Chapter 3-Crystal Structure ceramic .pdf

7zarlamin1 989 views 50 slides Jan 13, 2024
Slide 1
Slide 1 of 50
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50

About This Presentation

material science


Slide Content

Crystalline Structure Perfection
Chapter 3
MENG310 LIU-BIUM.B

Contents
3.1-Types of solids
3.2-Crystal structures
3.3-Seven systems and fourteen lattices
3.4-Metal structures
3.5-Ceramic structures
3.6-Polymeric Structures
3.7-Semiconductor Structures
3.8-Lattice positions, directions, and planes
2

3
3.1-Types of solids
Solidscanbeclassifieddependingonthearrangementoftheiratomsormolecules.
Crystalline:hashighlydefinedandrepeatablearrangementsofmolecularchains.
Polycrystalline:consistsofmanysmallcrystals(grains)thatareseparatedbygrain
boundariesandnormallyhaverandomcrystallographicorientations.
Amorphous:onekindofnon-equilibriummaterial;itscharacteristicofatomic
arrangementismorelikeliquidandhasnolong-rangeperiodicity.
Thecrystalstructureofmaterialsarepresentedinthefollowingtable:
Material CrystallinePolycrystallineNon-crystalline
Metals
Glasses
Ceramics
Polymers
Semiconductors

4
3.2-Crystal structure
Crystalstructureisauniquearrangementofatomsormoleculesinacrystallineliquid
orsolid
Thecrystalstructureofamaterialcanbedescribedintermsofitsunitcell.
Unitcellisasmallboxcontainingoneormoreatomsarrangedin3D.
Hard sphere unit cell representation
Aggregate (group) of many atoms
Reduced-sphere unit cell

5
3.2-Crystal Structure
Thelengthofunit-celledgesandtheanglesbetweencrystallographicaxesarereferred
toaslatticeconstants,orlatticeparameters.
Thekeyfeatureoftheunitcellisthatitcontainsafulldescriptionofthestructureasa
wholebecausethecompletestructurecanbegeneratedbytherepeatedstackingof
adjacentunitcellsfacetofacethroughoutthree-dimensionalspace.
Geometryoftheunitcell
a,b,andcaretheunitlengthalongx,yandz
axes,respectively.α,β,andγaretheangles
betweenthecrystallographicaxes.

6
3.3-Seven systems and fourteen lattices
Thereareonlysevenuniqueunit-cellshapethatcanbestackedtogethertofillthree-
dimensionalspace.ThesearecalledSevenCrystalSystems.
Thepointswheretheatomsarestackedinagivenunit-cellarecalledlatticepoints.
Thereare14possiblewaysofarrangementofthepoints,called14Bravais’Lattices.

7
3.3-Seven systems and fourteen lattices
Thecrystallinestructuresofmostmetalsbelongtooneofthreerelativelysimpletypes.
Ceramicswhichhavevarietyofchemicalcompositions,exhibitvarietyofcrystalline
structures.
Glassisnon-crystalline,andpolymersmayhaveasmuchas50to100%oftheir
volumenon-crystalline(polycrystalline).

8
3.4-Metal structure
MostMetalshaveoneofthreecrystalstructures:
(HCP)
Hexagonal Compact Packet
Examples:
Be, Ti, Zn, Zr, Mg, Cd
(BCC)
Body Centered Cubic
Examples:
Fe, V, Cr, Mo, W
(FCC)
Face Centered Cubic
Examples:
Al, Ni, Ag, Cu, Au
Metal Crystal lattice examples

9
3.4-Metal Structure
AtomicPackingFactor(APF)isthefractionofvolumeinacrystalstructurethatis
occupiedbyatoms.
APFisdeterminedbyassumingthatatomsarerigidspheres.
APFisrepresentedmathematicallyas:
ThemostdensearrangementofatomshasanAPFofabout0.74
Ingeneral,metalswithahighatomicpackingfactorwillhaveahighermalleability
orductility.
Atomicpackingfactor
Coordinationnumber
CoordinationNumberisthenumberofadjacentatomssurroundingareferenceatom.cellunit
atomsatoms
V
VN
APF

