Cmaa specification-70

tecnidibujos 8,108 views 87 slides Jan 27, 2021
Slide 1
Slide 1 of 87
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87

About This Presentation

diseño puente grua


Slide Content

\s.aMHI
THEMATERIALHANDLINGINSTITUTE,INC.
CMAAIS ANAFFILIATEOFMHI
cmAA
CRANEMANUFACTURERS
ASSOCIATIONOFAMERICA,INC.

C.M.A.A.SPECIFICATIONNO.70-1983
SPECIFICATIONSFORELECTRICOVERHEAD TRAVELINGCRANES
INTRODUCTION
ThisspecificationhasbeendevelopedbytheCraneManufacturersAssociation
ofAmerica,Inc.[C.M.A.A.],anorganizationofleadingelectricoverheadtraveling
cranemanufacturersintheUnitedStates,forthepurposeofpromotingstandardi­
zationandprovidingabasisforequipmentselection.Theuseofthisspecification
shouldnotlimittheingenuityoftheindividualmanufacturerbutshouldprovide
guidelinesfortechnicalprocedure.
Inadditiontospecifications, thepUblicationcontainsinformationwhichshould
behelpfultothepurchasersandusersofcranesandtotheengineeringandarchi­
tecturalprofessions.Whilemuchofthisinformationmust
beofageneralnature,
theitemslistedmaybecheckedwithindividualmanufacturersandcomparisons
madeleadingtooptimumselectionofequipment.
Thesespecificationsconsistofeightsections,asfollows:
70-1.GeneralSpecifications.
70-2.CraneServiceClassification.
70-3StructuralDesign.
70-4.MechanicalDesign.
70-5.ElectricalEquipment.
70-6.InquiryDataSheetandSpeeds.
70-7.Glossary.
70-8.Index.
DISCLAIMER'
Usersshouldrelyontheirownengineers/designersoramanufacturerrepresen­
tativetospecifyordesignapplicationsoruses.Wheneverauserreferstoallor
anypartofthisspecificationtoplaceanorder,mandatorylanguageimposing
requirementsinthespecificationisintendedastheuser'svoluntaryacceptance
ofthosespecificationsforthatorder.
Thevoluntaryuseofthesespecificationsisnotintended
to,anddoesnotinany
way,limittheingenuityorprerogativeofindividualmanufacturers todesignorpro­
duceelectricoverheadtravelingcraneswhichdonotcomplywiththesespecifica­
tions.
Rather,thesespecificationsprovidetechnicalguidelinesfortheusertospecify
hisapplication.Followingthesespecificationsdoesnotassurecompliancewith
applicablefederal,state,orlocalregulationsandcodeswhichmust
bereferenced
ineachinstance.
Thesespecificationsarenotbindingonanypersonanddonothavetheeffect
of
law,
andCMAAassumesnoresponsibilityanddisclaimsallliabilityofanykind,
howeverarising,asaresultofacceptanceoruseofthesespecifications.

TABLEOFCONTENTS
70-1GeneralSpecifications,Page2 3.12BridgeTrucksfor 8,12,and
1.1 Scope 16WheelCranes
1.2 BuildingDesignConsiderations 3.13StructuralBolting
1.3 Clearance 3.14GantryCranes
1.4 Runway
1.5 Runway Conductors 70-4MechanicalDesign,Page
31
1.6 RatedCapacity 4.1 MeanEffectiveLoad
1.7 DesignStresses 4.2 LoadBlocks
1.8 General 4.3 OverloadLimitDevice
1.9 Painting 4.4 HoistingRopes
1.10AssemblyandPreparationforShipment 4.5 Sheaves
1.11Testing 4.6 Drum
1.12Drawings 4.7 Gearing
1.13Erection 4.8 Bearing
1.14Lubrication 4.9 Brakes
1.15Inspection,Maintenanceand 4.10BridgeDrives
CraneOperator
4.11Shafting
4.12Couplings
4.13Wheels
70-2CraneClassifications,Page8 4.14BumpersandStops
2.1 General
2.2 ClassA
70-5ElectricalEquipment,Page
51
2.3 ClassB
5.1 General

2.4 ClassC 5.2 Motors-A.C.and D.C.
:4
.';
2.5 ClassD
5.3 Brakes
2.6 ClassE 5.4 Controllers,A.C.andD.C.
2.7 ClassF
5.5 Resistors
2.8 CraneServiceClass
inTermsof
5.6 ProtectiveandSafetyFeatures
LoadClassandLoadCycles
5.7 MasterSwitches
5.8 FloorOperatedPendant
70-3StructuralDesign,Page
10 PushbuttonStations
3.1 Material 5.9 LimitSwitches
3.2 Welding 5.10Installation
3.3 Structure
5.11BridgeConductorSystems
3.4 AllowableStresses 5.12RunwayConductorSystems
3.5 DesignLimitations 5.13VoltageDrop
3.6 BridgeEndTruck
3.7 FootwalksandHandrails 70-6InquiryDataSheetandSpeeds,Page
75
3.8 Operator'sCab
3.9 TrolleyFrames 70-7Glossary,Page
79
3.10BridgeRails
3.11EndTies 70-8Index,Page83
,'"ai_

2
70-1GENERALSPECIFICATIONS
1.1SCOPE
1.1.1 Thisspecification
shaHbeknownastheSpecificationsforElectricOverheadTraveling Cranes·
C.M.AASpecificationNo. 70-Revised1983.
1.1.2 ThespecificationsandinformationcontainedinthispUblicationapplytotoprunningbridgeandgan­
trytypemultiplegirderelectric
overheadtravelingcranes.Itshouldbeunderstoodthatthespecifica­
tionsaregeneralinnatureandotherspecificationsmaybeagreeduponbetweenthepurchaserand
themanufacturertosuiteachspecificinstaHation.
C.M.AASpecificationNo.74 coverstoprunning
andunderrunningsinglegirder
overheadtraveling cranes.laterspecificationswill covercranes
ofthestackerandotherspecialpurposeorspecialapplicationtypes.Thesespecificationsdonot
coverequipmentusedtolift,lower,ortransportpersonnelsuspendedfromthehoistropesystem.
1.1.3 Thisspecificationoutlines
inSection70-2sixdifferentclassesofcrane serviceasaguidefordeter­
miningthe
servicerequirementsoftheindividualapplication. Inmanycasesthere isnoclearcategory
ofserviceinwhichaparticularcraneoperationmayfall,andtheproperselectionofacranecan
bemadeonlythroughadiscussion ofservicerequirementsandcranedetailswiththecranemanufac­
turerorotherqualifiedpersons.
1.1.4 Service conditionshaveanimportantinfluence onthelifeofthewearingpartsofacrane,suchas
wheels,gears,bearings,wirerope,electricalequipmentandmust
beconsideredinspecifyingacrane
toassuremaximumlifeandminimummaintenance.
1.1.5
Inselectingoverheadcraneequipment,itisimportantthatnotonlypresentbutfutureoperations
beconsideredwhichmayincreaseloadingand
servicerequirementsandthatequipmentbe
selE,ctEld
whichwillsatisfyfutureincreased serviceconditions,therebyminimizingthepossibilityofov"rlc)adling
orplacinginadutyclassificationhigherthanintended.
1.1.6 Partsofthisspecificationrefertocertainportionsofotherapplicabiespecifications,codesor
ards.Whereinterpretationsdiffer,
C.MAA.recommendsthatthisspecificationbeusedas
guideline.MentionedinthetextarepUblicationsofthefollowing organizations.
AGMA -AmericanGearManufacturersAssn.
1901NorthFt.MeyerDrive
Arlington,Virginia 22209
210.02-1965-SurfaceDurability(Pitting)
ofSpurGearTeeth
211.02-1969-SurfaceDurability(Pitting)
ofHelicalandHerringbone
GearTeeth
220.02-1966- RatingtheStrengthofSpur
GearTeeth
221.02-1965-RatingtheStrengthofHelical
andHerringtonGearTeeth
AISC -AmericanInstituteofSteelConstruction
400NorthMichiganAvenue
Chicago,illinois60611
ANSI -AmericanNationalStandardsInstitute
14308roadway
NewYork,NewYork10018
A58.1-1971-BuildingCodeRequirementsfor
MinimumDesignLoadsin
BuildingsandOtherStructures
B30.2,0-1976-Overhead&GantryCranes
(TopRunningBridge,
MultipleGirder)
ASME -TheAmericanSocietyofMechanicalEngineers
345East47thStreet,NW,
NewYork,NewYork10017

