Chromatography GCMS_Overview__1719054462.pdf

AndrsPacompa 43 views 155 slides Jun 23, 2024
Slide 1
Slide 1 of 155
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155

About This Presentation

Gcms


Slide Content

GasChromatography/Mass
SpectrometryAnalysis
(GC/MS)
FundamentalsandSpecialTopics

GasChromatography/Mass
Spectrometry







GC/MSOverview
thenutsandboltsofhowGC/MSworks
GC/MSAnalysisSpecialTopics
Chromatograms&PeakIntegration
TICs&MSLibraries,Interferences
DioxinsandPCBAnalyses
GC/HighResolutionMassSpectrometry

GasChromatography/MassSpectrometry



















Introduction
OrganicAnalysisOverview
History
ThewideworldofMassSpectrometry
Howitallworks
Tuning/Calibration
Break
GasChromatography/MassSpectrometry(GC/MS)
FromChromatogramstofinalreport
MassSpectrometryLibrariesandCompoundIdentification(TICs)
ProperandImproperPeakIntegrations-ManipulatingResults
DealingwithInterferences
Break
-DioxinandPCBAnalysesUsingGC/HighResolutionMassSpectrometry
ReviewofEPAMethods
WhyHighResolutionMassSpectrometry
HighResolutionMassSpectrometryFundamentals
DioxinandPCBAnalysisMethodsHighlights
ComparingPCBMethods1668Ato8082-AroclorsorCongeners.

GasChromatography/Mass
Spectrometry
(GC/MS)
Gas
Chromatography
Mass
Spectrometry
GasChromatography-
MassSpectrometry =
Identifies(detects)pollutantmolecules
basedontheirmolecularweightormass
AChemicalAnalysisTechnique
combiningtwoinstrumentstoprovide
forpowerfulseparationand
identificationcapabilities
Separatesmixtureofpollutants
soeachcanbeidentifiedindividually

GasChromatography/MassSpectrometry
WHATTHEMASSSPECTROMETRISTSAYS WHATTHEAVERAGEPERSONHEARS
Themassspectrometryresultsata
resolvingpowerof10,000indicatethat
isobaricinterferencesexistthatmakethe
chlorineionintensitiesinconsistentwith
theirnaturalisotopicabundanceatthe
molecularion.
Themassspectrometryresultsblah,
blah,blah,blah,blah,blah,blah,blah,
blah,blah,blah,blahthatmakethe
chlorineblah,blah,blah,blah,blah,
blah,blah,blah,blah,blah,blah,blah,
blah,blah,blah,blah.

HistoricalTimelineofGC/MS
1900 2000
1942
FirstCommercial
MassSpectrometer
1971
USEPAPurchases6
FinniganGC/MassSpecs
1906
SirJ.J.Thompson
NobelPrizefor
discoveryofelectron
1952
MartinandSynge
NobelPrize
Chromatography
1979
USEPAPublishes
WastewaterMethods
UnderCleanWaterAct
GC/MS
LC/MS
ICP/MS

EPABorn

DatesofHistoricalNote














1906-SirJ.J.Thomson(Cambridge)getsNobelPrizeforthediscoveryof
theelectron.
1930-AstonusesMStostudyisotopes
1942-firstcommercialmagneticmassspectometer
1952-MartinandSyngewinNobelPrizeforChromatography
1959-GasChromatographyinterfacedtoMassSpectrometer
1968-FinniganCorp.deliversfirstQuadrupoleGC/MS
1969-FinniganCorp.deliversfirstQuadrupoleGC/MSwithcomputer
1970-USEPAisborn
1971-USEPApurchases6FinniganGC/MSsystems
1972-FederalWaterPollutionControlAct(CWA)ispassed
1976-HewlettPackardintroducesfullycomputerizedGC/MSsystem
1976-RCRAEnacted
1979-USEPApublisheswastewatermethodsunderCWA
1983-DevelopmentofLC/MSinterfacebyVestalet.al.

VariousFormsofMass
Spectrometry
•Awholerangeofpossibilities/permutations
SampleIntroduction Ionization MassSeparator Detector
Gas Chromatography EI (electron impact) Quadrupole
channeltron
GasChromatography EI(electronimpact) Quadrupole
channeltron
LiquidChromatography CI(chemicalionization) IonTrapdiscrete
dynode
Electrospray NCInegativeCI Time-of-Flight(TOF) photo-
optical
FAB(fastatombombardment) Sector(BE,EB,EBE)image
current
API(atmosphericpressure)FTMS(MS
n
)
LIMS(laserionization) IonMobility
FI/FD(fielddesorption) TripleStageQuadrupoles(MS/MS)
MALDI(matrixassistedlaserHybridCombinations(Q-TOF,BEQ)
desorptionionization)
ParticleBeam(PB/LC/MSInterface)
Thermospray(TSP/LC/MSInterface)
AtmosphericPressureIonization(API/LC/MS)
ETC.

GC/MS





GreatFortheAnalysisofOrganics
GasChromatographyAnalysisRequirement
OrganicstobeanalyzedmustbeVOLATILEorat
leastPartiallyVOLATILE.
First30yearsofEPAhaveconcentratedonrelativelyvolatile
organics
Next30years? PolarandNon-Volatiles?
LC/MS?

BroadRangeofOrganicCompounds
(Howmanyarethere?)
ChemicalAbstractsService16,000,000
(basedonCAS#’sasof1998)
NISTOrganicMSDatabase approx.
150,000
FederalPollutantDatabase approx700
e.g.
MostOrganicAnalyses:
approx.10to80compoundsinone
analysis

ClassificationofOrganic
Compounds
BoilingPoint Polarity* Technique
Ionic high high HPLC,HPLC/MS
NonVolatiles high high HPLC,HPLC/MS
SemiVolatiles medium low-medium GC;GC/MS;HPLC
Volatiles low low-medium GC;GC/MS
*Increasingpolarity=Increasingsolubilityinwater

SurveyofGC/MSMethods
(byProgram)

»

»

»

»

»
SDWA
EPA500series e.g.524.2,525
CleanWaterAct
EPA600and1600series e.g.624,625,1624,
1625,1666
RCRA(SolidandHazardousWaste)
EPA8000series e.g.8260,
8270
CERCLA(Superfund)
OLMOcontracts
CleanAirAct
TO(ToxicOrganics)series e.g.TO-14,
TO-15, TO-17
(SomeASTMandStandardMethodsarealsoEPAapproved)

