Classification of Systems: Part 1

DrSHANTHIKG 1,321 views 25 slides Oct 21, 2020
Slide 1
Slide 1 of 25
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25

About This Presentation

Classification of Systems of the I unit in Signals and Systems


Slide Content

Systems and its Classification: Part-1 Dr.K.G.SHANTHI Professor/ECE [email protected]

System s : Systems process input signals to produce output signals A system is combination of elements that manipulates one or more signals to accomplish a function and produces some output 2 Or Excitation Or Response System Input Signal Output Signal

System - An entity that responds to a signal 3 3 Examples Circuit system input output

Systems- Examples The Camera The Speech Recognition System 4 Identified Image Light

Automobile System : System is the automobile Pressure on accelerator pedal is the input signal The automobile speed is the response or output signal. 5 Systems- Examples

Systems- Examples 6 Music Music System

Classification of Systems Continuous time and Discrete time system Linear and Non-Linear system Static and Dynamic system Time invariant and Time variant system Causal and Non-Causal system Stable and Unstable system Invertible & Inverse Systems 7

Continuous time and Discrete time system Continuous time system Operates on a continuous time signal T denotes transformation Response ๐‘ฆ(t)=๐‘‡{๐‘ฅ(t)} 8 T ๐‘ฅ(๐‘ก) y(๐‘ก) Discrete time system Operates on a discrete time signal T denotes transformation Response ๐‘ฆ(n)=๐‘‡{๐‘ฅ(n)} T ๐‘ฅ(n) y(n)

Static and Dynamic system Static system (Memory-less): If the response of the system is due to present input alone. Output at any instant of time depends only on present inputs Eg : ๐‘ฆ(๐‘ก)= 2๐‘ฅ(t) t=0, ๐‘ฆ(0)= 2๐‘ฅ(0) t= 1, ๐‘ฆ(1)= 2๐‘ฅ(1) t= -1, ๐‘ฆ(-1)= 2๐‘ฅ(-1) A resistor is a memory less system ; with the input x(t) taken as the current and with the voltage taken as the output y(t), the input-output relationship of a resistor is ๐‘ฆ(๐‘ก)= R ๐‘ฅ(t) 9 ๐‘ฆ(n)= ๐‘ฅ 2 (n)+ ๐‘ฅ(n) n=0, ๐‘ฆ(0)= ๐‘ฅ 2 (0)+ ๐‘ฅ(0) n=1, ๐‘ฆ(1)= ๐‘ฅ 2 (1)+ ๐‘ฅ(1) n=-1, ๐‘ฆ(-1)= ๐‘ฅ 2 (-1)+ ๐‘ฅ(-1)

Static and Dynamic system( contd ) Dynamic system (Memory): If the response of the system depends on factors other than present input also. Output at any instant of time depends only on past and future inputs Eg : ๐‘ฆ(๐‘ก)= 2๐‘ฅ(t)+๐‘ฅ(-t), t=0, ๐‘ฆ(0)= 2๐‘ฅ(0)+๐‘ฅ(-0), t= 1, ๐‘ฆ(1)=2๐‘ฅ(1)+๐‘ฅ(-1), t= -1, ๐‘ฆ(-1)=2๐‘ฅ(-1)+๐‘ฅ(1), A capacitor is an example of a continuous-time system with memory 10 Future input ๐‘ฆ(n)= ๐‘ฅ 2 (n)+ ๐‘ฅ(2n) n=0, ๐‘ฆ(0)= ๐‘ฅ 2 (0)+ ๐‘ฅ(0) n=1, ๐‘ฆ(1)= ๐‘ฅ 2 (1)+ ๐‘ฅ(2) n=-1, ๐‘ฆ(-1)= ๐‘ฅ 2 (-1)+ ๐‘ฅ(-2) Past input

Static and Dynamic system( contd ) Determine whether the following system is static or dynamic ๐’š(๐’•) =๐’™(๐Ÿ๐’•)+๐Ÿ๐’™(๐’•) t=0 , ๐‘ฆ (0) =๐‘ฅ (0) +2๐‘ฅ (0) โ‡’ present inputs t=-1 , ๐‘ฆ(โˆ’1) =๐‘ฅ (โˆ’2) +2๐‘ฅ(โˆ’1) โ‡’ past and present inputs t=1 , ๐‘ฆ( 1) =๐‘ฅ(2) +2๐‘ฅ( 1 )โ‡’ future and present inputs Since output depends on past and future inputs the given system is dynamic system. 11