10
3.4-Metal structure
BodyCenteredCubiccrystalstructure
BodyCenteredCubic(BCC)unitcellhasatomsateachoftheeightcornersplusone
atominthecenterofthecube..
Atomsareincontactalongbodydiagonaloftheunitcell.
ThesideofthecubeisaandtheradiusofanatomisR.
1/8 atom1 atom2a 3a a a a 3
4
43
R
aRa  cellunitinsideatomsN
atoms
21
8
1
8  68.0
3
4
3
8
3
42
3
3
3
3












R
R
a
R
V
VN
volumeTotal
volumeAtomic
APF
cellunit
atomatoms


11
3.4-Metal structure
FaceCenteredCubiccrystalstructure
FaceCenteredCubic(FCC)unitcellhasatomsateachoftheeightcornersplusone
atomatthecenterofeachfaceofthecube..
Atomsareincontactalongfacediagonaloftheunitcell.
ThesideofthecubeisaandtheradiusofanatomisR.
1/8 atom1/2 atom2a 3a a a a 2
4
42
R
aRa  cellunitinsideatomsN
atoms
4
2
1
6
8
1
8  74.0
2
4
3
8
3
4
4
3
3
3
3












R
R
a
R
V
VN
volumeTotal
volumeAtomic
APF
cellunit
atomatoms


12
Example: 3.1
Copper Cu has the FCC crystal structurewith an atomic radius of 0.128 nm and
of molar mass equal to 63.55 g/mole.
Determine its atomic packing factor APF and the density of copper
a
Solution
Atoms inside unit cell = 6×1/2 + 8×1/8 = 4 atoms362.0
2
4
42 
R
aRa  
74.0
22
3
16
3
44
3
3
3
3



R
R
a
R
volumeTotal
volumeatomic
APF
  
3
23
3
7
3
/89.8
10023.610362.0
55.634
cmg
Na
MN
V
m
A









The density of FCC unit cell is: AA
N
MN
m
N
N
M
m
n



13
3.4-Metal structure
HexagonalClose-Packedcrystalstructure
HexagonalClose-Packet(HCP)unitcellhasatomsateachofthetwelvecorners,three
atomsinsidetheunitcellandoneoneachbase.
Atomsareincontactalongthesideoftheunitcell.
ThesideoftheunitcellisaandtheradiusofanatomisR.
1/2 atom 1/6 atom
1 atom74.02  APFandRa cellunitinsideatomsN
atoms
6
6
1
12
2
1
23 

14
3.4-Metal Structure
Coordinationnumber
CoordinationNumber(CN)isthenumberofadjacentatomssurroundingareference
atom.
Thecoordinationnumberofthecentralmetalatom/ionmaybeusedtodeducethe
moleculargeometryofthecoordinationcompound.
(BCC)
CN = 8
(FCC)
CN = 12 (HCP)
CN = 12

15
3.5-Ceramic structure
Ceramicsusuallyhaveacombinationofionicbonds.
Ionic bond occurs between a metal and nonmetal with transfer of electrons.
Since the bonding is ionic, the packing factor will be Ionic Packing Factor (IPF).cellunit
ionsions
V
VN
IPF


Ionicpackingfactor
IPFrepresentsthefractionofthevolumeofionsoccupiedinaunitcelloverthetotalunit
cellvolume.
Typesofcrystalstructures
1.MX
2.MX2
3.M2X3
M: Metallic element
X: Non-metallic element

16
3.5-Ceramic structure
MXCeramicStructures:CsCl
CsClcanbethoughtofastwointerpenetratingsimplecubicarrayswherethecornerof
onecellsitsatthebodycenteroftheother.
SimplecubicBravaislattice(8latticepointsatthecornerofthecube).
ThestructureofCsClisnotBCC.ItisasimplecubicBravaislattice.
Thenumberofcompleteionsinsideunitcellis:1CS
+
and1Cl
-
MaterialssimilartoCsClstructureare:CsBr,CsI,CsCN,TiCl,TiBr,andTiCN.