PrinciplesofGasChromatography–MassSpectrometry
Advantages
-highsensitivity
excellentdetectionlimits.Typicallylowppbtohigh
ppt
-highselectivity
identificationisbasedontwoparametersnotone
(retentiontimeandmassspectrummustmatch
standard)
selectsanalyteofinterestwithveryhighconfidence
-Speed
typicalanalysistakesfrom1/2hourtoapprox.1hour
analysiscancontainupwardsof80andmore
pollutants
Disadvantages
-highercapitalcost(approx.$>85Kvs.$15KforGC)
-highermaintenance(time,expertiseandmoney)
-foroptimumresultsrequiresanalystknowledgeablein
both
chromatographyandmassspectrometry

TheAnalyticalProcess-GC/MSisLast
Step
SampleSite
ContaminatedSite
MonitoringWell
PermitteeEffluent
DrinkingWaterFacility
DataReceivedby
DEP
5.6ppb
Benzene
LaboratorySide
Sample
Preparation



DeterminativeStep
GasChromatography(GC)
GasChromatography/MassSpectrometry
(GC/MS)
HighPressureLiquidChromatography
(HPLC)
Sample
Clean-Up
(optional)
SampleAnalysis

TheAnalyticalProcess
(ItallstartswithSamplePreparation)
Sample
Preparation



DeterminitiveStep
GasChromatography(GC)
GasChromatography/MassSpectrometry
(GC/MS)
HighPressureLiquidChromatography
(HPLC)
SampleAnalysis
PurgeandTrap
Liquid-LiquidExtraction
Sonication
SolidPhaseExtraction(SPE)
SoxhletExtraction
(notanexhaustivelisting)
Sample
Clean-Up
(optional)

SamplePreparationTechniques



Preparation-v.v.importantfirststep
1)usedtoseparateorganiccontaminants
from
theirenvironmentalmatrix(e.g.
groundwater
orsoil)
2)usedtoconcentratethecontaminants
TypicalPreparationTechniquesinclude:
PurgeandTrap,LLE,Soxhlet,LSE(SepPaks,
Cartridges)

PurgeandTrap
(AqueousandSoils/VolatilesPreparation)
CourtesyofEnvironmentalConservationLaboratories,Inc.

Liquid/LiquidExtraction
(SeparatoryFunnel)
(AqueousSamples/SemivolatilesAnalysis)
CourtesyofEnvironmentalConservationLaboratories,Inc.

Sonication
(Soils,Solids/Semivolatiles)
CourtesyofEnvironmentalConservationLaboratories,Inc.

SolidPhaseExtraction
(Aqueous/Semivolatiles)
CourtesyofStanford
Laboratory
Cartridge
Sample

SoxhletExtraction
(Soils,Solids/Semivolatiles)
CourtesyofEnvironmentalConservationLaboratories,Inc.

SampleClean-UpTechniques






Clean-Ups-usedifinterferencesareaproblem
standalonemethodsareavailable
alsoprocedureswrittenintosomemethods
theseareoftenoptionalandchoicesoftenrestwith
analystandisdependentonthesample
Examplesoftypicalclean-upprocedures
include:
Alumina,Silica,Flourisil,GelPermeation
Chromatography,AcidWashetc.

SampleClean-UpTechniquesfromSW-846
(standalonemethodsstrictlyforcleanups)













AnalytesofInterest Methods
Aniline&anilinederivatives 3620
Phenols 3630,3640,8041a
Phthalateesters 3610,3620,3640
Nitrosamines 3610,3620,3640
Organochlorinepesticides&PCBs 3610,3620,3630,3660,3665
Nitroaromaticsandcyclicketones 3620,3640
Polynucleararomatichydrocarbons 3611,3630,3640
Haloethers 3620,3640
Chlorinatedhydrocarbons 3620,3640
Organophosphoruspesticides 3620
Petroleumwaste 3611,3650
Allbase,neutral,andacid 3640
prioritypollutants

GasChromatography–MassSpectrometry
(OperationalDescription)
IntroductionSystem-GasChromatography
Ionization
MassSeparation
MassDetection
DataSystem
MassSpectrometer
Ionization
Source
Mass
Analyzer
Particle
Detector
Gas
Chromatograph
y
Dedicated
DataSystem
VacuumSystem-approx.10
-6
torr

GasChromatography




PowerfulAnalyticalChemistry
techniqueusedtoseparateandidentify
organiccompoundsfrommixtures.
Onerequirement:
organicsmustbevolatileorsemivolatile
anyverypolar,nonvolatileorioniccompoundsinsample
willnotbedetected

GasChromatography

Columns
•Packed
•Capillary
Crosssection

THE CHROMATOGRAPHIC PROCESS - PARTITIONINGTHECHROMATOGRAPHICPROCESS-PARTITIONING
(gasorliquid)
MOBILE PHASEMOBILEPHASE
STATIONARY
PHASE
STATIONARY
PHASE
Sample
out
Sample
in
(solidorheavyliquidcoatedontoasolidorsupport
system)

TemperatureControl
Isothermal
Gradient
0
40
80
120
160
200
240
0 102030405060
Time(min)
Temp(degC)
ParametersAffectingSeparation
ColumnType(Phase)
Polar(DB-1701
NonPolar(DB-1)
PhaseThickness
ColumnDimensions

Phases

Chromatograms-551.1
SameOrganicMixture–DifferentCapillaryColumns

Instrumentation-Detectors








Destructive
MassSpectral(CI/EI)[625]
FlameIonization(FID)[604]
Nitrogen-Phosphorus(NPD)[8141A]
FlamePhotometric(FPD)[8141A]
ElectrolyticConductivity(Hall/ELCD)[502.2]
Non-Destructive
ThermalConductivity(TCD)
ElectronCapture(ECD)[551.1]
PhotoIonization(PID)[502.2]

HowMassSpectrometryDetectorsWorks
All“OrganicMolecules”aremadeupofcombinationsof
atomscontainingCarbonandHydrogen
InadditiontoCarbonandHydrogen,otherelementsarefrequentlya
partofamoleculetoprovideavarietyofchemicalandphysical
properties(e.g.Oxygen,Nitrogen,Chlorine,Fluorine,etc.)
Molecularweightscanbecalculatedknowingtheelemental
compositionofamolecule.
MassSpectrometryanalyzes(identifies)organic
moleculesaccordingtotheirmolecularand
fragmentweights.