Static and Dynamic system( contd ) Determine whether the following systems are static or dynamic ๐’š(๐’)=๐’”๐’Š๐’๐’™(๐’) ๐‘ฆ(0) = ๐‘ ๐‘–๐‘›๐‘ฅ(0) โ‡’ present input ๐‘ฆ(โˆ’1) = ๐‘ ๐‘–๐‘›๐‘ฅ(โˆ’1) โ‡’ present input ๐‘ฆ(1) = ๐‘ ๐‘–๐‘›๐‘ฅ(1) โ‡’ present input Since output depends on present input the given system is Static system 12

Causal and Non-Causal system Causal system (Non-Anticipative): If the response of a system at any instant of time depends only on the present input, past input and past output but does not depends upon the future input and future output. Examples: The motion of an automobile is causal, since it does not anticipate future actions of the driver ๐‘ฆ(๐‘ก)=3๐‘ฅ(๐‘ก)+๐‘ฅ(๐‘กโˆ’1) ๐‘ฆ(0)=3๐‘ฅ(0)+๐‘ฅ(0โˆ’1) ๐‘ฆ(1)=3๐‘ฅ(1)+๐‘ฅ(1โˆ’1) ๐‘ฆ(-1)=3๐‘ฅ(-1)+๐‘ฅ(-1โˆ’1) 13 ๐‘ฆ(0)=3๐‘ฅ(0)+๐‘ฅ(โˆ’1) ๐‘ฆ(1)=3๐‘ฅ(1)+๐‘ฅ(0) ๐‘ฆ(-1)=3๐‘ฅ(-1)+๐‘ฅ(-2) At any instant of time, output depends on only present and past input

Causal and Non-Causal system( contd ) Non-Causal system (Anticipative) : If the response of a system at any instant of time depends on the future inputs also. Example ๐‘ฆ(๐‘ก)=๐‘ฅ(๐‘ก+2)+๐‘ฅ(๐‘กโˆ’1) ๐‘ฆ(0)=๐‘ฅ(0+2)+๐‘ฅ(0โˆ’1) ๐‘ฆ(1)=๐‘ฅ(1+2)+๐‘ฅ(1โˆ’1) ๐‘ฆ(-1)=๐‘ฅ(-1+2)+๐‘ฅ(-1โˆ’1) 14 ๐‘ฆ(1)= ๐‘ฅ(3) +๐‘ฅ(0) ๐‘ฆ(0)= ๐‘ฅ(2) +๐‘ฅ(โˆ’1) ๐‘ฆ(-1)= ๐‘ฅ(1) +๐‘ฅ(-2) At any instant of time, output depends on future values also

Causal and Non-Causal system( contd ) Determine whether the following systems are causal or not y[n]=x[n-2]+x[n]+x[n-1] y[0]=x[0-2]+x[0]+x[0-1] y[1]=x[1-2]+x[1]+x[1-1] y[-1]=x[-1-2]+x[-1]+x[-1-1] Given system is Causal 15 y[0]=x[-2]+x[0]+x[-1] y[1]=x[-1]+x[1]+x[0] y[-1]=x[-3]+x[-1]+x[-2] At any instant of time, output depends on only present and past inputs

Causal and Non-Causal system( contd ) Determine whether the following systems are causal or not ๐‘ฆ(n)= ๐‘ฅ 2 (n)+ 2๐‘ฅ(n+3) ๐‘ฆ(0)= ๐‘ฅ 2 (0)+ 2๐‘ฅ(0+3) ๐‘ฆ(1)= ๐‘ฅ 2 (1)+ 2๐‘ฅ(1+3) ๐‘ฆ(-1)= ๐‘ฅ 2 (-1)+ 2๐‘ฅ(-1+3) Given system is Non-Causal 16 ๐‘ฆ(0)= ๐‘ฅ 2 (0)+ 2 ๐‘ฅ(3) ๐‘ฆ(1)= ๐‘ฅ 2 (1)+ 2 ๐‘ฅ(4) ๐‘ฆ(-1)= ๐‘ฅ 2 (-1)+ 2 ๐‘ฅ(2) At any instant of time, output depends on Present and Future inputs

lnvertibility and Inverse Systems If a system is invertible it has an Inverse System Eg : Encoder Examples of noninvertible systems are y[n] = 0 , the system that produces the zero output sequence for any input sequence. 17 System ๐‘ฅ(๐‘ก) y(๐‘ก) Inverse System w(๐‘ก)=x(t) 2 ๐‘ฅ(๐‘ก) y(๐‘ก)=2๐‘ฅ(๐‘ก) 1/2 w(๐‘ก)=1/2 [y(t)] =(1/2) [2๐‘ฅ(๐‘ก)] =x(t)