-----------"~---------------
ASTM ,AmericanSocietyfor Testing&Materials
1916RaceStreet
Philadelphia,
Pennsylvania19013
AWS
-AmericanWeldingSociety
550N.LeJeuneRoad
Miami,Florida33126
D14.1-85Specificationfor Weldingof
IndustrialandMillCranes
CMAA-CraneManufacturersAssociation ofAmerica,Inc.
8720RedOakBlvd.,Suite201
Charlotte,NorthCarolina28217
OverheadCraneInspectionandMaintenance
Checklist
CraneOperatorsManual
NEC •NationalElectrical Code
NationalFireProtectionAssociation
470AtlanticAvenue
Boston,Massachusetts02210
NFPA70·1981NationalElectric Code
NEMA •NationalElectricalManufacturers Assn.
2101
''I:'Street,N.W.
Washington,D.C.20037
ICS1-1978NEMAStandards
OSHA •OfficeofSafety&HealthStandards
U.S.Departmentof Labor
Washington,D.C.20210
OSHA2206·1976GeneralIndustryStandards
StressConcentrationFactors
R.E.Peterson
Copyright,1974
JohnWiley&Sons,Inc.
Datawasutilizedfrom(FEM)FederationEuropeenneDeLaManutention,SectionIHeavy
lilt­
ingEquipment,RulesfortheDesign ofHoistingAppliances,2ndEdition-December1970.
1.2
BUILDINGDESIGNCONSIDERATIONS
1.2.1 Thebuildinginwhich
anoverheadcraneistobeinstalledmustbedesignedwithconsiderationgiven
tothefollowingpoints:
1.2.1.1Thedistancefromthefloortothelowestoverheadobstructionmustbesuch
astoallowfortherequired
hookliltplusthedistancefromthesaddleorpalm
ofthehookinitshighestpositiontothehigh
pointonthecraneplusclearancetothelowestoverheadobstruction.
1.2.1.2inaddition,thedistancefromthefloortothelowestoverheadobstructionmustbesuchthatthe
lowestpointonthecranewillclearallmachineryorwhennecessaryproviderailroadclearanceunder
thecrane.
1.2.1.3Afterdetermination
ofthebuildingheight,based onthefactorsabove,thecranerunwaymustbe
locatedwiththe top
oftherunwayrailatadistancebelowthelowestoverheadobstructionequal
totheheight
ofthecraneplusclearance.
1.2.1.4Lights,pipes,oranyotherobjectsprojectingbelowthelowestpoint
onthebuildingtrussmustbe
consideredinthedetermination
ofthelowestoverheadobstruction.
1.2.1.5Thebuildingkneebracesmustbedesignedtopermittherequiredhookapproaches.
1.2.1.6Accesstothecaborbridgewalkwayshouldbeafixedladder,stairs,orplatformrequiringnostep
overanygapexceeding
12inches(304.8mm).FixedladdershallbeinconformancewithANSIsafety
codeforfixedladders,A
14.3.
3

4
1.3CLEARANCE
1.3.1 Aminimumclearanceof3inchesbetweenthehighestpointofthecraneandthe lowestoverhead
obstructionshall
beprovided.Forbuildingswheretrusssagbecomesafactor,thisclearanceshould
beincreased.
1.3.2 Theclearancebetweentheendofthecraneandthebuildingcolumns,kneebracesoranyother
obstructionsshallnotbelessthan2incheswithcranecentered
onrunwayrails.Pipes,conduits,
etc.mustnotreducethisclearance.
1.3.3 Wherepassagewaysorwalkwaysareprovided
onthestructuresupportingthecrane,obstructions
onthesupportingstructureshallnotbeplacedsothatpersonnelwill
bestruckbymovementofthe
crane.Theaccuracyofbuildingdimensionsistheresponsibilityoftheownerorspecifier
ofthe
equipment.
1.4RUNWAY
1.4.1 Thecranerunway,runwayrails,andcranestopsaretypicallyfurnishedbythepurchaserunless
otherwisespecified.Thecranestopsfurnishedbythepurchaseraretobedesigned
tosuitthespecific
cranetobeinstalled.
1.4.2 Therunwayrailsshallbestraight,parallel,levelandatthesameelevation.Thedistance,center
to
center,andtheelevationshallbewithinthetolerancesgiven inTable1.4.2-1.Therunwayrailsshould
bestandardrailsectionsoranyothercommercialrolledsectionswithequivalentspecificationsof
apropersizeforthecranetobeinstalledandmustbe
prOVidedwithproperrailsplicesandhold­
downfasteners.Railseparation
atjointshouldnotexceed
'ls2inch.Floatingrailsarenotrecommended.
1.4.3 ThecranerunwayshallbedesignedwithSUfficientstrengthandrigiditytopreventdetrimentaliateral
orverticaldeflection.
Thelateraldeflectionshouldnotexceed
U400basedon10percentofmaximumwheelload(s) WnnOlJI
impact.Theverticaldeflectionshouldnotexceed Ll600basedonmaximumwheelload(s)
impact.Gantryandothertypesofspecialcranesmayrequireadditionalconsiderations.

TABLE1.4.2-1
OVERALL
MAXIMUM
ITEM FIGURE
TOLERANCE
RATEOF
CHANGE
- - -
-'
«
«z
+ tt
L<;SO' A::::3116"
I
-'
-'
en
SPAN
-'
L>SO'<;100'A~%" %"IN20'-0"
II
II«
-'
-'
z
L>100' A~%"
~
:2
c:
a
E "Ez
- - -
+B
I"~~
STRAIGHTNESS - - -
B~%" %"IN20'-0"
-B
L
L--.J
ELEVATION
~
- C~%" %"IN20'-0"
f-c
I-
SPANL
-I lD
L<;SO' D=±3As'f
RAIL-TO-RAIL
- - L>SO'<;100'D~±%"
ELEVATIONr-
~
f
,/.'IN20'-0"
L>100' D~±%"
'"
~........................._--------.-

