOF
MEASUREMENT ANDTHETRUEVALUEOF
THEMEASURAND
 ACCURACY IS ALSO CALLED BIAS

PRECISION ISTHECLOSENESS OF
AGREEMENT BETWEEN THERESULTS
OFSUCCESIVEMEASUREMENT OFTHE
SAMEVALUEOFAQUANTITYCARRIED
OUTUNDERIDENTICALCONDITIONAT
SHORTINTERVALSOFTIME.
•PRECISION ISALSO CALLED
REPETABILITY

REPRODUCIBILITY ISTHECLOSNESS
OFAGREEMENT BETWEEN CORRECTED
RESULTSOFMEASUREMENT OFTHE
SAME VALUEOFAQUANTITYWHEN
MEASUREMENTS ARE MADE UNDER
DIFFERENTCONDITIONS.

Evenwhenallthefactorsina
measurementprocessarecontrolled.
Repeatedobservationmadeduring
precisionmeasurementofanyparameter.
Evenundersameconditionsarerarely
foundidentical.

This is due to the presence of
Inherent variable of every
measurement process.

•FACTORS AFFECTING THE STANDARD
•FACTORS AFFECTING THE WORKPIECE
•FACTORS AFFECTING THE INSTRUMENTS
•FACTORS AFFECTING THE PERSON
•FACTORS AFFECTING THE ENVIROMENT
5 BASIC METROLOGY ELEMENTS

•BECAUSE OF
SWIPE,NO
MEASUREMENT
RESULT CAN BE
ACCEPTED AS A
CERTAINTY.

MEASUREMENT OF PHYSICAL QUANTITY
RESULT
QUALITY INDICATOR
RELIABILITY

ERROR OF MEASUREMENT
•DISCREPANCY BETWEEN THEMEASURED
ANDTRUEVALUESOFTHEQUANTITY
•“ITISTHEMEASUREMENT RESULTMINUS
THETRUEVALUE”

TRUE VALUE
(of a quantity)
•THEVALUEWHICHCHARACTERIZES A
PERFECTLY DEFINEDQUANTITYINTHE
CONDITION WHICHEXISTWHEN THAT
QUANTITYISCONSIDERED.
Truevalueisatheoreticalconceptand
cannotbeknownexactly.

ERROR OF MEASUREMENT
ARISES OUT OF TWO FACTORS
•DUE TO SYSTEM
EFFECTS
•DUE TO RANDOM
EFFECTS
On which remains
constant during a
number ofidentical
measurementsorwhich
variesinapredictable
mannerwhenconditions
change
Onewhichvariesina
unpredictablemanner
duringanumberof
identicalmeasurements

MEASUREMENT UNCERTAINTY
•Itisanestimatecharacterizingtherange
ofvalueswithinwhichtheerrorisasserted
tolie.
•Itisanexpressionoffactthatforagiven
resultofmeasurementthereisnotone
value,butaninfinitenumberofvalues
dispersedabouttheresult,withavarying
degreeofcredibility.

CONFIDENCE LEVEL
Theprobabilityexpressedinadecimalor
percentage,thatthetruevaluelieswithina
specifiedrangeofvalues.

UNCERTAINITYIS A
PARAMETER TO QUANTIFY
THE RELIABILITY OF THE
MEASURAND.

DIFFERENT UNCERTAINITY TERMS
•RANDOM
•SYSTEMATIC
•MEASUREMENT
•CALIBRATION
•STANDARD
•COMBINED STANDARD
•EXPANDED

MEASUREMENT OF TEMPERATURE
•Resolution of thermometer = 1
o
c
•Accuracy of thermometer = 2
o
c
•Uncertainty of thermometer
Calibration (at 95% CL) = +0.7
o
c
•Measurement data :
101, 99, 100, 100,101,99,99,100,101,101
o
c
•Average value = 100.1
o
c
•REQUIREMENT = 100 +2
o
c

TEMPERATURE MEASUREMENT ( Cont’d)
SOURCE TYPE U
1 VALUE PROB STD.U
Thermometer
accuracy
B U
1 2.0 Rectangular 1.15
Them.
Calib.Uncert
B U
2 0.7 Normal 0.35
Repeatability A U
3 0.876 Normal 0.277
U
C= [ (1.15)
2
+ (0.35)
2
+ (0.277)
2
] = 1.23
0
C
V
EFF = (1.23)
4
*(10-1) / (0.277)
4
= 388.8 > 50 
Therefore, K = 2 FOR 95% Confidence level
U
E = K * U
C = 2 * 1.23 = 2.46
0
C
FINAL RESULT = 100 + 250C 100 + 3
0
C

MEASUREMENT UNCERTAINTY GIVES
RISETOMEASUREMENT DECISIONS
RISEWHENEVER DECISIONS ARE
MADEBASEDONMEASUREMENT

TWO TYPES OF RISK
Risk of false
acceptance, in which out-
of-tolerance Parameters
are mistaken as in
tolerance ones
Risk of false rejection,
which is the risk of
mistaking in tolerance
parameters for
out-of-tolerance ones

THEMOSTCOMMON ANDEASYWAYTO
CONTROL THESE RISKISTOUSE
APPROPRIATE TESTUNCERTAINTY RATIO
(TURORTAR)FORMEASUREMENTS .

