Classification of Systems of the I unit in Signals and Systems
Size: 2.45 MB
Language: en
Added: Oct 21, 2020
Slides: 25 pages
Slide Content
Systems and its Classification: Part-1 Dr.K.G.SHANTHI Professor/ECE [email protected]
System s : Systems process input signals to produce output signals A system is combination of elements that manipulates one or more signals to accomplish a function and produces some output 2 Or Excitation Or Response System Input Signal Output Signal
System - An entity that responds to a signal 3 3 Examples Circuit system input output
Systems- Examples The Camera The Speech Recognition System 4 Identified Image Light
Automobile System : System is the automobile Pressure on accelerator pedal is the input signal The automobile speed is the response or output signal. 5 Systems- Examples
Systems- Examples 6 Music Music System
Classification of Systems Continuous time and Discrete time system Linear and Non-Linear system Static and Dynamic system Time invariant and Time variant system Causal and Non-Causal system Stable and Unstable system Invertible & Inverse Systems 7
Continuous time and Discrete time system Continuous time system Operates on a continuous time signal T denotes transformation Response ๐ฆ(t)=๐{๐ฅ(t)} 8 T ๐ฅ(๐ก) y(๐ก) Discrete time system Operates on a discrete time signal T denotes transformation Response ๐ฆ(n)=๐{๐ฅ(n)} T ๐ฅ(n) y(n)
Static and Dynamic system Static system (Memory-less): If the response of the system is due to present input alone. Output at any instant of time depends only on present inputs Eg : ๐ฆ(๐ก)= 2๐ฅ(t) t=0, ๐ฆ(0)= 2๐ฅ(0) t= 1, ๐ฆ(1)= 2๐ฅ(1) t= -1, ๐ฆ(-1)= 2๐ฅ(-1) A resistor is a memory less system ; with the input x(t) taken as the current and with the voltage taken as the output y(t), the input-output relationship of a resistor is ๐ฆ(๐ก)= R ๐ฅ(t) 9 ๐ฆ(n)= ๐ฅ 2 (n)+ ๐ฅ(n) n=0, ๐ฆ(0)= ๐ฅ 2 (0)+ ๐ฅ(0) n=1, ๐ฆ(1)= ๐ฅ 2 (1)+ ๐ฅ(1) n=-1, ๐ฆ(-1)= ๐ฅ 2 (-1)+ ๐ฅ(-1)
Static and Dynamic system( contd ) Dynamic system (Memory): If the response of the system depends on factors other than present input also. Output at any instant of time depends only on past and future inputs Eg : ๐ฆ(๐ก)= 2๐ฅ(t)+๐ฅ(-t), t=0, ๐ฆ(0)= 2๐ฅ(0)+๐ฅ(-0), t= 1, ๐ฆ(1)=2๐ฅ(1)+๐ฅ(-1), t= -1, ๐ฆ(-1)=2๐ฅ(-1)+๐ฅ(1), A capacitor is an example of a continuous-time system with memory 10 Future input ๐ฆ(n)= ๐ฅ 2 (n)+ ๐ฅ(2n) n=0, ๐ฆ(0)= ๐ฅ 2 (0)+ ๐ฅ(0) n=1, ๐ฆ(1)= ๐ฅ 2 (1)+ ๐ฅ(2) n=-1, ๐ฆ(-1)= ๐ฅ 2 (-1)+ ๐ฅ(-2) Past input
Static and Dynamic system( contd ) Determine whether the following system is static or dynamic ๐(๐) =๐(๐๐)+๐๐(๐) t=0 , ๐ฆ (0) =๐ฅ (0) +2๐ฅ (0) โ present inputs t=-1 , ๐ฆ(โ1) =๐ฅ (โ2) +2๐ฅ(โ1) โ past and present inputs t=1 , ๐ฆ( 1) =๐ฅ(2) +2๐ฅ( 1 )โ future and present inputs Since output depends on past and future inputs the given system is dynamic system. 11
Static and Dynamic system( contd ) Determine whether the following systems are static or dynamic ๐(๐)=๐๐๐๐(๐) ๐ฆ(0) = ๐ ๐๐๐ฅ(0) โ present input ๐ฆ(โ1) = ๐ ๐๐๐ฅ(โ1) โ present input ๐ฆ(1) = ๐ ๐๐๐ฅ(1) โ present input Since output depends on present input the given system is Static system 12
Causal and Non-Causal system Causal system (Non-Anticipative): If the response of a system at any instant of time depends only on the present input, past input and past output but does not depends upon the future input and future output. Examples: The motion of an automobile is causal, since it does not anticipate future actions of the driver ๐ฆ(๐ก)=3๐ฅ(๐ก)+๐ฅ(๐กโ1) ๐ฆ(0)=3๐ฅ(0)+๐ฅ(0โ1) ๐ฆ(1)=3๐ฅ(1)+๐ฅ(1โ1) ๐ฆ(-1)=3๐ฅ(-1)+๐ฅ(-1โ1) 13 ๐ฆ(0)=3๐ฅ(0)+๐ฅ(โ1) ๐ฆ(1)=3๐ฅ(1)+๐ฅ(0) ๐ฆ(-1)=3๐ฅ(-1)+๐ฅ(-2) At any instant of time, output depends on only present and past input