6
1.5RUNWAYCONDUCTORS
1.5.1 The
runwayconductorsmaybebareharddrawncopperwire,hardcopper,aluminumorsteelinthe
formofstiffshapes,insulatedcables,cablereelpickuporothersuitablemeanstomeettheparticu­
larapPlicationandshallbeinstalledinaccordancewithArticle
610oftheNatlonaiElectricalCode
andcomplywithalllocalapplicablecodes.
1.5.2 Contactconductorsshall
beguardedinamannerthatpersonscannotinadvertentlytouchenergized
current-carryingparts.Flexibleconductorsystemsshall
bedesignedandinstalledinamannerto
minimizetheeffectsofflexing,cabletension,andabrasion
1.5.3 Runwayconductorsarenormallyfurnishedandinstalled
bythepurchaserunlessotherwisespecified.
1.5.4 Theconductorsshall
beproperlysupported andalignedhorizontallyandverticallywiththerunwayrail.
1.5.5 The
conductorsshallhavesufficientampacitytocarrytherequiredcurrenttothecrane,orcranes,
whenoperatingwithratedload.Theconductorratingsshall
beselectedinaccordancewithArticle
610oftheNationalElectricalCode.FormanufacturedconductorsystemswithpUblishedampacities,
theintermittentratingsmaybeused.Theampacitiesoffixedloadssuchasheating,lighting,and
airconditioningmaybecomputedas2.25timestheirsumtotalwhichwillpermittheapplicationof
theintermittentampacityratingsforusewithcontinuousfixedloads.
1.5.6 Thenominalrunwayconductorsupplysystemvoltage,actualinputtapvoltage,and
runwayconduc­
torvoltagedropsshallresultincranemotorvoltagetolerancesperSection5.13(VoltageDrops).
1.5.7
Inacraneinquirytherunwayconductorsystemtypeshouldbespecifiedandifthesystemwill be
suppliedbythepurchaser orcranemanufacturer.Ifsuppliedbythepurchaser,thelocationshould
bestated.
1.6RATEDCAPACITY
1.6.1 Theratedcapacityofacraneisspecifiedbythemanufacturer.Thiscapacityshall
bemarked
eachsideofthecraneandshall
belegiblefromtheoperatingfloor.
1.6.2 Theratedcapacityofacranebridgewithmultiplehoistunitsistheratedcapacityofthem,lxirnUlm
individualhoistunit.Eachindividualhoistunitshallhaveitsratedcapacitymarked
onitsbottomblock.
1.6.3 Whendeterminingtheratedcapacityofacrane,allaccessoriesbeiowthehook,suchasloadbars,
magnets,grabs,etc.shall
beincludedaspartoftheloadtobehandled.
1.7DESIGNSTRESSES
1.7.1 Materialsshall
beproperlyselectedforthestressesandworkcyclestowhichtheyaresubjected.
Structuralpartsshallbedesignedaccordingtotheappropriatelimitsasperchapter
70-3ofthis
specification.MechanicalpartsshallbedesignedaccordingtoChapter70-4ofthisspecification.
Allotherloadcarryingpartsshallbe
designedsothatthecalculatedstaticstress inthematerial,
based
onratedcranecapacity,shallnotexceed 20percentofthepublishedaverageultimate
strFlnal:h
ofthematerial.
Thislimitation
ofstressprovidesamarginofstrengthtoallowforvariationsintheproperties
materials,manufacturingandoperatingconditions,anddesignassumptions,andundernocondi­
tionShDUldimplyauthDrizatiDn DrprotectiDnforusersloadingthecranebeyDndratedcapacity.
1.8GENERAL
1.8.1 Allapparatuscovered
bythisspecificatiDnshallbeconstructed inathDrDughandworkmanlike
Dueregardshall
begiveninthedesign fDroperatiDn,accessibility,interchangeabilityanddur'abiilitv
ofparts.
1.8.2 ThisspecificationincludesallapplicablefeaturesofOSHASection1910.179-Overheadand
r,~ntrv
Cranes,andANSI B30.2.0-SafetyStandardforOverheadandGantryCranes.

1.9PAINTING
1.9.1 Beforeshipment,thecraneshall becleanedandgivenaprotectivecoating.
1.9.2 Thecoatingmayconsistofanynumberofcoatsofprimerandfinishpaintaccordingtothemanufac­
turer'sstandardorasotherwisespecified.
1.10ASSEMBLYANDPREPARATION FORSHIPMENT
1.10.1
1.10.2
1.10.3
Thecraneshould
beassembledinthemanufacturer'splantaccordingtothemanufacturer'sstand­
ard.Whenfeasible,thetrolleyshouldbeplaced
ontheassembledcranebridge,butit isnotrequired
toreevethehoistingrope.
Allpartsofthecraneshouldbecarefullymatch-marked.
Allexposedfinishedpartsandelectricalequipmentaretobeprotectedforshipment.Ifstorageis
required,arrangementsshouldbemadewiththemanufacturerforextraprotection.
1.11TESTING
1.11.1
1.11.2
Testing inthemanufacturer'splantisconductedaccordingtothemanufacturer'stestingprocedure,
unlessotherwisespecified.
Anydocumentationofnon-destructivetestingofmaterialsuch
asx-ray,ultrasonic,magneticparticle,
etc.shouldbeconsidered
asanextraitemandisnormallydoneonlyifspecified.
1.12.1
1.12DRAWINGS
Normallytwo (2)copiesofthemanufacturer'sclearancediagramsaresubmittedforapproval,one
ofwhichisapprovedandreturnedtothecranemanufacturer.Also,twosetsofoperatinginstructions
andsparepartsinformationaretypicallyfurnished.DetaildraWingsarenormallynot furnished.
ie1.13ERECTION
1.14LUBRICATION
1.15INSPECTION,MAINTENANCE ANDCRANEOPERATOR
1.13.1
1.14.1
1.15.1
1.15.2
Thecraneerection(includingassembly,fieldwiring,installationandstarting)isnormallyagreedupon
betweenthemanufacturerandtheownerorspecifier.Supervision
offieldassemblyand/orfinal
checkoutmayalsobeagreeduponseparatelybetweenthemanufacturerandtheownerorspecifier.
Thecraneshallbeprovidedwithallnecessarylubricationfittings.Beforeputtingthecrane
inopera­
tion,theerectorofthecraneshallassurethatallbearings,gears,etc.arelubricated
inaccordance
withthecranemanufacturer'srecommendations.
Forinspectionandmaintenanceofcranes,refertoapplicablesectionofANSI
1330.2.0,Chapter2-2,
andCMAA-OverheadCraneInspectionandMaintenanceChecklist.
Foroperatorresponsibilityandtraining,refertoapplicablesectionofANSI
1330.2.0,Chapter2-3,
andCMAA-CraneOperatorsManual.
7

