Contents
3.1-Types of solids
3.2-Crystal structures
3.3-Seven systems and fourteen lattices
3.4-Metal structures
3.5-Ceramic structures
3.6-Polymeric Structures
3.7-Semiconductor Structures
3.8-Lattice positions, directions, and planes
2
3
3.1-Types of solids
Solidscanbeclassifieddependingonthearrangementoftheiratomsormolecules.
Crystalline:hashighlydefinedandrepeatablearrangementsofmolecularchains.
Polycrystalline:consistsofmanysmallcrystals(grains)thatareseparatedbygrain
boundariesandnormallyhaverandomcrystallographicorientations.
Amorphous:onekindofnon-equilibriummaterial;itscharacteristicofatomic
arrangementismorelikeliquidandhasnolong-rangeperiodicity.
Thecrystalstructureofmaterialsarepresentedinthefollowingtable:
Material CrystallinePolycrystallineNon-crystalline
Metals
Glasses
Ceramics
Polymers
Semiconductors
4
3.2-Crystal structure
Crystalstructureisauniquearrangementofatomsormoleculesinacrystallineliquid
orsolid
Thecrystalstructureofamaterialcanbedescribedintermsofitsunitcell.
Unitcellisasmallboxcontainingoneormoreatomsarrangedin3D.
Hard sphere unit cell representation
Aggregate (group) of many atoms
Reduced-sphere unit cell
6
3.3-Seven systems and fourteen lattices
Thereareonlysevenuniqueunit-cellshapethatcanbestackedtogethertofillthree-
dimensionalspace.ThesearecalledSevenCrystalSystems.
Thepointswheretheatomsarestackedinagivenunit-cellarecalledlatticepoints.
Thereare14possiblewaysofarrangementofthepoints,called14Bravais’Lattices.
7
3.3-Seven systems and fourteen lattices
Thecrystallinestructuresofmostmetalsbelongtooneofthreerelativelysimpletypes.
Ceramicswhichhavevarietyofchemicalcompositions,exhibitvarietyofcrystalline
structures.
Glassisnon-crystalline,andpolymersmayhaveasmuchas50to100%oftheir
volumenon-crystalline(polycrystalline).
8
3.4-Metal structure
MostMetalshaveoneofthreecrystalstructures:
(HCP)
Hexagonal Compact Packet
Examples:
Be, Ti, Zn, Zr, Mg, Cd
(BCC)
Body Centered Cubic
Examples:
Fe, V, Cr, Mo, W
(FCC)
Face Centered Cubic
Examples:
Al, Ni, Ag, Cu, Au
Metal Crystal lattice examples
10
3.4-Metal structure
BodyCenteredCubiccrystalstructure
BodyCenteredCubic(BCC)unitcellhasatomsateachoftheeightcornersplusone
atominthecenterofthecube..
Atomsareincontactalongbodydiagonaloftheunitcell.
ThesideofthecubeisaandtheradiusofanatomisR.
1/8 atom1 atom2a 3a a a a 3
4
43
R
aRa cellunitinsideatomsN
atoms
21
8
1
8 68.0
3
4
3
8
3
42
3
3
3
3
R
R
a
R
V
VN
volumeTotal
volumeAtomic
APF
cellunit
atomatoms
11
3.4-Metal structure
FaceCenteredCubiccrystalstructure
FaceCenteredCubic(FCC)unitcellhasatomsateachoftheeightcornersplusone
atomatthecenterofeachfaceofthecube..
Atomsareincontactalongfacediagonaloftheunitcell.
ThesideofthecubeisaandtheradiusofanatomisR.
1/8 atom1/2 atom2a 3a a a a 2
4
42
R
aRa cellunitinsideatomsN
atoms
4
2
1
6
8
1
8 74.0
2
4
3
8
3
4
4
3
3
3
3
R
R
a
R
V
VN
volumeTotal
volumeAtomic
APF
cellunit
atomatoms
12
Example: 3.1
Copper Cu has the FCC crystal structurewith an atomic radius of 0.128 nm and
of molar mass equal to 63.55 g/mole.