17
3.5-Ceramic structure
MXCeramicStructures:NaCl
NaClhasacubicunitcell.Itisbestthoughtofasaface-centeredcubicarrayofanions
withaninterpenetratingfcccationlattice(orvice-versa).
Whetheronestartswithanionsorcationsonthecorners,thecellhasthesame
structure.
Thenumberofcompleteionsinsideunitcellis:4Na
+
and4Cl
-
MaterialssimilartoNaClstructureare:MgO,CaO,FeO,andNiO.
1/8 ion1/4 ion
1/2 ion

Example: 3.2
MgOhas the NaClcrystal structure.
a-Calculate the Ionic packing factor IPF of MgO.
b-Determine the density of MgO
Given: r
Mg
2+
=0.078 nm, r
O
2-
=0.132 nm,
16
O and
24.31
Mg
Solutionnmrra
OMg
42.022
22 
 465.0
3
4
4
3
4
4
3
33
22




a
rr
volumeTotal
volumeIonic
IPF
MgO
  
 
3
23
3
7
3
/61.3
10023.61042.0
16431.244
cmg
Na
MN
V
m
A









18

19
3.5-Ceramic structure
MX2CeramicStructures:CaF2
Thereare12ions(4Ca
2+
and8F
-
)perunitcell.
ThecationsCa
2+
occupythe8cornersoftheunitcellandthecentersofthefaceswhile
theanionsF
-
occupythecornersofacubeinsidetheunitcell.
MaterialssimilartoCaF2structureare:UO2ThO2andTeO2

20
3.5-Ceramic structure
MX2CeramicStructures:CaF2
IonsF
-
(blackspheres)arelocatedonthebodydiagonalofthecubicunitcell.
TheircentersareplacedonthequarterofbodydiagonalsandincontactwithCa
2+
�
�
4 
 
FCaFCa
rrarr
ad
22
3
4
4
3
4
�
�
�

21
3.6-Polymericstructure
Polyethylene unit cell
Polymershavelongchainpolymericmolecules
The arrangement of these long molecules into a regular pattern is difficult.
Plastics tends complex crystalline structure
Polyethylene(C
2H
4)
nand plastics are examples of polymers.

22
3.6-Polymeric structure
CrystallinityofPolymericStructures
Percentageofcrystallinitycanbecomputedbydividing
theamountofthecrystallinephasebythetotalamount
ofthematerialandmultiplyingby100.
Thefractionoftheorderedmoleculesinpolymeris
characterizedbythedegreeofcrystallinity,which
typicallyrangesbetween10%and80%.
StrengthPolymericStructures
Tensilestrengthoftenincreaseswithmolecularweightandpercentageofcrystallinity

Example: 3.3
For a density of 0.9979 g/cm
3
Calculate the number of C and H
atoms in the polyethylene unit cell.
Given the volume of unit cell is 0.0933 nm
3
,
1.008
H and
12.01
C.
Solution 
gN
N
m
HC
HC 23
23
1066.4
10023.6
)008.1(4)01.12(2
42
42 



 3
321
23
/997.0
100933.0
1066.4
42
cmg
cm
gN
V
m HC






 atomsNandatomsN
N
HC
HC
84
2
42


23

24
3.7-Semiconductor structure
Elementalsemiconductors:Si,GeandgraySnsharediamonditscubicstructure.
1/8 atom
1/2 atom
1 atom
Thenumberofcompleteatomsinsideunitcellis:4+6×
1
2
+8×
1
8
=8�����
Grayatomsareatomslocatedatthecenteroffacesandcorners.Coloredatomsare
locatedatthebodydiagonalsofthecube.
Thecompleteatomsinsidetheunitcellareplacedonthequarterofthebodydiagonal.
Puresemiconductors