70·2CRANECLASSIFICATIONS
2 .1ServiceclasseshavebeenestablishedsothatthemosteconomicalcranefortheInstallationmay bespecified
inaccordancewiththisspecification.
Thisservicecoverscraneswhichmaybeusedinheavymachineshops,foundries,fabricatingmaims.
warehouses,containeryards,lumbermills,etc.,andstandarddutybucketandmagnet oDI~raliorls
heavydutyproductionisrequired. Inthis typeofservice,loadsapproaching50percentofrated
tywill
behandledconstantlyduringtheworkingperiod.Highspeedsaredesirableforthistype
with
10to20liftsperhouraveraging 15feet,notover65percentoftheliftsatratedcapacity.
Thisservicecoverscraneswhichmaybeusedinmachineshopsorpapermillmachinerooms,
servicerequirementsaremoderate.
Inthistypeofservicethecranewillhandleloadswhich
~V<"~""
percentoftheratedcapacitywith5to 10liftsperhour,averaging 15feet,notover50percentof
atratedcapacity.
Thisserviceclasscoverscraneswhichmaybeusedininstallationssuchaspowerhouses,publicutiliti
turbinerooms,motorroomsandtransformerstationswhereprecisehandlingofequipmentatslowspa
withlong,idleperiodsbetweenliftsarerequired.Capacityloadsmaybehandledforinitialinstallatio
equipmentandforinfrequentmaintenance.
Thisservicecoverscraneswhichmaybe usedinrepairshops,lightassemblyoperations,servicebuildi
lightwarehousing,etc.,whereservicerequirementsarelightandthespeedisslow.Loadsmayvary
noloadtooccasionalfullratedloadswithtwotofiveliftsperhour,averagingtenfeetperlift.
\3/3 3 3 3
k=V W,P, +W2P2+W3P3+....W n . Pn
WhereW
=Loadmagnitude;expressedasaratio ofeachliftedloadtotheratedcapacity.Operation
withnoliftedloadandtheweightofanyattachmentmustbeincluded.
p
=Loadprobability;expressedasaratioofcyclesundereachloadmagnitUdecondition
tothetotalcycles.Thesumtotaloftheloadprobabilitiespmustequal1.0.
k
=Meaneffectiveloadfactor.(Usedtoestablishcraneserviceclassonly)
Allclassesofcranesareaffectedbytheoperatingconditions,thereforeforthepurposeoftheclassifica.
tions,itisassumedthatthecranewill
beoperatinginnormalambienttemperature 0°to104°F
(-17.78
to40°C)andnormalatmosphericconditions(freefromexcessivedust,moistureandcorrosivefumes).
Thecranescanbeclassifiedintoloadinggroupsaccordingtotheserviceconditionsofthemostsever~l¥
loadedpartofthecrane.Theindividualpartswhichareclearlyseparatefromtherest,orformingaself,
oontainedstructuralunit,can beclassifiedintodifferentloadinggroupsiltheserviceconditionsarefully kno
Thecraneserviceclassificationisbasedontheloadspectrumreflectingtheactualserviceconditionsas
closelyaspossible.
Loadspectrumisameaneffectiveload,whichisuniformlydistributedoveraprobabilityscaleandapplied
totheequipmentataspecifiedfrequency.Theselectionoftheproperlysizedcranecomponenttoperform
agivenfunctionisdeterminedbythevaryingloadmagnitudesandgivenloadcycleswhichcan
beexpressed
intermsofthemeaneffectiveloadfactor.
2.4CLASSC(MODERATESERVICE)
2.3CLASSB(LIGHTSERVICE)
2.5CLASSD(HEAVYSERVICE)
2.2CLASSA(STANDBYORINFREQUENT SERVICE)
B

2.6CLASSE(SEVERESERVICE)
Thistypeofservicerequiresacranecapableofhandlingloadsapproachingaratedcapacitythroughout
itslife.Applicationsmayincludemagnet,bucket,magnet/bucketcombinationcranesforscrapyards,cement
mills,lumbermills,fertilizerplants,containerhandling,etc.,withtwentyormoreliftsperhour
atornear
theratedcapacity.
2.7CLASSF(CONTINUOUSSEVERESERVICE)
Thistypeofservicerequiresacranecapableofhandlingloadsapproachingratedcapacitycontinuously
undersevereserviceconditionsthroughoutitslife.Applicationsmayincludecustomdesignedspecialty
cranesessentialtoperformingthecriticalworktasksaffectingthetotalproductionfacility.Thesecranes
mustprovidethehighestreliabilitywithspecialallentiontoeaseofmaintenancefeatures.
2.8CRANESERVICECLASS
INTERMSOFLOADCLASSANDLOADCYCLES
ThedefinitionofCMAAcraneserviceclass
intermsofloadclassandloadcyclesisshown inTable2.8-1.
TABLE2.8-1
DEFINITIONOFCMAACRANESERVICECLASS
INTERMSOFLOADCLASSANDLOADCYCLES
LoadCycles K=MEAN
LOAD EFFECTIVE
CLASS N, N
z N3 N4 LOAD
FACTOR
L, A B C D 0.35-0.53
L
z B C D E 0.531-0.67
L
3 C D E F 0.671-0.85
L
4 D E F F 0.851-1.00
Irregular
occasional Regular Regular Regular use
use use
in usein in severe
followedby intermillentcontinuous continuous
longidle operation operation operation
periods
LOADCLASSES:
L,
=Craneswhichhoisttheratedloadexceptionallyand,normally,verylightloads.
L
z
=Craneswhichrarelyhoisttheratedload,andnormalloadsofaboutonethirdoftherated
load.
L
3
=Craneswhichhoisttheratedloadfairlyfrequentlyandnormally,loadsbetween%and%
oftheratedload.
L
4
=Craneswhichareregularlyloadedclosetotheratedload.
LOADCYCLES:
N,
=20,000to200,000cycles
N
z
=200,000to600,000cycles
N
3
=600,000to2,000,000cycles
N
4
=Over2,000,000cycles
9

10
70-3STRUCTURAL DESIGN:
3.1MATERIAL
AllstructuralsteelusedshouldconformtoASTM-A36specificationsorshallbeanacceptedtypeforthe
purposeforwhichthesteei
istobeusedandfortheoperations tobeperformedonit.Othersuitablematerials
may
beusedprovidedthatthepartsareproportionedtocomparabledesignfactors.
3.2WELDING
Allweldingdesignsandproceduresshallconformtothecurrentissueof
AWSD14.1,"Specificationfor
WeldingofIndustrialandMiliCranesandotherOverheadMaterialHandlingEquipment,"withtheexcep­
tionofSection705whichshall
beinaccordancewiththeCraneManufacturer'sStandardTolerancefor
deviationfromspecifiedcamberandsweep,withallsuchmeasurementstakenatthemanufacturer'splant
priortoshipment.BaseweldstressesapplicabletoloadcombinationCase
1,Section3.3.2.4.1.
3.3STRUCTURE
3.3.1 General
Thecranegirdersshallbeweldedstructuralsteelboxsections,wideflangebeams,
SlanOi,UO
I-beams,reinforcedbeamsorsectionsfabricatedfromstructuralplatesandshapes.The
turershallspecifythetypeandtheconstructiontobefurnished.
3.3.2
Loadings
3.3.2.1 Thecranestructuresaresubjected inservicetorepeatedloadingvaryingwithtimewhich
variablestresses
inmembersandconnectionsthroughtheinteractionofthestructuralsyste
andthecross-sectionalshapes.Theloadsactingonthestructurearedividedintothree
differerJ
categories.Alloftheloadshaving aninfluenceonengineeringstrengthanalysisareregard
El9
asprincipalloads,namelythedeadloads,whicharealwayspresent;thehoistload,actingd
ingeachcycle;andtheinertiaforcesactingduringthemovementsofcranes,cranecomponeh
andhoistloads.Loadeffects,such
asoperatingwindloads,skewingforces,snow
loa
temperatureeffect,loadsonwalkways,stairways,platformsandhandrailsareclassed asad
tionalloadsandareonlyconsideredforthegeneralstrengthanalysisand instabilityanalY~i
Otherloadssuchascollision,outof servicewindloads,andtestloadsappliedduringthe 10
testareregarded asextraordinaryloadsandexceptforcollisionandout ofservicewindloa.
arenotpartofthespecification.Seismicforcesarenotconsidered inthisdesignspecificatid
However,ifrequired,accelerationsshall bespecifiedatthecranerailelevationbytheowh
orspecifier.Theallowablestresslevelsunderthisconditionofloadingshallbeagreed
up
withthecranemanufacturer.
3.3.2.1.1 Principal
Loads
3.3.2.1.1.1Dead Load(OL)
Theweightofalleffectivepartsofthebridgestructure,themachinerypartsandthefixedequi
mentsupportedbythestructure.
3.3.2.1.1.2
TrolleyLoad(TL)
Theweightofthetrolleyandtheequipmentattachedtothetrolley.
3.3.2.1.1.3
LiftedLoad(LL)
Theliftedloadconsistsoftheworkingloadandtheweightoftheliftingdevicesusedforhandli
andholdingtheworkingloadsuch
astheloadblock,liftingbeam,bucket,magnet,graba
theothersupplementaldevices.