HowMassSpectrometry(MassAnalysis)Works
(UseTabletoCalculateMolecularWeights)
Isotopes

CalculatingMolecularWeight(Mass)
Benzene
(C
6
H
6
)
Pyridine
(C
5
H
5
N)
6x12=72
6x1=6
MW=78amu
5x12=60
5x1=5
1x15=15
MW=79amu
Element atomicmass(amu)
Carbon(C) 12
Hydrogen(H) 1
Chlorine(Cl) 35
Fluorine(F) 19
Oxygen(O) 16
Nitrogen(N) 14
amu-atomicmassunits

GasChromatography–MassSpectrometry
(OperationalDescription)
IntroductionSystem-GasChromatography
Ionization
MassSeparation
MassDetection
DataSystem
MassSpectrometer
Ionization
Source
Mass
Analyzer
Particle
Detector
Gas
Chromatograph
y
Dedicated
DataSystem
VacuumSystem-approx.10
-6
torr

Molecular
‘Ion’
TheIonizationProcess
(ElectronImpact)
NeutralmoleculesareconvertedintoIons(chargedparticles)
e
-
+ +2e
-
(70ElectronVolts)
NeutralMolecule
FragmentIon1
FragmentIon2,etc.
e
-
+
+
.
*MassAnalysiscanonlyworkforchargedspecies-notforneutrals.
+2e
-
+
.

GC/MS-MassAnalysis
Ions
MassSeparation
(quadrupole)
WavelengthSeparation

ContinuousLight
m 4V
z qr
2

2=

PrinciplesofGasChromatography/MassSpectrometry
(NISTLibraryMassSpectraforBenzene)
Abundance(Signal)
mass/charge(m/z)------>
Benzen
e
m/z
78
78amu

PrinciplesofGasChromatography/MassSpectrometry
(NISTLibraryMassSpectraforPyridine)
Abundance(Signal)
mass/charge(m/z)------>
Pyridine
m/z
79
79amu

OneMoreExampleforo-Xylene
(FragmentIonscontainUsefulInformation)
Xylene
(C
8
H
10
)
8x12=96
10x1=10
MW=106
Element mass
Carbon(C)12
Hydrogen(H) 1
Chlorine(Cl) 35
Fluorine(F) 19
Oxygen(O)16
Nitrogen(N) 14
+
.
+
.
+
.
MolecularIonscanbreakdownintosmallerfragments
m/z106 m/z91 m/z77

o-Xylene
(C
8
H
10
)
8x12=96
10x1=10
MW=106
Element mass
Carbon(C)12
Hydrogen(H) 1
Chlorine(Cl) 35
Fluorine(F) 19
Oxygen(O)16
Nitrogen(N) 14
PrinciplesofGasChromatography/MassSpectrometry
(NISTLibraryMassSpectraforXylene)
Abundance(Signal)
mass/charge(m/z)------>

WhatDoesGC/MSDataLookLike?
GC/MSChromatogramofa4ComponentMixture
RetentionTime------>
Abundance(Signal)

WhatDoesGC/MSDataLookLike?
GC/MSChromatogramofa4ComponentMixture
RetentionTime------>
Abundance(Signal)

WhatDoesGC/MSDataLookLike?
GC/MSChromatogramFromEPAMethod524.2Analysis
RetentionTime------>
Abundance(Signal)
*
CourtesyoftheNJDHSSLaboratory

WhatDoesGC/MSDataLookLike?
ReviewingofMassSpectra
*
m/z
78
Abundance(Signal)
RetentionTime------>
mass/charge------>
6.99min.

WhatDoesGC/MSDataLookLike?
ReviewingofMassSpectra
*
m/z
78
*
Abundance(Signal)
RetentionTime------>
mass/charge------>
6.77min.
1,1-dichloropropene/carbontetrachloride

DifficultMassSpectra




MassSpectrometrydoesnotalwaysprovideaneasily
interpretablecompoundidentification:e.g.MTBE
useofmassspectrallibrariesforIDdetermination
useofmanualinterpretationtechniques
useofalternateMSandothertechniques
usually
MTBEMW=88

MassSpectralInterpretationProcedures













GC/MSInterpretationProcedures
IdentifyMolecularIonifpresent
EvaluateanyIsotopicObservations
UseIsotopestocalculateprobablecarbon#sforMoleculeand/or
fragments
Reviewalllossesobservedtodeterminesubstructures
Reviewmajorfragments
Hypothesizeamolecularstructureconsistentwithabove
observations
MustConfirmHypothesiswithadditionaldata.
TypicallychemicalionizationMS
Highresolutionmassspectrometry
InfraRedSpectroscopy
NuclearMagneticResonanceSpectrometry
Obtainingapurestandardandconfirmingmassspectrawithunknown

GC/MSSummary





PowerfulanalyticaltoolcombiningtheseparationcapabilityofGas
ChromatographyandtheidentificationcapabilityofMass
Spectrometry.
Providesforahigherlevelofconfidenceintheidentificationof
organics(BothretentiontimeANDthemassspectrumareused).
Capableofanalyzingupwardsof80pollutantsinoneanalysis.
TypicalDetectionLimits(Aqueous)areinlowppbandhighppt
range.
Appropriatecalibrationsandcontrolsmustbeperformedbefore
anysamplescanbeanalyzed.

GC/MSAnalysis
(SpecialTopics)




FromRawDataChromatogramstofinalreport
ProperandImproperPeakIntegrations–Data
Processing
DealingwithInterferences
MassSpectrometryLibrariesandTentatively
IdentifiedCompounds(TICs)

GC/MSDataProcessing
ImportanttoReviewPeakIntegration
Chromatogra
m
(maximum
information
content)
FinalReport
GC/MS

•Calibrationsandquantitationoforganicsall
relyoncorrectchromatographicpeak
integrations
GC/MSDataProcessing
ImportanttoReviewPeakIntegration
Standards(A
x
/A
is
)----->ResponseFactors----->SampleQuantitation
A
is
A
x

NJDEP
OQA
OCTOBER2002
ManualIntegration
FORGC/MS

Definition
AManualIntegrationis anyeditingof
theareaofintegrationbythechemist.
Manualintegrationisaperfectly
acceptable,scientificallyvalid,
analyticaltechniqueusedtoaccurately
reflecttheareaofapeakwhenauto-
integrationfails.