25
ThesemiconductingcompoundsarecomposedofpairsofelementsfromcolumnsIII
andV(e.g.,GaAs)orfromcolumnsIIandVI(e.g.,ZnS).
3.7-Semiconductor structure
Compoundsemiconductors
MaterialssimilartoZnSstructureare:ZnSe,CdS,andHgTe
MaterialssimilartoGaSstructureare:AIP,andInSb
Thenumberofcompleteatomsinsideunitcellis:
4??????+6×
1
2
+8×
1
8
��=4??????+4��

Example: 3.4
Silicon Si has a diamond cubic structure.
a-Calculate the Atomic packing factor APF.
b-Determine the density of Si.
Given: r
Si=0.117 nm, and
28.09
Si.
SolutionSiSi
raar
3
8
4
3
2  34.0
3
8
3
4
8
3
4
8
3
3
3
3
3











Si
SiSi
r
r
a
r
volumeTotal
volumeAtomic
APF
  
3
23
3
7
3
/36.2
10023.61054.0
09.288
cmg
Na
MN
V
m
A









26

27
3.8-Lattice positions, directions and planes
Inacrystallattice,eachatom,moleculeorions(constituentparticle)isrepresentedbya
singlepoint.Thesepointsarecalledlatticesiteorlatticepoint.
Latticepositions:sameasthepositioninthecoordinatesystemxyz.Theyareexpressed
asfractionormultiplesoftheunitcelldimensions.
Latticepositions
a,bandcaresidelengthsoftheunitcell
alongx,yandzaxesrespectively.Theyare
theunit-celldimensions.
How to determine the Lattice Position of P:
-Coordinates of P in the coordinate system
xyz is: P(1a, 2b,1c)
-Divide the coordinates by a, b and c
-Lattice Position of P is: 121
P

28
3.8-Lattice positions, directions and planes
Crystaldirectionsareallstraightlinespassingthroughtwonodesinthelatticeusually
oneofthemistheoriginandtheotheroneistheidentifiedpoint.
Adirectionisexpressedassetofintegers,whichareobtainedbyidentifyingthe
smallestintegerpositionsinterceptedbyaparallellinefromtheoriginofthe
crystallographicaxes.
Latticedirections
Notationforlatticedirections.
Notethatparallel[uvw]
directions(e.g.,[111])sharethe
samenotationbecauseonlythe
originisshifted.
Notethatthelinefromtheorigin
ofthecrystallographicaxes
throughthe
1
2
1
2
1
2
bodycentered
positioncanbeextendedto
interceptthe111unitcellcorner
position.

29
3.8-Lattice positions, directions and planes
Afamilyofdirectionsincludesanydirectionsthatareequivalentinlengthandtypesof
atomsencountered.
Latticedirections–Familyofdirections
Familyofdirections,<111>,representingallbodydiagonalsforadjacentunitcellsin
thecubicsystem.111,111,111,111,111,111,111,111111

30
3.8-Lattice positions, directions and planes
Itisimportanttoknowtheanglebetweentwolatticedirectionsandplanessincethat
affectthemechanicalpropertiesofmaterial.
Latticedirections–AnglebetweentwolatticedirectionscosDDDD 
Let??????=&#3627408482;&#3627408462;+&#3627408483;&#3627408463;+&#3627408484;&#3627408464;andሖ??????=ƴ&#3627408482;&#3627408462;+ƴ&#3627408483;&#3627408463;+ƴ&#3627408484;&#3627408464;tobetwolatticedirections.Theangle
θbetweenthemisdefinedas:















222222
1
coscos
wvuwvu
wwvvuu
DD
DD

Example: 3.5
What is the angle between the [110] and [111] directions in the cubic system.
Solution
01
222222
1
5.35
32
011
coscos 


















wvuwvu
wwvvuu

31
3.8-Lattice positions, directions and planes
Alatticeplaneisaplanewhoseintersectionswiththelattice(oranycrystalline
structureofthatlattice)areperiodic(i.e.aredescribedby2dBravaislattices).
MillerIndicesisamethodofdescribingtheorientationofaplaneorsetofplanes
withinalatticeinrelationtotheunitcell.Theyarerepresentedbythreeintegers.
Latticeplanes-MillerIndices(hkl)
Steps for computing Miller Indices
1-Take the intersections of plane with the
Cartesian axis x,y,z
2-Take the reciprocals and make sure that
the three numbers are of the smallest
integers (no fractions or multiples)
3-The obtained set is a miller indices
plane representation (hkl)
Knowledgeofsliporcleavageplanescanfacilitatethefundamentalunderstandingof
mechanicalpropertiesandengineeringoperations,suchastabletingandmilling.