3.3.2.1.1.4.2HoistLoadFactor(HLF)
3.3.2.1.1.4.1DeadLoadFactor(DLF)
11
TRAVELSPEED(FPM) DEADLOADFACTOR(DLF)
UPTO200 1 .1
OVER200 1.2
Theverticalinertiaforcesincludethoseduetothemotionofthecranesorcranecomponents
andthoseduetoliftingorloweringofthehoistload.Theseadditionalloadingsmaybeincluded
inasimplifiedmannerbytheapplicationofaseparatefactorforthedeadload(DLF)andfor
thehoistload(HLF)bywhichtheverticalactingloads,thememberforcesorthestressesdue
tothem,must
bemultiplied.
Theinertiaforcesoccurduringaccelerationordecelerationofcranemotionsanddepend
on
thedrivingandbrakingtorquesappliedbythedriveunitsandbrakesduringeachcycle.
Thelateralloadduetoaccelerationordecelerationshallbeapercentageoftheverticalload
andshallbeconsideredas7.8timestheaccelerationordecelerationrate
(FT/SEC2)butnotless
than2.5percentoftheverticalload.Thispercentageshall
beappliedtoboththeliveanddead
loads,exclusiveoftheendtrucksandendties.Theliveloadshall
belocatedinthesameposi­
tion
aswhencalculatingtheverticalmoment.Thelateralloadshallbeequallydividedbetween
thetwogirders,andthemomentofinertiaoftheentiregirdersectionaboutits
verticalaxisshall
beusedtodeterminethestressesduetolateralforces.Theinertiaforcesduringacceleration
anddecelerationshall
becalculatedineachcasewiththetrolley intheworstpositionforthe
componentbeinganalyzed.
Thisfactorappliestothemotionoftheratedload
intheverticaldirection,andcoversinertia
forces,themassforcesduetothesuddenliftingofthehoistloadandtheuncertainties
inallow­
ingforotherinfluences.Thehoistloadfactoris0.5percentofthehoistingspeed
infeetper
minute,butnotlessthan
15percentormorethan50percent,exceptforbucketandmagnet
cranesforwhichtheimpactvalueshallbetaken
as50percentoftheratedcapacityofthebucket
ormagnethoist.
(HLF)=
.15".005(hoistspeed)".5
---------------_._------~._.._---
AdditionalLoads:
VerticalInertiaForces(VIF)
InertiaForcesFromDrives(IFD)
Unlessotherwisespecified,thelateralloadduetowind
onoutdoorcranesshall beconsidered
as5poundspersquarefootofprojectedareaexposedtothewind.Thewindload
onthetrolley
shallbeconsidered
asequallydividedbetweenthetwogirders.Wheremultiplesurfacesare
exposedtothewind,such
asbridgegirderswherethehorizontaldistancebetweenthesurfaces
isgreaterthanthedepthofagirder,awindareashallbeconsideredto
be1.6timesthepro­
jectedareaofonegirder.Forsinglesurfacessuch
ascabsormachineryenclosures,awind
areashall
beconsideredto be1.2timestheprojectedareatoaccountfornegativepressure
onthefarsideoftheenclosure.
TABLE3.3.2.1.1.4.1-1
Thisfactorcoversonlythedeadloadsofthecrane,trolleyanditsassociatedequipmentand
shallbetakenaccordingtoTable3.3.2.1.1.4.1-1.
3.3.2.1.1.5
3.3.2.1.1.4
3.3.2.1.2
3.3.2.1.2.1OperatingWindLoad(WLO)
I
I
[
~
!

3.3.2.1.2.2ForcesDue toSkewing(SK)
3.3.2.1.3.1StoredWindLoad(WLS)
87654
RATIO=--,-,-,-=.S,-PAc...
N
,-,---:,..--.,.­
WHEELBASE
3
0.05
E=
Thebumperforcesshallbedistributed inaccordancewiththebumpercharacteristics
freedomofthemotionofthestructurewiththetrolley
initsworstposition.
TorsionalForcesandMoments
Due
totheStartingand StoppingoftheBridgeMotors:
Thetwistingmomentduetothestartingandstoppingofbridgemotorsshallbe
~orl~idi
asthestartingtorqueofthebridgemotorat200percentoffullloadtorquemultiplied
gearratiobetweenthemotorandcrossshaft.
Torsionaimomentduetoverticalforcesactingeccentrictotheverticalneutralaxisof
shallbeconsidered
asthoseverticalforcesmultipliedbythehorizontaldistance
bet'weEln
centerlineoftheforcesandtheshearcenterofthegirder.
Due
toVerticalLoads:
Specialloadingofthecranestructureresultingfromthebumperstops,shallbe
thecraneat0.4timestheratedspeedassumingthebumpersystemiscapableof
theenergywithinitsdesignstroke.Loadsuspendedfromliftingequipmentandfree
loadneednotbetakenintoconsideration.Wheretheloadcannotswing,thebumper
becalculated
inthesamemanner,takingintoaccountthevalueoftheload.Thekinetic
released
onthecollisionoftwocraneswiththemovingmassesofM1, M2,anda 40
maximumtravelingspeedofV
T1andV
T2shallbedeterminedfromthefollowing
equat@
M,M 2(.4Vn +.4V
TZ)2
2(M,+M2)
Thisisthemaximumwindthatacraneisdesignedtowithstandduringoutofservice~n1,rli'ti,
Thespeedandtestpressurevarieswiththeheightofthecraneabovethesur'rolmrllioo
level,geographicallocationanddegreeofexposuretoprevailingwinds(SeeANSI
0.15
Ssk0.10
Whentwowheels(ortwobogies)rollalongarail,thehorizontalforcesnormaltotherail,
tendingtoskewthestructureshallbetakenintoconsideration.Thehorizontalforcesshall
obtainedbymultiplyingtheverticalloadexerted
oneachwheel(orbogie)bycoefficient
whichdependsupontheratioofthespantothewheelbase.
3.3.2.1.3 ExtraordinaryLoads:
3.3.2.1.3.2CollisionForces(CF)
3.3.2.2.2
3.3.2.2
3.3.2.2.1
3.3.2.2.2.1
12

3.3.2.4.3.3TestLoads
3.3.2.4.3.2Crane
incollision
13
S=2H+2in.=2(R+C)+2in.
R
=heightoftherail
whereH
=R+C
C
=thicknessoftopcoverplate
~,~ ,
J/,(E71(
!~s~'iJ'
I--i 1'------
Fig.3.3.2.3-1
Thetorsionalmomentduetothelateralforcesactingeccentrictothehorizontalneutralaxis
ofthegirdershall
beconsideredasthosehorizontalforcesmultipliedbytheverticaldistance
betweenthecenterlineoftheforcesandtheshearcenterofthegirder.
Due
toLateralLoads:
Localstresses
intherail,railbase,flanges,welds,and inthewebplateduetowheelloadacting
normalandtransverselytotherailshallbedetermined
inaccordancewiththerailandflange
system.Theindividualwheelloadcanbeuniformlydistributed
inthedirectionoftherailover
alengthofS
=2(R+C)+2in.,providedthattherail isdirectlysupported ontheflangeasshown
inFigure3.3.2.3-1.
LongitudinalDistributionoftheWheelLoad
DL
+TL+LL+CF
Case
2:Craneinregularuseunderprincipalandadditionalloading(StressLevel 2)
Cranesubjectedtooutofservicewind
DL
+TL+WLS
DL(DLF
B
)+TL(DLF
T
)+LL(1+HLF)+IFD
Case
3:Extraordinaryloads(StressLevel 3)
DL(DLF
B
)+TL(DLFT)+LL(1+HLF)+IFD+WLO+SK
Thecombinedstressesshallbecalculatedforthefollowingdesigncases:
Case
1:Craneinregularuseunderprincipalloading(StressLevel 1)
CMAArecommendstestloadnottoexceed125percentofratedload.
LoadCombination
3.3.2.4.2
3.3.2.4.1
3.3.2.4
3.3.2.3
3.3.2.4.3
3.3.2.4.3.1
3.3.2.2.3.1
3.3.2.2.3