AManualIntegrationisnotaway
tocompensateforanimproperly
maintainedinstrument.Manual
integrationsarenottobeusedin
lieuofestablishingappropriate
integrationeventsusingthe
analyticalsystemsoftware.









Manualintegrationmaybedoneinthe
followingcaseswheretheautomatic
integratorhas:
failedtointegrateapeakorpartofapeak
integratedonepeakastwopeaks
integratedthewrongpeakoutoftwosimilarpeaks
notintegratedfrombaselinetobaseline
integratedapeakduetoanelevatedbaseline
integratedanegativepeak
integratedapeakbeyondbaselineresolution(toomucharea)
Anyadditionalsituationsinwhichtheauto-integratorfailsto
performproperlyand/orconsistently

ManualintegrationsareNOTtobe
performedforthesolepurposeof
makingacalibrationcurve,ICV,CCV,&/
oraQCchecksample(LCS,MS,
surrogate,etc.)passacceptance
criteria.

History
Mostofthesoftwareprogramsusedfor
chromatographyarecapableofquantitating,using
eitherpeakareaorpeakheightandemploy
mathematicalalgorithmsrelatedtotheslopeofthe
responsetodetectthebeginningandendofpeaks.

History
Duetothecomplexnatureofsomesample
matrices,theabilitytomanuallyadjustanincorrect
integrationbecamenecessary.Thisflexibilityis
necessaryintheproductionofqualitydata.
Muchofthisprocessisbasedonanalystjudgment.
Eachpeakmustbeevaluatedandadjustedwhen
necessary.However,thisflexibilityhasledto
severalinstancesofimproperlaboratoryactivities.

IMPROPERINTEGRATIONS
AccordingtotheEPARegion5’sSOPon
manualintegrations,inappropriateintegration
isanyintegration,eitherautomatedormanual
,whichexcludesareaassociatedwiththe
targetpeakorincludesareanotreasonably
attributabletothetargetpeak,suchasarea
duetoasecondpeakorexcessivepeak
tailingduetoanoisybaseline.

CORRECTINTEGRATIONS
Thisisanexampleofproperintegrationswhenseveral
peaksarenotcompletelyresolved(i.e.,theresponse
doesnotreturntothebaselinebetweenpeaks).The
lowestpointbetweentwopoints,thevalley,isselected
astheappropriatestartandstoppoints.



CORRECTINTEGRATIONS
Peakswithslightinterferenceseitherjustpriorto
orimmediatelyafterthetargetpeak.
Inthesecases,partoftheautomaticintegration
may includetheinterferinganalyte.The
following integrationtechniquesmaybe
employed:

TYPESOFIMPROPERINTEGRATIONS
Peakshavingisthecommontermfor
unjustifiably excludingareawhen
integratingachromatographic peak.
Almostallofuswouldagreethatcuttingapeak
inhalfhorizontallyorverticallyisunjustified.But
whattodoabouttheinbetweencases?Howcan
judgmentbeappliedcorrectlywhenintegrating
peaks?


TYPESOFIMPROPERINTEGRATIONS
Baselineadditionorsubtraction
Donotaddorsubtractfromthebaseline.Another
exampleofanincorrectmanualintegration

TYPESOFIMPROPERINTEGRATIONS
Poorsensitivity.Signalisnot3timesthe
background.




WHYISTHISHAPPENING?
Costfactors
LevelofExpertisefactors
UnethicalBehavior




CostFactors
Thepricepaidisoftennotsufficient
tocoverthecostsofproducingthe
product.
Theclientshouldnotacceptlowbids
withoutconsideringthequality
factor.
Thisisafreemarketeconomy-‘Let
thebuyerbeware’or‘Yougetwhatyoupay
for’.




LevelofExpertiseFactors
Somelaboratorieshavelettheirmost
experiencedstaffgo.
Lackofunderstandingregardingthe
fundamentalsofanalytical
chemistryat boththelaboratoryand
datauserlevels.
Thinkingthatthecomputerwill
always giveyouthecorrectanswer.





WhyUnethicalBehaviorOccurs
Realorperceivedpressures
Lackofethicseducationandawareness
Lackofmanagementoversiteandreview
Lackofknowledgeorconfidencein
appropriatewaystosolveproblems

Prevention
Effortsshouldbemadeduringmethod
developmenttoincludethebestinstrument
parametersthatallowforautomatic
integrationbythedatasysteminmost
cases.
However,regardlessofthesophisticationof
thesoftware,instancesoccurwhenthe
automatedsoftwaredoesnotintegratea
peakcorrectly.

Prevention
Thefailureofthesoftwaretoappropriately
integrateapeakisusuallyobviousfromvisual
inspectionofthechromatogram(atan
appropriatescale).Electronicreviewof
analyticalrawdataisessentialindetecting
improperactivities.
Theuseofproperdocumentationprotocols
shouldbeestablishedtoallowmanual
integrationstobereviewedduringdata
validation.

DOCUMENTATION

Alldatamustbeintegratedconsistentlyin
standards,samplesandQCsamples.
Integrationparameters,bothautomatedand
manual,mustadheretovalidscientific
chromatographicprinciples.Manual
integrationisemployedtocorrectan
improperintegrationperformedbythedata
systemandmustalwaysinclude
documentationthatclearlystatesthereason
manualintegrationwasperformed.

Properdocumentationisvitalwhen
conductingmanualintegrations.The
followingisanexampledocumentation
requirement:
Printtheimproperlyintegratedpeak.initial,
dateandprovideareasonontheoriginalforthe
manualintegration.Performthenecessary
manualintegration.Printthemanually
integratedpeak,initialanddate.Submitthe
manualintegrationdataalongwiththeoriginal
automaticintegrationdataaspartofthefinal
datapackage.

GENERALOBSERVATIONS
Thefundamentalprincipleofquantitative
integrationisthatsamplesshouldbeintegratedin
thesamestylechosenforintegratingcalibration
standards.
Ifproperlydocumentedandconductedina
scientificallydefensiblemanner,manual
integrationsareperfectlyacceptable.

WHATCANLABSDOTOPREVENT
IMPROPERACTIVITIES
Developadetailedstandardoperatingprocedure
thatincludesexamplesanddocumentation
requirements.
Enforceazerotolerancepolicyforanyimproper
activities.
Haveallanalystssignanethicsstatement.
Electronicallyreviewrandomdatafiles.

Questions?