Determine its atomic packing factor APF and the density of copper
a
Solution
Atoms inside unit cell = 6×1/2 + 8×1/8 = 4 atoms362.0
2
4
42
R
aRa
74.0
22
3
16
3
44
3
3
3
3
R
R
a
R
volumeTotal
volumeatomic
APF
3
23
3
7
3
/89.8
10023.610362.0
55.634
cmg
Na
MN
V
m
A
The density of FCC unit cell is: AA
N
MN
m
N
N
M
m
n
15
3.5-Ceramic structure
Ceramicsusuallyhaveacombinationofionicbonds.
Ionic bond occurs between a metal and nonmetal with transfer of electrons.
Since the bonding is ionic, the packing factor will be Ionic Packing Factor (IPF).cellunit
ionsions
V
VN
IPF
Ionicpackingfactor
IPFrepresentsthefractionofthevolumeofionsoccupiedinaunitcelloverthetotalunit
cellvolume.
Typesofcrystalstructures
1.MX
2.MX2
3.M2X3
M: Metallic element
X: Non-metallic element
21
3.6-Polymericstructure
Polyethylene unit cell
Polymershavelongchainpolymericmolecules
The arrangement of these long molecules into a regular pattern is difficult.
Plastics tends complex crystalline structure
Polyethylene(C
2H
4)
nand plastics are examples of polymers.
Example: 3.3
For a density of 0.9979 g/cm
3
Calculate the number of C and H
atoms in the polyethylene unit cell.
Given the volume of unit cell is 0.0933 nm
3
,
1.008
H and
12.01
C.
Solution
gN
N
m
HC
HC 23
23
1066.4
10023.6
)008.1(4)01.12(2
42
42
3
321
23
/997.0
100933.0
1066.4
42
cmg
cm
gN
V
m HC
atomsNandatomsN
N
HC
HC
84
2
42
23
24
3.7-Semiconductor structure
Elementalsemiconductors:Si,GeandgraySnsharediamonditscubicstructure.
1/8 atom
1/2 atom
1 atom
Thenumberofcompleteatomsinsideunitcellis:4+6×
1
2
+8×
1
8
=8�����
Grayatomsareatomslocatedatthecenteroffacesandcorners.Coloredatomsare
locatedatthebodydiagonalsofthecube.
Thecompleteatomsinsidetheunitcellareplacedonthequarterofthebodydiagonal.
Puresemiconductors
Example: 3.4
Silicon Si has a diamond cubic structure.
a-Calculate the Atomic packing factor APF.
b-Determine the density of Si.
Given: r
Si=0.117 nm, and
28.09
Si.
SolutionSiSi
raar
3
8
4
3
2 34.0
3
8
3
4
8
3
4
8
3
3
3
3
3
Si
SiSi
r
r
a
r
volumeTotal
volumeAtomic
APF
3
23
3
7
3
/36.2
10023.61054.0
09.288
cmg
Na
MN
V
m
A
26
27
3.8-Lattice positions, directions and planes
Inacrystallattice,eachatom,moleculeorions(constituentparticle)isrepresentedbya
singlepoint.Thesepointsarecalledlatticesiteorlatticepoint.
Latticepositions:sameasthepositioninthecoordinatesystemxyz.Theyareexpressed
asfractionormultiplesoftheunitcelldimensions.
Latticepositions
a,bandcaresidelengthsoftheunitcell
alongx,yandzaxesrespectively.Theyare
theunit-celldimensions.
How to determine the Lattice Position of P:
-Coordinates of P in the coordinate system
xyz is: P(1a, 2b,1c)
-Divide the coordinates by a, b and c
-Lattice Position of P is: 121
P
30
3.8-Lattice positions, directions and planes
Itisimportanttoknowtheanglebetweentwolatticedirectionsandplanessincethat
affectthemechanicalpropertiesofmaterial.