Uncertainty of UUC
TUR =
Uncertainty Standard
TEST ACCURACY RATIO (TAR) / TEST
UNCERTAINTY RATIO (TUR) IS

If
S = Specification of the parameter being measured
U=UncertaintyofMeasurement
R=Resultantspecification
ThenwithS:V=10:1,R=10.05
THERESULTANTSPECIFICATIONEXPANDSBY0.5%
•If S:U = 4:1, the resultant specification
expands by 3.1%
•IfS:U=3:1,thespecificationexpandsby5.4%
•IfS:U=2:1,thespecificationexpandsby11.8%
•IfS:U=1:1,thespecificationexpandsby41.4%
•IfS:U=1:2,thespecificationexpandsby123.6%

Thismeansthatifaninstrumentis
calibratedagainstastandardwithaTURof
2:1,
Theneveniftheinstrumentisfoundtobe
withinthestatedaccuracy,
Inactualcase,theaccuracycouldunder
goexpansionby11.8%ofthestatedlimits.

Consequently, ISO 10012 part
1:1992 states that
“Theerrorattributabletocalibrationshould
beassmallaspossible,inmostareasof
measurement,itshouldbenomorethan
onethirdandpreferablyonetenthofthe
permissibleerroroftheconfirmed
equipmentwheninuse”.

On the same subject, ANSI / NCSL
Z540 –1 –1994 states, in part,
“…..Thecollectiveuncertaintyofthe
measurement standardsshallnotexceed
25%oftheacceptabletoleranceforeach
characteristicofthemeasuringandtest
equipmentbeingcalibratedorverified”

ISO/IEC17025:1999,Thebasisoflaboratory
accreditationworld-wide,statesunderCL.5.4.6
that
“Acalibrationlaboratory,oratestinglaboratory
performingitsowncalibrations,
Shallhaveandshallapplyaprocedureto
estimatetheuncertaintyofmeasurementforall
calibrationsandtypesofcalibrations”.

OntestingISO/IEC17025:1999
statesunderCL.5.4.6that
“Atestinglaboratory,shallhaveand
shallapplyproceduresforestimatingof
measurement”.

COMPLAINCE OF CALIBRATION
SHOULD BE GIVEN WHEN
•Calibrationuncertainty1/3
rd
spec.of
UUC
•IndicatedvaluesoftheUUC,expanded
bytheuncertainty,orwithinthespecified
accuracy(tolerance/uncertainty)limits.

Inatestsituationwherecomplianceis
tobereportedthetestresultexpanded
bymeasurementuncertaintyshouldlie
withinthespecificationlimits.

STANDARD UNCERTAINTY
Eachcomponentofuncertaintythatcontributes
tothemeasurementuncertainty,isrepresented
byanestimatedstandarddeviation,termedas
standarduncertainty,U
i,andisequaltothe
positivesquarerootofthevarianceU
i
2
.

COMBINED STANDARD
UNCERTAINTY
Afteridentifyingandestimatingtheindividual
standarduncertaintiescombinedstandard
uncertainty,U
ciscalculatedbytheRSSorthe
squarerootofthesum-of-thesquares,based
onthelawofpropagationofuncertainty.
U
C= U
1+ U
2+ U
3+ ……… + U
N
2

EXPANDED UNCERTAINTY
Expanded uncertainty,Uisdeterminedby
multiplyingu
cwithacoveragefactor“K”suchthat
theestimatedtruevalueofameasurementresulty
mayliewithin“y–U
c”and“y+U
c”values,where
“y”isthemeasuredvalueoftheparameters.
Y = y U
Thecoveragefactor“K”isgenerallytakenastwo
whichisequivalenttoaconfidencelevelof95%.
U
E= K * U
C

THE CIPM APPROACH
•TYPE “A” EVALUATION
•TYPE “B” EVALUATION
TWO METHODS FOR ESTIMATING
NUMERICAL VALUES OF UNCERTAINTY

FOUR IMPORTANT ASPECTS OF
UNCERTAINTY ESTIMATION
•MEASUREMENT EQUATION
•CENTRAL LIMIT THEORM
•DEGREE OF FREEDOM
•CONFIDENCE LEVEL

MEASUREMENT UNCERTAINTY
ESTIMATION IS
•NEITHER A ROUTINE CALCULATION
•NOR A PURELY MATHEMATICAL ONE

QUALITY OF ESTIMATION OF
MEASUREMENT UNCERTAINTY AND
ITS USAGE IS DEPENDS ON
•DETAILEDKNOWLEDGE OFTHE
MEASUREMENT SYSTEM
•ACCRACY ANDPRECISION OF
THEMEASUREMENTS PERFORMED
•INTEGRITY OFTHEPERSONS
INVOLVEDINMEASUREMENTS AND
CALCULATIONS

“Absolutecertaintyistheprivilegeof
uneducatedmindsandfanatics.Itisfor
scientificfolkandunattainableideal”.

“ITISCHANGES, CONTINUING
CHANGES,INEVITABLECHANGES,
THATISTHEDOMINATEFACTORIN
THESOCIETYTODAY
NOSENSIBLEDECISIONCANBE
MADE ANYLONGER WITHOUT
TALKING INTOACCOUNT NOT
ONLYTHEWORLDITIS,BUTTHE
WORLDASITWILLBE”.
Issac Assimov, Russian born us author

•IFYOUALWAYS DO
WHATYOUALWAYSDID
•THENYOUWILLALWAYS
GETTHERESULT
WHICHYOUALWAYSGOT

Thank You!