CEREBRO DIGITAL
58
6. REFERENCIAS BIBLIOGRAFÍCAS
Binns, R. (2018). Fairness in machine learning: Lessons from political philosophy.
Proceedings of the 2018 Conference on Fairness, Accountability, and
Transparency, 149-159. https://doi.org/10.1145/3287560.3287598
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms
(4th ed.). The MIT Press.
Creswell, J. W. (2021). Diseño de investigación: Enfoque cualitativo, cuantitativo y mixto
(6.ª ed.). Pearson Educación.
Dragoni, N., Giazzi, S., Lafuente, A. L., Mazzara, M., Mustafin, R., & Safina, L. (2017).
Microservices: Yesterday, Today, and Tomorrow. Present and Ulterior Software
Engineering, 195-216. https://doi.org/10.1007/978-3-319-67425-4_12
García, J., & Herrera, D. (2023). Algoritmos inteligentes y su impacto en procesos
industriales. Alfaomega Grupo Editor.
González-Pizarro, V., Camacho, E., García-Ródenas, R., & García-Sánchez, F. (2021).
Intelligent Warehouse Management Systems: Evolution, Challenges and Future
Directions. Computers & Industrial Engineering, 153, 107098.
https://doi.org/10.1016/j.cie.2020.107098
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Hernández, R., Fernández, C., & Baptista, P. (2022). Metodología de la investigación (7.ª
ed.). McGraw-Hill.
Knuth, D. E. (2011). The Art of Computer Programming, Vol. 1: Fundamental Algorithms
(3rd ed.). Addison-Wesley.
Kumar, R., & Kumar, S. (2023). Route Optimization in Logistics Using Artificial
Intelligence: A Systematic Review. Journal of Logistics Management, 12(1), 45-
59. https://doi.org/10.2139/ssrn.4321098
Lee, J., Bagheri, B., & Kao, H. A. (2018). A Cyber-Physical Systems Architecture for
Industry 4.0-Based Manufacturing Systems. Manufacturing Letters, 3, 18-23.
https://doi.org/10.1016/j.mfglet.2014.12.001
Mitchell, M. (2021). Artificial intelligence: A guide for thinking humans. Farrar, Straus
and Giroux.