-----------"------------
3.4.6 CompressionMember
3.4.6.2Onthecrosssectionofaxiallyloadedcompressionmemberssusceptibletobucklingshall
latedwhenKL/rexceedsCc:
O.350yp
O.3750yp
0.430yp
ALLOWABLE
SHEAR
STRESS
ALLOWABLE
TENSION
STRESS
] N
ALLOWABLE
COMPRESSION
STRESS*
21I2E
0,
STRESS
LEVEL
ANDCASE
[
(KL/r)2
1 -2C2
OA
'
[
53+3(KUr)
BC,
where:C,=V
3.4.1 1 O.600yp O.600yp
3.4.2 2 O.660yp O.660yp
3.4.3 3 O.750yp O.750yp
*Notsubjecttobuckling."Seeparagraph
3.4.6and3.4.B"
Theanalysisforprovingsafetyagainstlocalbucklingandlateralandtorsionalbucklingof
plateandlocalbucklingoftherectangularplatesformingpartofthecompressionmember,
made
inaccordancewithagenerallyacceptedtheoryofthestrengthofmaterials.(See Sectic)h
3.4ALLOWABLE STRESSES
3.4.4 CombinedStresses
12TI2E
aA= -----:c23:c'(c=K"'LI'--:r)~2 ""N,----
3.4.6.1Theaverageallowablecompressionstress onthecrosssectionareaofaxiallyloadedcompr
memberssusceptibletobucklingshallbecalculatedwhen
KUr(thelargesteffectiveslend
ratioofanysegment)islessthanCc:
3.4.4.1Wherestateofcombinedplanestressesexist,thereferencestress
atcanbecalculated
followingformula:
at=
VOx2+Oy2-OxOy+3Txl"aALL.
3.4.4.2Forwelds,maximumcombinedstress Ovshallbecalculated asfollows:
1 1r-------
Ov=2[Ox+Oyl±2Y(Ox-OyJ2+4T
2
"OALL.
3.4.5 BucklingAnalysis
14

3.4.6.3MemberssubjectedtobothaxialcompressionandbendingstressesshallbenrrlnclClil,h"d
thefollowingrequirements:
___c-",m=-,a--'b""__+__-,-C-",moc,o-,-b",-y__<;;1.0
[1-~]aBX [1-~]aBY
Oex Oey
~+a
b
,
+aa
by<;;1.0
aBK aBX BY
a,
whenaA<;;.15thefollowingformula maybeused
a, ab,ab" ~10
--+--+~~
a
Aa
BXa
By
'
where:
K
L
r
E
ay,p
a.
ab
aA
aB
N
N
N
Cm
x
Cmy
=effectivelengthfactor
=unbracedlength ofcompressionmember
=radiusofgyration ofmember
=modulusofelasticity
=yieldpoint
=thecomputedaxialstress
=computedcompressivebendingstressatthepoint under
consideration
=axialstressthatwillbepermittedifaxialforcealoneexisted
=compressivebendingstressthatwillbepermittedifbending
momentaloneexisted
=allowablecompressionstressfromSection3.4
=__1.:.:2:.;:,1T.:-
2
.::E__
23(KUr)2N
=1.1Case1
=1.0Case 2
=0.89Case3
acoefficientwhosevalueistakentobe:
1.Forcompressionmembersinframessubject tojointtranslation
(sidesway),Cm=0.85
2.Forrestrainedcompressionmembersinframesbracedagainst
jointtranslationandnotsUbjecttotransverseloadingbetween
theirsupportsintheplane ofbending,
M,
Cm
=0.6-0.4M
2
'
butnotlessthan0.4
where
M,/M
2istheratio ofthesmaller tolargermomentsatthe
ends
ofthatportionofthememberunbraced intheplane ofbend­
ing
underconsideration.M,/M2ispositivewhenthe memberis
bentinreversecurvature,negativewhenbent
insinglecurvature.
3.Forcompressionmembersinframebracedagainst jointtransla­
tionintheplaneofloadingandsUbjectedtotransverseloading
between
theirsupports,thevalueofCmmaybedeterminedby
rationalanalysis.However,inlieu
ofsuchanalysis,thefollowing
values
maybeused:
a.FormemberswhoseendsarerestrainedCm
=0.85
b.FormemberswhoseendsareunrestrainedCm=1.0
15

3.4.1 AllowableStressRange·Repeatedload
Membersandfastenerssubjecttorepeatedloadshallbedesignedsothatthemaximumstressdoes
notexceedthatshowninSections3.4.1thru3.4.6,norshallthestressrange(maximumstressminus
minimumstress)exceedallowabievaluesforvariouscategoriesaslistedinTable
3.4.1-1.Themini­
mumstressisconsideredtobenegativeif itisoppositeinsigntothemaximumstress.Thecategor­
iesaredescribedinTable3.4.1-2AwithsketchesshowninFigure3.4.7-2B.Theallowablestressrange
istobebasedontheconditionmostnearlyapproximatedbythedescriptionandsketch.SeeFigure
3.4.7-3fortypicalboxgirders.SeeFigure3.4.7-4fortypicaltrolleyrail.
I
L
16
TABLE3.4.7-1
ALLOWABLE STRESSRANGE Osr•kips/inch
2
CMAA JOINTCATEGORY
Service
Class A B C D
E F
A 43 43 43 43 40 43
B 43 43 43 40 28 43
C 43 43 40 28 20 31
D 43 34 28 2014 22
E 34 24 20 14 10 16
F 24 17 14 10 7
11
Stressrangevaluesareindependent ofmaterialyieldstress.