32
3.8-Lattice positions, directions and planes
Belowaresomeexamplesonmillerindices:
Millerplaneexamples

33
Example: 3.6
Find the miller indices of the following planes

34
3.8-Lattice positions, directions and planes
Afamilyofplanescontainsalltheplanesthatarecrystallo-graphicallyequivalent.
EveryfamilyoflatticeplanescanbedescribedbyasetofintegerMillerindicesthat
havenocommondivisors
Millerindices:Familyoflatticeplanes
Family of planes, {100}, representing all faces of unit cells in the cubic system. )100(),010(),001(),001(),010(),100(100

35
3.8-Lattice positions, directions and planes
Thelineardensityisthenumberofatomsoccupiedinaunitlength.
Theintersectionoflatticedirectionwithspherecanbeeitheraradiusoradiameter
whichrepresentshalfandoneatomalongthelinerespectively.
Iftheintersectionisnotaradiusordiameterthennoatomscountalongtheline.
Lineardensitylineoflength
linealongatomsofnb
densityLinear  atom1 atom
2
1

36
3.8-Lattice positions, directions and planes
Theplanardensityisthenumberofatomsoccupiedinaunitarea
Theintersectionoflatticeplanewithspherecanbeeitheradiskorpartofadisk.
Thenumberofatomsinplanecanbecountedasfollows:
PlanardensityplaneofArea
planeinatomsofnb
densityPlaner  atom
4
1 atom
2
1 atom1  atom
360

Example: 3.7
Consider FCC Aluminum crystal structure
r
Al= 0.143 nm.
a-Find the linear densities along [110], and [111]
b-Find the planar densities in planes (100), (110), and (111)
Solution
37Length
atomsofnb
densityLinear 
[110]nmatoms
atoms
a
LD /49.3
2404.0
2
2
11
2
1
2
]110[


 nmatoms
atom
a
LD /443.1
3404.0
1
3
2
1
2
]111[



[111]nmara 404.042  2a 3a

38 
2
22)100( /25.12
404.0
2
1
4
14
nmatoms
atoms
a
PD 

 Area
atomsofnb
densityPlanar 
(100)2
2
)110(
/66.8
2404.0
2
2
2
1
2
4
1
4
nmatoms
atoms
aa
PD 



a
a
a2a
(110)2
)111( /14.14
2
60sin22
2
13
6
13
nmatoms
aa
PD 



(111)2a 2a 2a

39
Problems

Problem 1
Calculate the IPF for UO
2which has the CaF
2structure. Given r
U
4+
= 0.105 nm and
r
O
2-
= 0.132 nm. Hint the oxygen atoms are located at one-quarter of the body
diagonal.
Solution588.0
3
4
8
3
4
4
3
33
24




a
rr
volumecellUnit
volumeIonic
IPF
OU
 nma
a
rr
OU
548.0
4
3
24 

40

Problem 2
Calculate the density of UO
2. Given
238.03
U and
16
O.
Solution
The volume of unit cell is computed in problem 2.
There exist 4 atoms of Uranium and 8 atoms of Oxygen in unit cell. 
 
