S
+ ΣF
x=0; A
x=0
Internal Loadings. Referring to the FBD of the left segment of beam sectioned
through C, Fig. b,
+cΣF
y =0; 3000-500(6)-V
C=0 V
C=0 Ans.
a +ΣM
C=0; M
C+500(6)(3)+900-3000(6)=0
M
C=8100 lb #
ft =8.10 kip #
ft Ans.
*7–8.
Determine the internal shear force and moment acting at
point C in the beam.
AC B
500 lb/ ft
6 ft 6 ft3 ft 3 ft
900 lb � ft 900 lb � ft
S
+ ΣF
x=0 B
x=0
Internal Loading. Referring to the left segment of member AB sectioned through D ,
Fig. b,
S
+ ΣF
x=0; N
D=0 Ans.
+cΣF
y=0; 3.00-V
D=0 V
D=3.00 kip Ans.
a +ΣM
D=0; M
D+6-3.00(6)=0 M
D=12.0 kip #
ft Ans.
Referring to the left segment of member BC sectioned through E, Fig. c,
S
+ ΣF
x=0; N
E=0 Ans.
+cΣF
y =0; -V
E-1.5(4)-2.00=0 V
E=-8.00 kip Ans.
a +ΣM
E=0; M
E+1.5(4)(2)+2.00(4)=0 M
E=-20.0 kip #
ft Ans.
7–13.
Determine the internal normal force, shear force, and
moment in the beam at sections passing through points D
and E . Point D is located just to the left of the 5-kip load.
6 ft 4 ft 4 ft
B CD E
6 ft
5 kip
1.5 kip/ ft
6 kip � ft
A
S
+ ΣF
x=0; B
x=0
Internal Loadings. Referring to the FBD of right segment of the beam sectioned
through C, Fig. b
S
+ ΣF
x=0; N
C=0 Ans.
+cΣF
y=0; V
C+6.00-
1
2
(3)(3)=0 V
C=-1.50 kN Ans.
a +ΣM
C=0; 6.00(3)-
1
2
(3)(3)(1)-M
C=0 M
C=13.5 kN #
m Ans.
7–15. Determine the internal normal force, shear force, and
moment at point C.
3 m3 m
C
A
B
6 kN/ m
Ans:
N
C=0
V
C=-1.50 kN
M
C=13.5 kN #
m
S
+ ΣF
x=0; 1200 a
3
5
b-B
x=0 B
x=720 N
Internal Loadings. Referring to the right segment of member AB sectioned through E ,
Fig. b
S
+ ΣF
x=0; 720-N
E=0 N
E=720 N Ans.
+cΣF
y =0; V
E-800-320=0 V
E=1120 N=1.12 kN Ans.
a +ΣM
E=0; -M
E-320(1)=0 M
E=-320 N #
m Ans.
Referring to the left segment of member CD sectioned through F, Fig. c,
S
+ ΣF
x=0; N
F=0 Ans.
+cΣF
y =0; -V
F-640-400(1.5)=0 V
F=-1240 N=-1.24 kNAns.
a +ΣM
F=0; M
F+400(1.5)(0.75)+640(1.5)=0
M
F=-1410 N #
m=-1.41 kN #
m Ans.
7–21. Determine the internal normal force, shear force, and
moment at points E and F of the compound beam. Point E
is located just to the left of 800 N force.
A
1 m
400 N/ m
800 N
1200 N
2 m 1 m1.5 m 1.5 m
D
E FB C
5
4
3
1.5 m
S
+ ΣF
x=0; A
x-1600=0 A
x=1600 N
+cΣF
y =0; A
y-200=0 A
y=200 N
Internal Loading. Referring to the FBD of the left segment of the assembly
sectioned through C, Fig. b,
S
+ ΣF
x=0; 1600+N
C=0 N
C=-1600 N=-1.60 kN Ans.
+cΣF
y =0; 200-V
C=0 V
C=200 N Ans.
a +ΣM
A=0; M
C-200(1)=0 M
C=200 N #
m Ans.
7–27. Determine the internal normal force, shear force, and
moment at point C.
A
C
E
D
B
1 m 1 m 2 m
1 m
800 N � m
200 N
S
+ ΣF
x=0; C
x-2200=0 C
x=2200 N
+cΣF
y =0; C
y-600=0 C
y=600 N
Internal Loadings. Referring to the left segment of member AB sectioned through E ,
Fig. b,
S
+ ΣF
x=0; N
E-2200=0 N
E=2200 N=2.20 kN Ans.
+cΣF
y=0; V
E=0 Ans.
a +ΣM
E=0; M
E=0 Ans.
Referring to the left segment of member BC sectioned through D, Fig. c
S
+ ΣF
x=0; N
D+2200=0 N
D=-2200 N=-2.20 kN Ans.
+cΣF
y=0; 600-V
D=0 V
D=600 N Ans.
a +ΣM
D=0; M
D-600(2)=0 M
D=1200 N #
m=1.20 kN #
m Ans.