TABLE3.4.7-2A
FATIGUESTRESSPROVISIONS·TENSION("T")ORREVERSAL ("REV")STRESSES
I
GENERAL JOINT
EXAMPLE KIND
GENERAL JOINT
EXAMPLE KIND
SITUATION OFA OF SITUATION OFA OF
CONDITION CATEGORY SITUATION STRESS CONDITION CATEGORY SITUATION STRESS
Plain Basemetalwithrolledorcleaned A 1,2 TorRev. Groove Basemetalandweldmetalinor C 8,9,10,11TorRev.
Malerial surfaces.Oxygen-cutedgeswith Welds
adjacenttocompletejointpenetra-
ANSIsmoothnessof1000orless.
tion
grooveweldedspliceseither
notrequiringtransitionorwhenre-
quiredwithtransitionshaving
Built-up Basemetalandweldmetalin B 3,4,5,7TorRev.
slopesnogreaterthan1to2V2and
whenineithercasereinforcement
members
memberswithoutattachments,
isnotremovedandweld
sound~
builtup;ofplatesorshapescon-
nessis
establishedbynondestruc-
nectedbycontinuouscompleteor tivetesting.
partialjointpenetrationgroove
weldsorbycontinuousfilletwelds Basemetalandweldmetalat com- B 19,20 TorRev.
paralleltothedirectionofapplied
plete
jointpenetrationgrooveweld-
stress.
edsplicesofsectionshaving
similarprofilesorattransitionsin
thicknesstoprovideslopesno
steeperthan1to21/2withperma-
Calculatedflexuralstress attoeof C 6 TorRev. nentbackingbarparalleltothe
transversestiffenerweldsongirder
directionofstresswhenweldsare
websorflanges.
groundandweldsoundness
establishedbynondestructive
testing.Backingbaristobecon-
tinuous,and, ifspliced,is tobe
Basemetalat endofpartiallength E 7 TorRev. joined byafullwpenetrationbutt
weldedcoverplateshavingsquare weld.Backingbaristobecan-
ortaperedends,with orwithout nectedtoparentmetalbycon-
weldsacrosstheends. tinuouswelds alongbothedges,
exceptintermittentweldsmaybe
usedinregions
ofcompression
stress.
Groove Basemetalandweldmetalat
comw B 8,9 TorRev.
Base
metalatdetailsofanylength
Welds pletejointpenetrationgrooveweld- Groove
attachedbygrooveweldssub-
edsplicesofrolledandweldedsec- Welded
jectedtotransverseorlongitudinal
tionshavingsimilarprofileswhen Connections loading,orboth,whenweldsound-
weldsaregroundandweldsound- nesstransversetothedirectionof
nessestablishedbynondestructive stressisestablishedbynon-
testing. destructivetestingandthedetail
embodiesatransitionradius,R,
withtheweld
terminationground
Basemetalandweldmetalin or B 10,11 TorRev.
when.
adjacenttocompletejointpenetra-
LongitudinalLoading: B 13 TorRev.
tiongrooveweldedsplicesattran-
(a)R x
24in.
sitionsinwidthorthickness,with
weldsgroundtoprovideslopesno (b) 24in.x R x 6in. C 13 TorRev.
steeperthan1to
21/2andweld
(c)6in.x R x 2in.
D 13 TorRev.
soundnessestablishedby
nondestructivetesting.
(d)2in.x R x° E 12,13TorRev.
TraverseLoading: B13 TorRev.
Weldmetalofpartialpenetration Materialshavingequal orunequal
transversegrooveweldsbasedon F 17 TorRev.
thicknesssloped,welds ground
effectivethroatareaoftheweldor
webconnectionsexcluded.
welds.
(a)R x24in.
(b)24in.x R x 6in. C 13 TorRev.

TABLE3.4.7-2A(Continued)
~I I FATIGUESTRESSPROVISIONS·TENSION("T")ORREVERSAL ("REV")STRESSES
GENERAL
I
I
JOINT
EXAMPLE KIND
GENERAL JOINT
EXAMPLE KIND
SITUATION OFA OF SITUATION OFA OF
CONDITION CATEGORY SITUATION STRESS CONDITION CATEGOR SITUATION STRESS
(c)6in.x A x 2in. D 13 TorRev.
FillelweldedBasemetalatjunctionofaxially E 21,22,23TorRe
(d)2in.x R x 0 E 12,13TorRev.
connections loadedmemberswithfilletwelded
endconnections.Weldsshallbe
TransverseLoading: disposedabout
theaxisofthe
Materialshavingequalthickness, member
soastobalanceweld
notground,webconnectionsex- stresses.
eluded.
I
I
21,22,23,1<a)R x24in. C 13 TorRev.
Fillet Shearstressonthroat offillet F S
welds welds. 24,25,26,
(b)24in.x R x 6in. C 13 TorRev. 27,28
(c)6in.x A x 2in. D 13 TorRev.
ICI !TorReBasemetal atintermittentweldsat- 7,14
(d)2in.x R x 0 E 12,13TorRev. tachingtransversestiffeners and
studMtypeshearconnectors.
TransverseLoading:
Materials
havingunequal Basemetalatintermittentwelds
atMIEI7,29jTorRe'
thickness,notslopedorground,inM
tachinglongitudinalstiffeners or
cludingwebconnections coverplates.
(a)R x
24in. E 13 TorRev.
Stud Shearstressonnominal shear IFI14IS
(b)24in.x R x 6in. E 13 TorRev.
welds areaof
studMtypeshear
connectors.
(c)6in.x R x
2in. E 13 TorRev.
(d)2in.x R x 0
E 12,13TorRev.!
I
Plugand
I
Basemetaladjacent toorcon- IEI30ITorRe'
GrooveorIBasemetalatdetailsattached by
slotwelds nectedbyplugorslotwelds.
filletwelded grooveor
filletweldssubject to
I I I I I I
I I 30,31I
connections longitudinalloadingwhere the Shearstressonnominal shear F S
detailsembodiesatransition area ofplugorslotwelds.
radius,R,
lessthan2in.,andwhen
the
detaillength,L,paralleltothe
lineofstressis
1
112,14,15,
MechanicallyBasemetal atgrosssectionofhighIBI32ITorRe
(a)x2in. C TorRev.
fastened strengthboltedfrictionMtypecan-
16,18 connections
nections,exceptconnectionssubM
jecttostressreversal andaxially
(b)
2in.x L x 4in.
I
D
I
12,18TorRev. loaded jointswhichinduceout-of-
plane
bendinginconnected
(c)Lx4in. E 12,18TorRev. material
FillelWelded
I
Basemetal atdetailsattachedby
Connections filletwelds orpartialpenetration
I II I I I
grooveweldsparalleltothedirec- Basemetal atnetsectionofotherIDI33ITorRe'
tionofstressregardless oflength mechanicallyfastenedjoints.
whenthedetailembodiesatransi-
tionra~i~:3,R;? i
rl
,()rgrl:'aterand
I I I I I I Basemetal atnetsectionofhighIBI32,33ITorRa.,.
\'Vittltl1E:!;\'V~It:ttE:!;rr'l'li"l:lti()rl 9!'9u"t:t:

19
33~
-Cl1I:J--
FIGURE3.4.7-28
~~-
c~ 25~
9 .J--~"
---
17
~~)
'"
~
-~
10
~.
~
-.... 18 ---
"'~
26
""""
~~- 1~'
~
"",,/
19
~
C~
.........
27
~4 )
12 20 28
(;AOOVEORFIE.lETWHD
-~:--
~)
21 --
29
"
),~
-~-~
-CJ£t:Jl~::.-::
22
SqUARED,TAPEREDAND
14
~39P·~
WIDERTHANFLANGE
30
~~
;~l ,;,""
PllIGWE,O
@
15
STATW~
<¥"
~O
31
-~'
~-~n~
~t:rt:n~-
16 -.
24
32

rnww
OJ
G
w rn
o 0
\ \ I
-------------,:.(
\
ww rnrn
a:
w
Cl
(')a:
,.:.­
.,.O
o;~
o'"
z--'
w-0:
a:2
~Q.
S2~
LLa:
o
u.
rn
GG®®G®8G®G
20

FIGURENO.3.4.7-4
FORTYPICALTROLLEYRAIL
D@
G
3.4.8 Buckling
3.4.8.1Local BucklingorCripplingofFlatPlates
Thestructuraldesignofthecranemustguardagainstlocalbucklingandlateraltorsionalbuckling
ofthewebplatesandcoverplatesofgirder.
Forpurposesofassessingbuckling,theplatesaresub­
dividedintorectangularpanelsoflength"a"andwidth
"b".Thelength"a"ofthesepanelscorresponds
tothe centerdistanceofthefulldepthdiaphragmsortransversestiffenersweldedtothepanels.
Inthecaseofcompressionflanges,thelength"b"ofthepanelindicatesthedistancebetweenweb
plates,orthedistancebetweenwebplatesand/orlongitudinalstiffeners.
Inthecaseofwebplates,
thelength"b"ofthepanelindicatesthedepthofthegirder,orthedistancebetweencompression
ortensionflangesand/orhorizontalstiffeners.
21