GC/MSInterferences




WhatareInterferences?
Anycompoundormixtureofcompoundsthat
elutesatthesametimeasthecompoundof
interest.Thereforethecompoundofinterestcan
notbeproperlyidentifiedorquantified.
EPAOfficeofWaterSays:
“Statingthat‘thesamplecouldn’tbeanalyzed’
isnotsufficientandwillnotbeacceptedas
justificationforaclaimofmatrixinterference.

InterferencesinGC/MS
Analysis




Problemstheycause
quantitationaccuracyoftargetsmaybe
negativelyimpacted
canmakeidentificationoftargetamong
interferencesdifficultorimpossible
ifdilutionisrequired,mayraisedetectionlimits
aboverequiredregulatorylimits.

Interferences-Whatdotheylooklike
(Example1)
interferences
Extractcouldonlybeconcentratedto5mls.

Interferences-WhatDoTheyLookLike
(Example2)
a-Napthalene
b-dimethylphthalate
c-diethylphthalate
d-di-n-butyl-phthalate
a bcd
-Canonlyconcentrateto5mls.
-dilutedextract1:5
-totaldilutionfactor=25x

Interferences-WhatAreThey
(Example2)
1,3-dichloro-2-propanol
(achlorinatedalcohol)
1-methyl,2,4-diisocyanatobenzene
(adiisocyanate)

Interferences-WhatCanBeDone
(Example2)










AnalyzeBase/NeutralsandAcidFractionsSeparately-mayisolate
interferencesintofractionoflessinterest
PerformGPCAnalysistoremoveanypotentialhighmolecularweight
interferences
mayhelpforsamplesthatcanonlybeblowndownto5mls.
noguarranteethatGCorGC/MSanalysisisseeingallofthesample
PerformAppropriateCleanUps
methodsexistforcleaningupsamplessothatanalytesofinterestcanbe
analyzed
GPCandCleanupscanbeperformedonthesamesample.
Identifyinterferencesandcleanupwastestream
permitteelikelyhasmostintimateknowledgeoftheirownwastestream.
Additionalnon-EPAmethodtestingmaybeappropriatetoidentify
interferences.

Clean-UpTechniquesfromSW-846
(standalonemethodsstrictlyforcleanups)













AnalytesofInterest Methods
Aniline&anilinederivatives 3620
Phenols 3630,3640,8041a
Phthalateesters 3610,3620,3640
Nitrosamines 3610,3620,3640
Organochlorinepesticides&PCBs 3610,3620,3630,3660,3665
Nitroaromaticsandcyclicketones 3620,3640
Polynucleararomatichydrocarbons 3611,3630,3640
Haloethers 3620,3640
Chlorinatedhydrocarbons 3620,3640
Organophosphoruspesticides 3620
Petroleumwaste 3611,3650
Allbase,neutral,andacid 3640
prioritypollutants

InterferencesinGC/MSAnalysis







FromtheEPAOCPSF(OrganicChemicals,PlasticsandSyntheticFibers)
rule’sGuidanceonEvaluation,Resolution,andDocumentationofAnalytical
ProblemsAssociatedwithComplianceMonitoring
“Statingthat‘thesamplecouldn’tbeanalyzed’isnotsufficient
andwillnotbeacceptedasjustificationforaclaimofmatrix
interference.”
EPAprovidesforflexibilityinwastewatermethodsandallowsuseof
cleanupsetcprovidedmethodQA/QCaremet.
AsperFedReg.49FR43234
Departmentcanrequireadditionalworktobeperformedtogetat
anaccuratenumber.Notjusttaketheeasywayoutandsay
interferencesarepresent.
Alternatemethods
useofclean-upprocedures

MassSpectralLibraries




Whataremassspectrallibraries?
Acompendiumofelectronimpactmassspectra
collectedfromavarietyofsources
Whyaretheyimportant?
Identifyingnon-targetortentativelyidentified
compounds(TICs),reliesexclusivelyonthese
libraries

MassSpectralLibraries


»
»
»

»
»
Whyaretheyimportant-cont.?
SiteRemediationforexampletypicallyrequests:
VOAs+10TICs
BNs+15TICs
frequentlydrinkingwatermethods
IfTICsarefound,properidentificationisvery
important
mayneedcorrectIDforremediation
mayneedtoprovidedatatoCountyHealthDeptand
OwnersofPotableWell(asinBUST)

MassSpectralLibraries


»
»

»
Whyaretheyimportant-cont?
WasteWaterPermitting:
someindustriesindicatethatinterferencesarepresent
whichprecludethemanalyzingthesampletopermit
detectionlimits
Identificationofinterferencescanbeusedtodetermine
whatoptionsforcleanupmayexist.Interferencesmay
alsobeenvironmentallyunfriendlycompoundsthatmay
needtoreviewed.
BureauofSafeDrinkingWater
BSDWreportingformhasabilitytoenterTIC
observationsfromalaboratory.

MassSpectralLibraries










Howmanylibrariesarethere?
NIST/NIH/EPAMassSpectralLibrary
NBS75K
NIST‘98
NIST‘02
WileyMassSpectralLibrary
CombinationWiley/NIST
CustomLibraries
industryspecific
proprietary

MassSpectralLibraries






ForNIST75KLibrary–
Approx50,000MassSpectra
Approx25,000Replicates
Thislibraryisveryold
Notverywellreviewed
VarietyofSourcesnotwellfiltered.
LabsshouldNOTbeusingthis!

MassSpectralLibraries









ForNIST98Library-(a75%increaseoverNBS75K
library)
107,886Compounds
107,829ChemicalStructures
129,136Spectra
21,250ReplicateSpectra
13,205CompoundswithReplicateSpectra
93AveragePeaksperSpectrum
78MedianpeaksperSpectrum
75%Increaseincoveragefromhighqualitysources
Labsshouldbeusingatleastthisrevision!