7–31. Determine the internal normal force, shear force, and
moment acting at points D and E of the frame.
2 m
900 N m
600 N
D
E
B
A
4 m
C
1.5 m
.
S
+ ΣF
x=0; A
x-17.5 a
3
5
b+6=0 A
x=4.50 kN
+cΣF
y=0; A
y-17.5 a
4
5
b=0 A
y=14.0 kN
Internal Loadings. Referring to the FBD of the lower segment of member ABE
sectioned through D, Fig. b,
S
+ ΣF
x=0; 4.50+V
D=0 V
D=-4.50 kN Ans.
+cΣF
y=0; N
D+14.0=0 N
D=-14.0 kN Ans.
a +ΣM
D=0; M
D+4.50(3)=0 M
D=-13.5 kN #
m Ans.
*7–32. Determine the internal normal force, shear force, and
moment at point D.
A
D
E
C
B
6 kN
3 m
3 m
kip#
ft Ans.
Set V=0, we obtain
0=1.5-
1
4
x
2
x=26 ft
The corresponding Internal Moment is
M=1.50(26)-
1
12
(
26)
3
=2.4495 kip#
ft=2.45 kip#
ft
At x=6 ft,
M=1.50(6)-
1
12
(6
3
)=-9.00 kip#
ft
*7–64.
Draw the shear and moment diagrams for the beam.
A
B C
6 ft 3 ft
3 kip/ ft
2 kip/ ft
kN#
m
set V=0, then
0=6.75-x
2
x=26.75 m
The corresponding moment is
M=6.75(26.75)-
1
3
126.752
3
=11.69 kN#m=11.7 kN#m
7–81. Continued
Ans:
x=6.5
-
V=-31.5 kN
M=-45.0 kN #
m
x=8.5
+
V=36.0 kN
M=-54.0 kN #
m
kN
a+ΣM
O=0; M+
1
2
(x-3)(x-3)c
1
3
(x-3)d+3x a
x
2
b-9.75x=0
M=e-
1
6
x
3
+5.25x+4.50f kN#
m
Set V=0, we obtain
0=5.25-
1
2
x
2
x=110.5 m
The corresponding moment is
M=-
1
6
1110.52
3
+5.25110.5+4.50=15.8 kN#
m
*7–84.
Draw the shear and moment diagrams for the beam.
3 m 3 m
3 kN/ m
6 kN/ m
A
B
C
Ans:
x=210.5
V=0
M=15.8 kN #m
S
++ΣF
x=0; A
x=0
Internal Loadings. Referring to the FBD of the left segment of the beam sectioned
at x=3 ft shown in Fig. a, the internal moment at x=3 ft is
a+ΣM
O=0; M+
1
2
(600)(3)(1)=0 M=-900 lb #
ft
7–85.
Draw the shear and moment diagrams for the beam.
6 ft3 ft 3 ft
600 lb/ ft
BA
Ans:
x=3
+
V=1800 lb
M=-900 lb #
ft
x=6
V=0
M=1800 lb #
ft
S
+ΣF
x=0; A
x=0
Internal Loadings. Referring to the FBD of the right segment of the beam sectioned
at x=1.5 m, the internal moment at this section is
a+ΣM
O=0; -M-
1
2
(3)(1.5)(1)=0 M=-2.25 kN #
m
7–86.
Draw the shear and moment diagrams for the beam.
3 m
3 kN/ m
6 kN/ m
A
Ans:
x=1.5
V=2.25 kN
M=-2.25 kN #m
lb
a+ΣM
O=0; M+c
1
2
a
200
3
xbxda
x
3
b-500x=0
M=e500x-
100
9
x
3
f
lb#
ft
Set V=0,
0=500-
100
3
x
2
x=215 ft
The corresponding moment is
M=500215-
100
9
12 152
3
=1291 lb#
ft
6 ft
400 lb/ ft 400 lb/ ft
1500 lb
6 ft 4 ft
A
B
7–89.
Draw the shear and moment diagrams for the beam.
39
237
F
BC-9P
1=1800 (1)
Method of Joints. Perform the joint equilibrium analysis for joint B first, Fig. b,
S
+
ΣF
x=0; F
BCa
6
237
b- F
ABa
1
22
b=0 (2)
+c ΣF
y=0; F
ABa
1
22
b- F
BCa
1
237
b-600=0 (3)
Solving Eqs (2) and (3),
F
BC=120237 N F
AB=72022 N
Substitute the result of FBC into Fig. (1),
P
1=320 N Ans.
7–95.
The cable supports the three loads shown. Determine the
magnitude of P
1
if P
2
= 600 N and y
B
= 3 m. Also find sag y
D.
1 m
3 m 6 m 6 m 3 m
A
E
B
C
D
y
B
y
D
4 m
P
2
P
2
P
1
55
241
F
AB-7P=600 (1)
Method of Joints. Consider the equilibrium of joint B, Fig. b,
+c ΣF
y=0; F
ABa
4
241
b-F
BCa
2
25
b=0 F
BC=
225
241
F
AB
S
+ ΣF
x=0; P-F
ABa
5
241
b-a
225
241
F
ABba
1
25
b=0
F
AB =
241
7
P (2)
Substituting Eq. (2) into (1)
55
241
a
241
7
Pb-7P=600
P=700 N Ans.