Latticedirections–AnglebetweentwolatticedirectionscosDDDD
Let??????=��+��+��andሖ??????=ƴ��+ƴ��+ƴ��tobetwolatticedirections.Theangle
θbetweenthemisdefinedas:
222222
1
coscos
wvuwvu
wwvvuu
DD
DD
Example: 3.5
What is the angle between the [110] and [111] directions in the cubic system.
Solution
01
222222
1
5.35
32
011
coscos
wvuwvu
wwvvuu
31
3.8-Lattice positions, directions and planes
Alatticeplaneisaplanewhoseintersectionswiththelattice(oranycrystalline
structureofthatlattice)areperiodic(i.e.aredescribedby2dBravaislattices).
MillerIndicesisamethodofdescribingtheorientationofaplaneorsetofplanes
withinalatticeinrelationtotheunitcell.Theyarerepresentedbythreeintegers.
Latticeplanes-MillerIndices(hkl)
Steps for computing Miller Indices
1-Take the intersections of plane with the
Cartesian axis x,y,z
2-Take the reciprocals and make sure that
the three numbers are of the smallest
integers (no fractions or multiples)
3-The obtained set is a miller indices
plane representation (hkl)
Knowledgeofsliporcleavageplanescanfacilitatethefundamentalunderstandingof
mechanicalpropertiesandengineeringoperations,suchastabletingandmilling.
32
3.8-Lattice positions, directions and planes
Belowaresomeexamplesonmillerindices:
Millerplaneexamples
33
Example: 3.6
Find the miller indices of the following planes
34
3.8-Lattice positions, directions and planes
Afamilyofplanescontainsalltheplanesthatarecrystallo-graphicallyequivalent.
EveryfamilyoflatticeplanescanbedescribedbyasetofintegerMillerindicesthat
havenocommondivisors
Millerindices:Familyoflatticeplanes
Family of planes, {100}, representing all faces of unit cells in the cubic system. )100(),010(),001(),001(),010(),100(100
35
3.8-Lattice positions, directions and planes
Thelineardensityisthenumberofatomsoccupiedinaunitlength.
Theintersectionoflatticedirectionwithspherecanbeeitheraradiusoradiameter
whichrepresentshalfandoneatomalongthelinerespectively.
Iftheintersectionisnotaradiusordiameterthennoatomscountalongtheline.
Lineardensitylineoflength
linealongatomsofnb
densityLinear atom1 atom
2
1
36
3.8-Lattice positions, directions and planes
Theplanardensityisthenumberofatomsoccupiedinaunitarea
Theintersectionoflatticeplanewithspherecanbeeitheradiskorpartofadisk.
Thenumberofatomsinplanecanbecountedasfollows:
PlanardensityplaneofArea
planeinatomsofnb
densityPlaner atom
4
1 atom
2
1 atom1 atom
360
Example: 3.7
Consider FCC Aluminum crystal structure
r
Al= 0.143 nm.
a-Find the linear densities along [110], and [111]
b-Find the planar densities in planes (100), (110), and (111)
Solution
37Length
atomsofnb
densityLinear
[110]nmatoms
atoms
a
LD /49.3
2404.0
2
2
11
2
1
2
]110[
nmatoms
atom
a
LD /443.1
3404.0
1
3
2
1
2
]111[
[111]nmara 404.042 2a 3a
Problem 1
Calculate the IPF for UO
2which has the CaF
2structure. Given r
U
4+
= 0.105 nm and
r
O
2-
= 0.132 nm. Hint the oxygen atoms are located at one-quarter of the body
diagonal.
Solution588.0
3
4
8
3
4
4
3
33
24
a
rr
volumecellUnit
volumeIonic
IPF
OU
nma
a
rr
OU
548.0
4
3
24
40
Problem 2
Calculate the density of UO
2. Given
238.03
U and
16
O.
Solution
The volume of unit cell is computed in problem 2.