MassSpectralLibraries









ForNIST98Library
(wheredoesthis75%increasecomefrom?)
MassSpectrafromothersourceswereaddedin
ChemicalConcepts-includingProfHenneberg's
industrialchemicalscollection
GeorgiaandVirginiaCrimeLaboratories
TNOFlavorsandFragrances
AAFSToxicologySection,DrugLibrary
AssociationofOfficialRacingChemists
St.LouisUniversityUrinaryAcids
VERIFIN&CBDCOMChemicalWeapons

MassSpectralLibraries








ForNIST‘02Library-35%increaseincoverageoverNIST98
Library
27,750ReplicateSpectra
fromhighqualitysources
147,198CompoundswithSpectra
18,598CompoundswithReplicateSpectra
147,194ChemicalStructures
111AveragePeaks/Spectrum
174,948spectra
98MedianPeaks/Spectrum

MassSpectralLibraries
•ComparisonofNIST/NIH/EPALibraries-different
revisions
NBS75K NIST98 NIST‘02
TotalSpectra 75,000 129,136 174,948
TotalReplicates20,000 21,250 27,750

MassSpectralLibraries





WileyRegistryofMassSpectralData-7th
Edi
tion
theworld'slargestreferencedatabaseof
over250,000Electron-Impactmassspectra
WileyLibrarymayormaynotincludeNISTlibrary
Wileycontainsmassspectrathatarenotaswellreviewed.
Stillveryuseful,ifNISTlibrarycomesupshort.

WhyMSLibraryVersionisImportant
(example)




AirAnalysisExamplefrom1996(TO-14)
Samplesconsistentlyshowedlargepeakinthe
analysisbutcompoundcouldnotbeidentifiedby
library.
Librarysearchresultwassopoor,evenagoodquality
TICcouldnotbeobtained.
AtthetimetheNBS75Klibrarywastheonlyone
available.
Pre1998

MassSpectralLibraries
(exampleofwhyversionoflibraryisimportant)

MassSpectralLibraries
(exampleofwhyversionoflibraryisimportant)

MassSpectralLibraries
(exampleofwhyversionoflibraryisimportant)

MassSpectralLibraries
(exampleofwhyversionoflibraryisimportant)



Synonyms
1,1-Dichloro-1-fluoroethane
Ethane,1,1-dichloro-1-fluoro-
Freon141

MassSpectralLibraries
•LibrarySearchAgainstNIST98Library
producedanexcellenthit.
Freon141
BestHit
NBS75K
BestHit
NIST98

Summary
MassSpectralLibraries



Identitiesofnon-targetcompounds
(TICs)maybedependentontheversion
oflibrarybeingused.
MostlaboratoriesstilluseNBS75K
library.
Beawarethatotherlibrariesexist.

DioxinsandPCBAnalysis
Using
GC/HighResolutionMass
Spectrometry
(actuallyhighresolutiongaschromatography/highresolutionmass
spectrometry-HRGC/HRMS)

Overview







ReviewofEPADioxinsandPCBstructures&
methods
TypicalMassSpectrometryInstrumentation
WhyHighResolutionMassSpectrometry?
HighResolutionMassSpectrometry(MS)Overview
UseofIsotopicallyLabeledTargets
Comparisonof‘PCBcongener’andAroclormethods
ToxicityEquivalents(TEQs)andTEFs

Dioxin/Furans/PCBs
(ChemicalStructures)

DioxinAnalysisTarget
Compounds


Both1613and
8290analyze
forthese17
“Dioxinsand
Furans”
Drinkingwater
regulatesonly
the2,3,7,8-
TCDD

PCBTerminology







PCBs(canmeananything)
Aroclors(mixtureofPCBs)
PCBCongeners(209individual)
‘Dioxin-Like’PCBs
CoplanarPCBs
WHOPCBs-alistof12specificPCBs
Homologs(allcongenershavingsame#of
chlorinesattached)

MorePCBTerminology













BZ/IUPAC
Congener
Number PrefixtoChlorobiphenyl
PCB-77 3,3',4,4'-Tetra-Chlorobiphenyl
PCB-81 3,4,4',5-Tetra-
PCB-105 2,3,3',4,4'-Penta-
PCB-114 2,3,4,4',5-Penta-
PCB-118 2,3',4,4',5-Penta-
PCB-123 2,3',4,4',5'-Penta-
PCB-126 3,3',4,4',5-Penta-
PCB-156 2,3,3',4,4',5-Hexa-
PCB-157 2,3,3',4,4',5'-Hexa-
PCB-167 2,3',4,4',5,5'-Hexa-
PCB-169 3,3',4,4',5,5'-Hexa-
PCB-189 2,3,3',4,4',5,5'-Hepta-
atotalof209PCBcongeners e.g.PCB1--->PCB209

StillMorePCBTerminology






‘PCBsasArochlors’
nolongerreferringtoindividualPCBs
Arochlorsarecomplexmixtures
Oftendesignated‘AroclorXXXX’
e.gAroclor1242
onaverage,thismoleculecontains42%byweightofChlorine












DioxinAnalyses
EPAMethod1613B
1-
Fordrinkingwaterandwastewateruse
EPAMethod8290-forSHWsamples
‘PCBCongener’AnalysisMethods
EPAMethod1668-RevisionA
canbeusedforallmatrices
datedDecemberof1999
containsall209possiblePCBcongeners
EPAMethod8082-usuallyusedforAroclors-SHWSamples
hastheoptiontoperformlimitedsetof19congeners
canbemodifiedtodoothercongeners
1
asoldNPDESpermitsrequiringdioxinanalysesby613,theywillbereissuedwith
requirementfor1613B
MethodOverview


»
»
»
‘PCBasAroclors’AnalysisMethods
EPAMethod508and608-forDrinkingand
Wastewater
EPAMethod8082-solidandhazardouswaste
samplesuse
alloftheseareGC/ECDtechniques
MethodOverview

DioxinandPCBAnalysis
(Whyanalyzeforthem?)





DioxinsandPCBshavebeenshowntobe
toxicatvaryinglevels.
e.g.DrinkingWaterMCLs(NJStateStandards)
2,3,7,8-TetraChloroDibenzoDioxin(TCDD)
3x10
-5
ppb or 0.00003ppb
PCBs
0.5ppb





WhydidEPAchooseGC/High
ResolutionMassSpectrometryto
analyzeforDioxinsandPCBs?
MCLsforthesecompoundsareverylow
Needsensitivemethod(s)capableoflowdetectionlimits
Provideahighlevelofconfidenceincompoundidentification
Needtominimizeeffectofinterferences







HowDoesGC/HighResolutionMass
SpectrometryAccomplishThese
Criteria?
1)NeedforVeryHighIdentificationCertainty/Minimize
Interferences
HighResolutionMassAnalysis
UseofChlorineIsotopeMasses
twomassesforeachtarget
IsotopeRatiosmustmeettheoreticalvalue
2)Needforverylowdetectionlimits
CombinationofHighVoltageOperationandSelectedIon
MonitoringScan(SIM)
Concentratesampletoulrangeinsteadofml.