7–98.
The cable supports the loading shown. Determine the
magnitude of the horizontal force P so that x
B =5 m.
4 m
1 m
2 m
600 N
D
C
B
A
x
B
6 m
P
Ans:
P=700 N
dy
dx
=
1
F
H
(w
ox+C
1) (2)
Boundary Conditions. At x=0, y=0. Then Eq (1) gives
0=
1
F
H
(0+0+C
2) C
2=0
At x=0,
dy
dx
=0. Then Eq (2) gives
0=
1
F
H
(0+C
1) C
1=0
Thus, the equation of the cable becomes
y=
w
o
2F
H
x
2
(3)
and the slope of the cable is
dy
dx
=
w
o
F
H
x (4)
Here, w
o=200 lb>ft. Also, at x=50 ft, y=20 ft.Then using Eq (3),
20=
200
2F
H
(50
2
) F
H=12,500 lb=12.5 kip
Thus,
T
min=F
H=12.5 kip Ans.
u
max occurs at x=50 ft.Using Eq. 4
tan u
max=
dy
dx
`
x = 50 ft
=a
200
12,500
b(50) u
max=38.667
Thus,
T
max=
F
H
cos u
max
=
12.5
cos 38.667
=16.0 kip Ans.
*7–108.
The cable is subjected to a uniform loading of
w = 200 lb>ft. Determine the maximum and minimum
tension in the cable.
100 ft
20 ft
y
x
A B
200 lb/ ft
Ans:
T
min=12.5 kip
T
max=16.0 kip
dy
dx
=
1
F
H
a
15
2
x
2
+C
1b (2)
Boundary Conditions. At x=0, y=0. Then Eq (1) gives
0=
1
F
H
(0+0+C
2) C
2=0
Also, at x=0,
dy
dx
=tan 15°. Then Eq (2) gives
tan 15°=
1
F
H
(0+C
1) C
1=F
H tan 15°
Thus, the equation of the cable becomes
y=
1
F
H
a
5
2
x
3
+F
H tan 15°x
b
y=
5
2F
H
x
3
+tan 15° x (3)
And the slope of the cable is
dy
dx
=
15
2F
H
x
2
+tan 15° (4)
Also, at x=20 ft, y=20 ft.Then using Eq. 3,
20=a
5
2F
H
b(20
3
)+tan 15°(20)
F
H=1366.03 lb
u
max occurs at x=20 ft. Then Eq (4) gives
tan u
max=
dy
dx
`
x = 20 ft
=c
15
2(1366.02)
d(20
2
)+tan 15° u
max=67.91°
Thus
T
max=
F
H
cos u
max
=
1366.02
cos 67.91°
=3632.65 lb=3.63 kip Ans.
7–111.
Determine the maximum tension developed in the cable if
it is subjected to the triangular distributed load.
20 ft
20 ft
15
300 lb/ ft
y
x
A
B
Ans:
T
max=3.63 kip
Bcosh¢
10(100)
(F
H)
BC
≤-1R
x=-100 fty=10 ft
(F
H)
AB=11266.63 lb
10=
(F
H)
AB
10
Bcos h ¢
10(150)
(F
H)
AB
≤-1R
x=150 ft,y=10 ft
y=
F
H
10
B cos h ¢
10
F
H
x≤-1R ft
y=
F
H
w0
B cos h ¢
w
0
F
H
x≤-1R
w
0=10 lb>ft.
BD
h=10 ft10 lb>ft
A B
h
C
D
300 ft
10 ft
200 ft
Ans:
(F
h)
R=6.25 kip
(F
v)
R=2.51 kip
sinhc
0.3
169.0
1752d=75.22
T
max=
F
H
cos u
max
=
169
cos 7.606°
=170 lb
u
max=tan
-1
c sinh¢
7510.32
169
≤d=7.606°
dy
dx
`
max
=tan u
max= sinh¢
w
F
H
x≤`
x=75 ft
F
H=169.0 lb
5=
F
H
w
Bcosh¢
75w
F
H
≤-1R
w=0.3 lb>fty=5 ft,At x=75 ft,
y=
F
H
w
B cosh¢
w
F
H
x≤-1R
s=
F
H
w
sinh¢
w
F
H
x≤
w=0.3 lb>ft
>
Ans:
T
max=170 lb
L =150 ft
sinh a
21502
212.2
b
s=
F
H
w
0
sinh¢
w
0
F
H
x≤
F
H=212.2 lb
24=F
HB cosh ¢
100
F
H
≤-1R
12=
F
H
2
B cosh ¢
211002
2 F
H
≤-1R
h=
F
H
w
0
B cosh ¢
w
0L
2F
H
≤-1R
>
Ans:
l=104 ft