3
23
3
7
3
/9.10
10023.610548.0
)16(803.2384
cmg
Na
MN
V
m
A









41

Problem 3
Calculate the APF for polyethylene. Given the volume of unit cell is 0.09333 nm
3,
r
C
=0.077 nm and r
H=0.046nm. Hint the unit cell contains 4 carbon atoms.
Solution
There exist 4 carbon atoms →8 hydrogen atoms.12.0
0933.0
3
4
8
3
4
4
33



HC
rr
volumeTotal
volumeAtomic
APF

42

Problem 4
Calculate the IPF for the zinc blende (ZnS) structure. Given r
Zn
2+
= 0.083 nm and r
S
2-
= 0.174 nm. Hint the sulfur atoms are located at one-quarter of the body diagonal.
Solution
There exist 4 zinc atoms and 4 sulfur atoms. 
468.0
594.0
3
4
4
3
4
4
3
33
3
22




SZn
rr
a
volumeIonic
IPF
 nma
a
rr
SZn
594.0
4
3
22 

43

Problem 5
Benefiting from problem 5, calculate the density of zinc blende (ZnS) structure.
Given
65.38
Zn and
32.06
S.
Solution
There exist 4 zinc atoms and 4 sulfur atoms in unit cell. 
 
3
23
3
7
3
/09.3
10023.610594.0
)06.32(438.654
cmg
Na
MN
V
m
Acellunit
ZnS









44

x
y
z
Problem 6
(a) Sketch, in a cubic unit cell, a [111] and a [112] lattice direction.
(b) Use trigonometric calculation to find the angle between these two directions.
(c) Use equation 3.3 to determine the angle between these two directions.
[111] 1l
[112] 2l
45
Solution
(b)6,3
21
 ll
Using cosine law
0
21
2
2
2
1
2
5.19cos21  llll
(c)
222222
21
21
cos
wvuwvu
wwvvuu
ll
ll




 18
4
211111
211
cos
222222



 0
5.19
18
4
arccos 







Problem 7
(a)Calculate the linear densities along [010], [101], and [111] direction in UO
2.
(b)Calculate the planar densities in the following planes (010), (101), (002), (111),
and (220). Given r
U
4+
= 0.105 nm and r
O
2-
= 0.132 nm.
46
SolutionLength
ionsofnb
densityLinear  nmU
U
a
U
LD /828.1
547.0
1
2
1
2
4
4
4
]010[





 nmarr
a
OU 547.0
4
3
24


[010]a

47 
nmU
U
a
U
LD /585.2
2547.0
2
2
1
2
1
2
4
4
4
]101[






[101]
[111]nmOnmU
a
OU
LD /11.2/055.1
3
2
2
1
2
24
24
]111[




 2a 3a  
 
24
2
4
2
4
)010( /684.6
547.0
2
1
4
14
nmU
U
a
U
PD





 Area
ionsofnb
densityPlanar 
(010)
a
a

2224
24
)101( /45.9/72.4
2
42
nmOnmU
aa
OU
PD





 (101) 
 
24
2
4
4
)002( /684.6
547.0
2
2
14
nmU
U
aa
U
PD







(002)
a
a 
24
4
)111( /718.7
2
60sin22
2
13
6
13
nmU
aa
U
PD






(111)2a 2a 2a  
 
24
2
4
)220( /726.4
547.0
2
2
12
nmU
la
U
PD






(220)
a2
a
l
a2a

Problem 8
(a)Calculate the linear densities of ions along [101], and [111] in zinc blende (ZnS).
(b)Calculate the planar densities of ions along the (110) and (020) plane. Given r
Zn
2+
= 0.083 nm and r
S
2-
= 0.174 nm.
49
Solutionnmarr
a
SZn 593.0
4
3
22

 Length
ionsofnb
densityLinear   
nmZn
Zn
a
Zn
LD /38.2
2593.0
2
2
2
1
21
2
2
2
]101[






[101]2a

50
[111]nmSnmZn
a
SZn
LD /97.0/97.0
3
1
2
1
2
22
22
]111[




 3a Area
ionsofnb
densityPlanar  2222
22
)110( /02.4/02.4
2
22
nmSnmZn
aa
SZn
PD






(110) 
 
22
2
2
2
)020( /687.5
593.0
2
2
14
nmZn
Zn
aa
Zn
PD







(020)
a
a
a2a
Tags