There exist 4 atoms of Uranium and 8 atoms of Oxygen in unit cell.
3
23
3
7
3
/9.10
10023.610548.0
)16(803.2384
cmg
Na
MN
V
m
A
41
Problem 3
Calculate the APF for polyethylene. Given the volume of unit cell is 0.09333 nm
3,
r
C
=0.077 nm and r
H=0.046nm. Hint the unit cell contains 4 carbon atoms.
Solution
There exist 4 carbon atoms →8 hydrogen atoms.12.0
0933.0
3
4
8
3
4
4
33
HC
rr
volumeTotal
volumeAtomic
APF
42
Problem 4
Calculate the IPF for the zinc blende (ZnS) structure. Given r
Zn
2+
= 0.083 nm and r
S
2-
= 0.174 nm. Hint the sulfur atoms are located at one-quarter of the body diagonal.
Solution
There exist 4 zinc atoms and 4 sulfur atoms.
468.0
594.0
3
4
4
3
4
4
3
33
3
22
SZn
rr
a
volumeIonic
IPF
nma
a
rr
SZn
594.0
4
3
22
43
Problem 5
Benefiting from problem 5, calculate the density of zinc blende (ZnS) structure.
Given
65.38
Zn and
32.06
S.
Solution
There exist 4 zinc atoms and 4 sulfur atoms in unit cell.
3
23
3
7
3
/09.3
10023.610594.0
)06.32(438.654
cmg
Na
MN
V
m
Acellunit
ZnS
44
x
y
z
Problem 6
(a) Sketch, in a cubic unit cell, a [111] and a [112] lattice direction.
(b) Use trigonometric calculation to find the angle between these two directions.
(c) Use equation 3.3 to determine the angle between these two directions.
[111] 1l
[112] 2l
45
Solution
(b)6,3
21
ll
Using cosine law
0
21
2
2
2
1
2
5.19cos21 llll
(c)
222222
21
21
cos
wvuwvu
wwvvuu
ll
ll
18
4
211111
211
cos
222222
0
5.19
18
4
arccos
Problem 7
(a)Calculate the linear densities along [010], [101], and [111] direction in UO
2.
(b)Calculate the planar densities in the following planes (010), (101), (002), (111),
and (220). Given r
U
4+
= 0.105 nm and r
O
2-
= 0.132 nm.
46
SolutionLength
ionsofnb
densityLinear nmU
U
a
U
LD /828.1
547.0
1
2
1
2
4
4
4
]010[
nmarr
a
OU 547.0
4
3
24
[010]a
47
nmU
U
a
U
LD /585.2
2547.0
2
2
1
2
1
2
4
4
4
]101[
[101]
[111]nmOnmU
a
OU
LD /11.2/055.1
3
2
2
1
2
24
24
]111[
2a 3a
24
2
4
2
4
)010( /684.6
547.0
2
1
4
14
nmU
U
a
U
PD
Area
ionsofnb
densityPlanar
(010)
a
a
2224
24
)101( /45.9/72.4
2
42
nmOnmU
aa
OU
PD
(101)
24
2
4
4
)002( /684.6
547.0
2
2
14
nmU
U
aa
U
PD
(002)
a
a
24
4
)111( /718.7
2
60sin22
2
13
6
13
nmU
aa
U
PD
(111)2a 2a 2a
24
2
4
)220( /726.4
547.0
2
2
12
nmU
la
U
PD
(220)
a2
a
l
a2a
Problem 8
(a)Calculate the linear densities of ions along [101], and [111] in zinc blende (ZnS).
(b)Calculate the planar densities of ions along the (110) and (020) plane. Given r
Zn
2+
= 0.083 nm and r
S
2-
= 0.174 nm.
49
Solutionnmarr
a
SZn 593.0
4
3
22
Length
ionsofnb
densityLinear
nmZn
Zn
a
Zn
LD /38.2
2593.0
2
2
2
1
21
2
2
2
]101[
[101]2a