Time invariant (Shift invariant) and Time variant (Shift variant) system Time invariant system (Shift invariant) : If the relationship between the input and output does not change with time . A system is called time invariant if a time shift in the input signal ๐‘ฅ(t-t ) causes the same time shift in the output signal ๐‘ฆ(t-t ) Condition: 18 CT System: If ๐‘ฆ(t)=๐‘‡[๐‘ฅ(t)], then ๐‘‡[๐‘ฅ(t-t )]=๐‘ฆ(t-t ) must be satisfied System T ๐‘ฅ(t) ๐‘ฆ(t) ๐‘ฆ(t-t ) System T ๐‘ฅ(t-t ) DT System: If ๐‘ฆ(n)=๐‘‡[๐‘ฅ(n)], then ๐‘‡[๐‘ฅ(n-k)]=๐‘ฆ(n-k) must be satisfied Where k represent delay

Time invariant (Shift invariant) and Time variant (Shift variant) system Time Variant system (Shift variant) : If the relationship between the input and output changes with time. Condition: 19 CT System: If ๐‘ฆ(t)=๐‘‡[๐‘ฅ(t)], then ๐‘‡[๐‘ฅ(t-t )] โ‰  ๐‘ฆ(t-t ) DT System: If ๐‘ฆ(n)=๐‘‡[๐‘ฅ(n)], then ๐‘‡[๐‘ฅ(n-k)] โ‰  ๐‘ฆ(n-k)

TEST FOR TIME INVARIANCE (CT) 20 https://www.youtube.com/watch?v=LezLNMznZm4

TEST FOR TIME INVARIANCE(CT SYSTEM) Apply a delay to the input ๐‘ฅ(t) Compute the output ๐‘ฆ(t, t ) Apply the same delay to original output ๐‘ฆ(t) Compare the results from steps 2 and 3 If ๐‘ฆ(t- t )= ๐‘ฆ(t, t ) then System is Time InVarient 21 ๐‘ฆ(t- t ) ๐‘ฅ(t- t )

Problem-TIME VARIANCE(CT SYSTEM) Determine whether the following system is time invariant or not ๐‘ฆ(t) = t ๐‘ฅ(t) Apply a delay to the input ๐‘ฅ(t) ๐‘ฅ(t- t ) Compute the output ๐‘ฆ(t, t ): ๐‘ฆ (t, t )=t ๐‘ฅ(t- t ) Apply the same delay t to original output ๐‘ฆ(t) and compute ๐‘ฆ(t- t ) : ๐‘ฆ(t- t )= (t- t ) ๐‘ฅ(t- t ) ๐‘ฆ(t, t ) โ‰  ๐‘ฆ(t- t ). Hence the given system is time variant 22

TEST FOR TIME INVARIANCE(DT SYSTEM) Apply a delay to the input ๐‘ฅ(n) Recompute the output ๐‘ฆ( n,k ) Apply the same delay to original output ๐‘ฆ(n) Compare the results from steps 2 and 3 If ๐‘ฆ(n-k)= ๐‘ฆ( n,k ) , then System is Time InVarient 23 ๐‘ฅ(n-k) ๐‘ฆ(n-k)

TEST FOR TIME INVARIANCE(DT SYSTEM) Determine whether the following systems are time invariant or not ๐’š(๐’) =๐’™(โˆ’๐’+๐Ÿ) Apply a delay to the input ๐’™(โˆ’๐’+๐Ÿ) Output due to input delayed by k seconds ๐‘ฆ( n,k ) =๐‘ฅ(โˆ’๐‘›โˆ’๐‘˜+2) Output delayed by k seconds ๐‘ฆ(n-k) =๐‘ฅ (โˆ’(๐‘›โˆ’๐‘˜)+2)=๐‘ฅ(โˆ’๐‘›+๐‘˜+2) โˆต ๐‘ฆ( n,k ) โ‰  ๐‘ฆ(n-k) The given system is time variant 24 ๐’™(โˆ’๐’โˆ’ k +๐Ÿ)

Problem-TIME INVARIANCE(CT SYSTEM) 25
Tags