NominalandExactMassesforCommonElements

WhatisHighResolutionMass
Spectrometry
•HighResolutionMassSpectrometryiscapableofobtaining
massspectraandmeasuringmassestoapproximatelythe
fourthdecimalplace.
C
12
H
4
35
Cl
4
O
2
MW=
319.896542
C
12
H
4
37
Cl
1
35
Cl
3
O
2
MW=321.8936
320

VG70-250SEHighRes.MS
HP5973LowRes.MS
SpecializedMSInstrumentation

WhatisMassResolution?
VerySimply-Theabilitytodistinguishbetween
differentmasses.
e.g.Canwedistinguishmass78from79?
Canwedistinguishbetweenmass78.003and78.004?
Aquantitativeapproachtodetermininghowwellwecan
distinguishdifferentmassesiscalled‘ResolvingPower’.
Differentthanchromatographicresolution.

ResolvingPower
bydefinition:
ResolvingPower(R.P.)=m/m
ppm=R.P./1x10
6
aresolvingpowerof10,000=100ppm
***AllHighResolutionEPAMethodsuseanR.P.of10,000***

CalculationofMassResolution

ResolutionExample
we’reaskedtoseparateathreecomponentgas
mixturecontaining
carbonmonoxide
nitrogen
ethylene

CalculatingMolecularWeights
nominalmass accuratemass
carbon
monoxide-CO 1x12=12 1x12.0000=12.0000
+1x16=16+1x15.9949=15.9949
28 27.9949
nitrogen-N
2
2x14=28 2x14.0031=28.0062
28 28.0062
ethylene-C
2
H
4
2x12=24 2x12.0000=24.0000
+4x1=4+4x1.0078=4.0312
28 28.0312

WhatResolutionDoWeNeedtoSee
All3Components?
carbon
monoxide-CO1x12.0000=12.0000
+1x15.9949=15.9949
27.9949
nitrogen-N
2
2x14.0031=28.0062
28.0062
ethylene-C
2
H
4
2x12.0000=24.0000
+4x1.0078=4.0312
28.0312
0.0113
0.025

WhatResolutionDoWeNeedtoSee
All3Components?(cont’d)
nominalexact massResolvingPower
mass mass Needed(m/m)
CO 2827.9949
0.0113 2,478
N
2
2828.0062
0.0250 1,120
C
2
H
4
2828.0312
-Needatleast2,500toseeallthreecomponents.

LowandMediumResolutionMassSpectra
ofTernaryMixture

ApplicationstoDioxins/PCBCongener
Analyses
(2,3,7,8-TetrachloroDibenzoDioxin(TCDD))

2,3,7,8-TCDD C
12
H
4
Cl
4
O
2
NominalMass ExactMass
C 12x12=144 12x12.000000=144.000000
H 4x1=4 4x1.007825=4.031300
Cl 4x35=140 4x34.968853=139.875412
O 2x16=32 2x15.994915=31.989830
320 C
12
H
4
35
Cl
4
O
2
319.896542
37
Cl=36.9659 C
12
H
4
37
Cl
4
O
2
321.8936
CalculationofMassfor2,3,7,8-TCDDAnalysis

TableFromEPAMethod1613B
m/z320&322

NominalMass ExactMass
C 12x12=144 12x12.000000=144.000000
H 4x1=4 4x1.007825=4.031300
Cl 6x35=210 6x34.968853=209.813118
358 C
12
H
4
35
Cl
6
357.844418
37
Cl=36.9659 C
12
H
4
37
Cl
1
37
Cl
3
O
2
359.8415
C
12
H
4
37
Cl
2
37
Cl
2
O
2
361.8385
SameCalculationforPCBCongeners
HexaChloroBiphenyl C
12
H
4
Cl
6

FromTable7ofEPAMethod1668A
m/z360
362
364

IsotopeRatioQA/QCRequirements
(fromEPA8290)
(sameas1613B&1668A)
15%

CommonChemicalInterferencesintheGC/MSdetermination
of2,3,7,8-TCDD

SelectedIonMonitoring-BetterDLs
(SectorInstrumentsUseVoltageScanningforAccuracy)
FullScan
Detectallmasses
overagivenscan
range.
e.g.m/z100-500
SIM
Lookonlyfor
massesrelevent
totargets

HighResolutionMSAdvantages









EnhancedIdentificationCapabilities
Abilitytoanalyzeexactmassesprovidesforbetter
identificationcapabilityoverLRMS
Detectingmultipleisotopes(chlorine)addsyetanotherlevel
ofconfidenceincompoundidentification
Eliminatesorminimizesinterferencesin‘dirty’samples
Cleanupsaretherulenottheexception
EnhancedSensitivity
HighResolutionMassSpectrometersoperateatHigh
Voltage(8KV)
VoltageScanningSelectedIonMonitoring(SIM)
ConcentrationofSampledowntoulasopposedtoml’s.

ApproximateMethodDetection
Limits




DependsonMatrix
Method Aqueous Other
Method16685-300ppq 1-25ppt
Method1613B3ppq 1ppt
Method829010ppq 1ppt












highcapitalcost(approx.$400,000)
highermaintenance
maint.contract8%ofpurchasepriceannually.
skilledstaffrequired
analysiscostshigh
$1,000/analysis
specialfacilityrequirements
Vibration
Footprintislarge
Temp/HumidityControl
SpecialPowerRequirements
DisadvantagesofHRMS

UseofIsotopicLabeling


Methods1613B,8290and1668Aall
makeuseofIsotopicLabeling
13
Cand
37
Cllabeledtargetcompounds
areusedforquantitation(internal
standardsarealsoused)

UseofIsotopicLabeling






Methods8290-Dioxins/Furans
9outofthe17targetsarelabeled
Methods1613B-Dioxins/Furans
15outof17targetsarelabeled
Methods1668A-PCBCongeners
27outof209arelabeled.