Causal and Non-Causal system( contd ) Non-Causal system (Anticipative) : If the response of a system at any instant of time depends on the future inputs also. Example ๐ฆ(๐ก)=๐ฅ(๐ก+2)+๐ฅ(๐กโ1) ๐ฆ(0)=๐ฅ(0+2)+๐ฅ(0โ1) ๐ฆ(1)=๐ฅ(1+2)+๐ฅ(1โ1) ๐ฆ(-1)=๐ฅ(-1+2)+๐ฅ(-1โ1) 14 ๐ฆ(1)= ๐ฅ(3) +๐ฅ(0) ๐ฆ(0)= ๐ฅ(2) +๐ฅ(โ1) ๐ฆ(-1)= ๐ฅ(1) +๐ฅ(-2) At any instant of time, output depends on future values also
Causal and Non-Causal system( contd ) Determine whether the following systems are causal or not y[n]=x[n-2]+x[n]+x[n-1] y[0]=x[0-2]+x[0]+x[0-1] y[1]=x[1-2]+x[1]+x[1-1] y[-1]=x[-1-2]+x[-1]+x[-1-1] Given system is Causal 15 y[0]=x[-2]+x[0]+x[-1] y[1]=x[-1]+x[1]+x[0] y[-1]=x[-3]+x[-1]+x[-2] At any instant of time, output depends on only present and past inputs
Causal and Non-Causal system( contd ) Determine whether the following systems are causal or not ๐ฆ(n)= ๐ฅ 2 (n)+ 2๐ฅ(n+3) ๐ฆ(0)= ๐ฅ 2 (0)+ 2๐ฅ(0+3) ๐ฆ(1)= ๐ฅ 2 (1)+ 2๐ฅ(1+3) ๐ฆ(-1)= ๐ฅ 2 (-1)+ 2๐ฅ(-1+3) Given system is Non-Causal 16 ๐ฆ(0)= ๐ฅ 2 (0)+ 2 ๐ฅ(3) ๐ฆ(1)= ๐ฅ 2 (1)+ 2 ๐ฅ(4) ๐ฆ(-1)= ๐ฅ 2 (-1)+ 2 ๐ฅ(2) At any instant of time, output depends on Present and Future inputs
lnvertibility and Inverse Systems If a system is invertible it has an Inverse System Eg : Encoder Examples of noninvertible systems are y[n] = 0 , the system that produces the zero output sequence for any input sequence. 17 System ๐ฅ(๐ก) y(๐ก) Inverse System w(๐ก)=x(t) 2 ๐ฅ(๐ก) y(๐ก)=2๐ฅ(๐ก) 1/2 w(๐ก)=1/2 [y(t)] =(1/2) [2๐ฅ(๐ก)] =x(t)
Time invariant (Shift invariant) and Time variant (Shift variant) system Time invariant system (Shift invariant) : If the relationship between the input and output does not change with time . A system is called time invariant if a time shift in the input signal ๐ฅ(t-t ) causes the same time shift in the output signal ๐ฆ(t-t ) Condition: 18 CT System: If ๐ฆ(t)=๐[๐ฅ(t)], then ๐[๐ฅ(t-t )]=๐ฆ(t-t ) must be satisfied System T ๐ฅ(t) ๐ฆ(t) ๐ฆ(t-t ) System T ๐ฅ(t-t ) DT System: If ๐ฆ(n)=๐[๐ฅ(n)], then ๐[๐ฅ(n-k)]=๐ฆ(n-k) must be satisfied Where k represent delay
Time invariant (Shift invariant) and Time variant (Shift variant) system Time Variant system (Shift variant) : If the relationship between the input and output changes with time. Condition: 19 CT System: If ๐ฆ(t)=๐[๐ฅ(t)], then ๐[๐ฅ(t-t )] โ ๐ฆ(t-t ) DT System: If ๐ฆ(n)=๐[๐ฅ(n)], then ๐[๐ฅ(n-k)] โ ๐ฆ(n-k)
TEST FOR TIME INVARIANCE (CT) 20 https://www.youtube.com/watch?v=LezLNMznZm4
TEST FOR TIME INVARIANCE(CT SYSTEM) Apply a delay to the input ๐ฅ(t) Compute the output ๐ฆ(t, t ) Apply the same delay to original output ๐ฆ(t) Compare the results from steps 2 and 3 If ๐ฆ(t- t )= ๐ฆ(t, t ) then System is Time InVarient 21 ๐ฆ(t- t ) ๐ฅ(t- t )
Problem-TIME VARIANCE(CT SYSTEM) Determine whether the following system is time invariant or not ๐ฆ(t) = t ๐ฅ(t) Apply a delay to the input ๐ฅ(t) ๐ฅ(t- t ) Compute the output ๐ฆ(t, t ): ๐ฆ (t, t )=t ๐ฅ(t- t ) Apply the same delay t to original output ๐ฆ(t) and compute ๐ฆ(t- t ) : ๐ฆ(t- t )= (t- t ) ๐ฅ(t- t ) ๐ฆ(t, t ) โ ๐ฆ(t- t ). Hence the given system is time variant 22
TEST FOR TIME INVARIANCE(DT SYSTEM) Apply a delay to the input ๐ฅ(n) Recompute the output ๐ฆ( n,k ) Apply the same delay to original output ๐ฆ(n) Compare the results from steps 2 and 3 If ๐ฆ(n-k)= ๐ฆ( n,k ) , then System is Time InVarient 23 ๐ฅ(n-k) ๐ฆ(n-k)
TEST FOR TIME INVARIANCE(DT SYSTEM) Determine whether the following systems are time invariant or not ๐(๐) =๐(โ๐+๐) Apply a delay to the input ๐(โ๐+๐) Output due to input delayed by k seconds ๐ฆ( n,k ) =๐ฅ(โ๐โ๐+2) Output delayed by k seconds ๐ฆ(n-k) =๐ฅ (โ(๐โ๐)+2)=๐ฅ(โ๐+๐+2) โต ๐ฆ( n,k ) โ ๐ฆ(n-k) The given system is time variant 24 ๐(โ๐โ k +๐)