BenefitsofIsotopicLabeling







Isotopicallylabeledtargetcompoundswill
behaveidenticallytotargetsofinterest.
Iftargetsarelostduringprocessing,labeled
standardswillalsobelost.Correctsforrecovery
100%
Providesformoreaccuratequantitationoftargets.
Isotopicallylabeledtargetcompoundselute
secondspriortotargetofinterest
Enableanalysttoreadilyidentifythetarget
Ifinterferencesarepresent,thisisextremely
helpful
ThistooincreasesIDaccuracy

SampleChromatogram
(showingIsotopicallyLabeledStandards)

SampleChromatogram
(TypicalRawDataPage–Dioxins-HxCDD)
Target
HxCDD
Labeled
HxCDD
Interfering
Compounds
LockMass
CheckChannel

PCBCongenerAnalysisvs.AroclorAnalysis
(pros)






ThetoxicityofPCBsisverycongenerspecific
measurementonanAroclorbasismaynotaccuratelyreflecttoxicity.
IdentificationofaPCBismoredefinitive.Interferencesaremoreeasily
detected.
Quantitationofindividualcongenersismoreaccuratethanestimating
Aroclors
Compositionofweathered,degradedandmetabolizedPCBmixtures
canbemeasuredandinterpretedeasierusingcongenervs.Aroclor
analysis
Aroclorconcentrationscanbeestimatedusingcongenerconcentrations
(dependingonthelistofcongenersbeinganalyzedfor)

PCBCongenerAnalysisvs.AroclorAnalysis
(cons)










Veryhighcost(typicallygreaterthan$1,000
TEFsarenotavailableforallcongeners
WorldHealthOrganization(WHO)hasalistof12TEFs
Comparabilityamonglaboratories
labsvaryinhowtheyperformPCBcongeneranalysis
differentlabsmayusedifferentcolumns(differentcoelutions)
PCBcongenerIDcomparability
nogoodPEsamplesareavailable(someSRMs)
thereisa“NISTIntercomparisonExerciseforOrganicContaminantsinthe
MarineEnvironment”
cost$2500fortwomatrices

ComparisonofEPAMethod8082
and1668A












8082
DLs
Cost$75-$300
AroclorUsingGC/ECD
MaynotmeetDQOs.
ArocloranalysismayoverorunderestimatedPCBconcentrations.
Doesnotmeasureindividualcongenersbutratherreliesnotapattern
recognition
Arocloranalysismayseverelyunderestimatetoxicity.
1668A
PCBCongenersusingGC/HRMS
DetectionLimits
Cost>$1,000

EPAMethod1668AMisnomers









All209congenersareanalyzedfor,BUT
Doesnotprovidequantitativevaluesforeachofthe209
individually
Notall209arequantitatedinthesamemanner.
Multipointvs.singlepointcalibration
Notall209congenersarechromatographically
resolved
about130congenersarefullyresolved
everythingelseisreportedascoelutions
Analyzedunderlowvoltageconditions
notat70eV(Typically30-40eV)

ProficiencyEvaluation(PE)SamplesforDioxin
andPCBAnalysis









PEsamplesfor2,3,7,8-TCDD-Available
PESamplesforAroclors-Available
PEsamplesforPCBcongeners-NOTAVAILABLE
Forcongeners
SRMsareavailablefromNIST
SomestandardsavailablefromCIL,Wellington,others?
Stillaproblem
noneoftheabovecontainalloftheWHOPCBs-presumablythemostimportant
ones.
Needtogowithareliablelab

DioxinsandPCBAnalysis
HoldTimes





From1613BDioxins
8.4.1Therearenodemonstratedmaximumholdingtimesassociatedwith
CDDs/CDFsinaqueous,solid,semi-solid,tissues,orothersamplematrices.If
storedinthedarkat0-4°Candpreservedasgivenabove(ifrequired),aqueous
samplesmaybestoredforuptooneyear.Similarly,ifstoredinthedarkat<
-10°C,solid,semi-solid,multi-phase,andtissuesamplesmaybestoredforup
tooneyear.
8.4.2Storesampleextractsinthedarkat<-10°Cuntilanalyzed.Ifstoredinthe
darkat<-10°C,sampleextractsmaybestoredforuptooneyear.
From1668APCBCongeners
8.5.1Therearenodemonstratedmaximumholdingtimesassociatedwiththe
CBsinaqueous,solid,semi-solid,tissues,orothersamplematrices.Ifstored
inthedarkat0-4ECandpreservedasgivenabove(ifrequired),aqueous
samplesmaybestoredforuptooneyear.Similarly,ifstoredinthedarkat<
-10EC,solid,semisolid,multi-phase,andtissuesamplesmaybestoredforup
tooneyear.

ReportingDioxinandPCBDataResults



TwoApproaches
1)Provideaquantitativevalueforeachtarget
compound
2)Reportasinglenumber–aToxicityEquivalent
ThisapproachusedfrequentlyforRiskAssessment
purposes,Dioxins/Furans/PCBsareoftencombined
togetherasaToxicEquivalentQuantity(TEQ)
TocalculateTEQ,needtouseToxicEquivalencyFactors
(TEFs)

TEFsandTEQs

ToxicEquivalentQuantity(TEQ)
Overtheyears,researchershavedetermined
therelativetoxicitiesforavarietyofdifferent
compoundswiththemosttoxic-
2,3,7,8-Tetrachlorodibenzodioxin
-beingassignedatoxicequivalencyfactor
(TEF)ofOne(1)

TEFsandTEQs

TEFfor2,3,7,8-TCDD=1
TEF=ToxicEquivalencyFactors.A
methodofweightingthetoxicityof
individualdioxin/furan/coplanarPCB
compounds,ascomparedto2,3,7,8-
TCDD.

TEFsandTEQs










1994WHOTEFs(1)1997WHOTEFs(2)
Humans/MammalsFish Birds
PCB-77 0.0005 0.0001 0.0001 0.05
PCB-81 -- 0.0001 0.0005 0.1
PCB-105 0.0001 0.0001 <0.000005
0.0001
PCB-114 0.0005 0.0005 <0.000005
0.0001
PCB-118 0.0001 0.0001 <0.000005
0.00001
PCB-123 0.0001 0.0001 <0.000005
0.00001
PCB-126 0.1 0.1 0.005 0.1
PCB-156 0.0005 0.0005 <0.000005
0.0001
PCB-157 0.0005 0.0005 <0.000005
0.0001
PCB-167 0.00001 0.00001 <0.000005
0.00001

CalculatingTEFsandTEQs

CalculatingTEFsandTEQs

Summary



PCBCongenerDatacanbeobtainedbytwo
methods:EPAMethod8082and1668A.
GC/HighResolutionMassSpectrometry
providesfortheanalysisofcompoundswith
excellentidentificationcapabilityand
sensitivity.
PPQdetectionlevelscanonlybeachieved
usingGC/HighResMassSpectrometry
Tags