21
~D0)
G
FIGURENO.3.4,7·4
FORTYPICALTROLLEYRAIL
Thestructuraldesignofthecranemustguardagainstlocalbucklingandlateraltorsionalbuckling
ofthewebplatesandcoverplatesofgirder.Forpurposesofassessingbuckling,theplatesare sUb­
dividedintorectangularpanelsoflength"a"andwidth"b".Thelength"a"ofthesepanelscorresponds
tothecenterdistance
ofthefulldepthdiaphragmsortransversestiffenersweldedtothepanels.
Inthecaseofcompressionflanges,thelength "b"ofthepanelindicatesthedistancebetweenweb
plates,orthedistancebetweenwebplatesand/orlongitudinalstiffeners.
Inthecaseofwebplates,
thelength"b"ofthepanelindicatesthedepthofthegirder,orthedistancebetweencompression
ortensionflangesand/orhorizontalstiffeners.
3.4.8
Buckling
3.4.8.1localBucklingorCripplingofFlatPlates

where:
-typeofloadingsustained
bytheplate.
manner
inwhichtheplateissupportedalongtheedges
O'kR
~0.18360;+0,,"
where:°y~yieldstrength
Op~proportionallimit(assumedat0/1.32)
where:Kc~bucklingcoefficientcompression
K
T
~bucklingcoefficientshear
ThebucklingcoefficientKcandK
Tareidentifiedforafewsimplecasesforplateswithsimply
portededges
inTable3.4.8.2-1anddependon:
ratio
Q'~albofthetwosides oftheplate.
b
=widthofplate(ininches)perpendiculartothecompressionforce
Ifcompressionandshearstressesoccursimultaneously,theindividualcriticalbuckling
and
T
k
andthecalculatedstressvalues °andTareusedtodeterminethecritical COll1pal
1t2E[t]2 [ t]2
0,~12(1-W)b=26.21X10·b
a=actualcompressionstress
T=actualshearstress
Ok=criticalcompressionstress
Tk=criticalshearstress
'I'=stressratio (seeTableNo.3.4.9.2-1)
Inthespecialcasewhere T~0itissimply01k~OkandinthespecialcaseWh'''AI
O'k~TkV3
Iftheresultingcriticalstressisbelowtheproportionallimit,bucklingissaidto beelalmc.
valueisabovetheproportionallimit,bucklingissaidto beinelastic.ForinelasticlJUl;~""U
stressshallbereducedto:
0yO,,"
Where:E =modulusofelasticity(forsteelE =29,000,000PSI)
/A=Poisson'sratio(forsteel/A=0.3)
=thicknessofplate(ininches)
Itisnottheintentionofthisspecificationtoenterintofurtherdetailsofthisproblem.Fora
detailedandcomplexanalysissuchasevaluationofelasticallyrestrainededges, of
anddeterminationofthecoefficientofrestraint,referenceshouldbemadetospecialized
0,~Eulerbucklingstresswhichcanbedeterminedfromthefollowingformula:
3.4.8.2Criticalbucklingstressshall
beassumedtobeamultipleoftheEulerStress
0,
Ok~KoO,;Tk~K,O,
22

-~-------~~~

Case Loading
BucklingRangeof
BucklingCoefficient
StressApplication
1Compressivestresses, 0, 0,
a;;,1 8.4
varyingasastraight,
Olr
Ok=KoO,
K(1=
tj1+1.1
line.
[ 1 ] 2 [ 2.1]
0"tj1"1 tj10,
~a=ab4
tj10, a<1 KG=a+a (x)tj1+1.1
2Compressiveandtensilestresses;
0, 0,
Ko=[(1+tj1)K'J-(tj1K")+[10tj1(1+tj1)]
varyingasastraightlineandwith wherein K'isthe
thecompressionpredominating.
"
OIf
Ok=KoO,
bucklingcoefficientfortj1=0
-1<tj1<0
(case1)andK"isthe
tj10,
~a=ab~
tj10, bucklingcoefficientfortj1=-1
(case3).
3
Compressiveandtensilestresses, 0, 0,
varyingasastraightline,withequal
'\OIl
Ka=23.9
edgevalues,tj1=-lorwith a;;,%
predominantlytensilestresses,
-0,i"a=ab~ -0,
Ok=KoO,
a<% 1.87
"tj1<-1
0, 0,
KG=15.87+---zy2+8.aa
2
\011
tj10,I+a=ab~
tj10,
4Uniformlydistributedshearstresses. a;;,1
4.00
KT=5.34+
---zy2
+-+T.....- Tk=KTO,
to+
r a<1
1-'+ ,I-'.D
.t t-± 5.34
-+T-------... KT=4.00+---zy2
~a=ab~
[;l
TABLENO.3.4.8.2-1
"Forthecalculationofaand0,incase3withpredominanttension,replacedimension
actualbdimensiontodetermineaand0,forthesimultaneouslyactingshear
bby2 xthewidthofthecompressionzone.Butuse

24
---------------------~-
3.4.8.3DesignFactors
ThebucklingsafetyfactorisVBcalculatedwiththeaidoftheformula's:
o
Incaseofelasticbuckling:VB=V0
2
+'~T2 ;;.DFB
.'1- OlkR
Incaseofinelasticbuckling: UB=V0
2
+3T2;;.DFB
ThedesignfactorDFBrequirementsofbucklingareasfollows:
LOADCOMBINATION DESIGNFACTORDFB
Case1 1.7
+
0.175(\jJ-1)
Case2 1.5 +0.125(\jJ-1)
Case3 1.35 +0.05(\jJ-1)
3.5DESIGNLIMITATIONS
3.5.1 Guidelineforproportionsofweldedboxgirders:
Proportions:
Llhshouldnotexceed
25
Libshouldnotexceed 65
bitandhittobesubstantiatedbybucklinganalysis.
where:
L
=spanininches
b
=distancebetweenwebplates ininches
h
=depthofgirder ininches
t
=thicknessofplate ininches
- -
------"_...'"-------~._ .._~._-=.~--------

where:
a
=longitudinaldistancebetweenfulldepthdiaphragmsortransversestiffenersininches.
25
[
a
[aJ2 Aa ] .
10=1.20.4 +0.6h+0.9h +8 h~t hf3-m
4
LongitudinalStiffeners
Whenonelongitudinalstiffenerisused,itshouldbeplacedsothatitscenterlineisapproximately
0.4timesthedistancefromtheinnersurfaceofthecompressionflangeplatetotheneutralaxis.
Itshallhaveamomentofinertianolessthan:
Themomentofinertianeednot
begreaterinanycasethanasgivenbythefollowingequation:
I
=[22+103
~[1+~J ]bf3-ln
4
o • • ~ ~
3.5.3.2Foronelongitudinalstiffeneratthecenterofthecompressionplate,whereb/2 Istheunsupported
halfwidthbetweenwebandstiffener,themomentofinertiaofthestiffenershallbenolessthan:
3.5.3.1Whenone,twoorthreelongitudinalstiffenersareaddedtoaplateunderuniform compression,divid­
ingitintosegmentshavingequalunsupportedwidths,fulledgesupportwillbeprovidedbythelongi­
tudinalstiffeners,andtheprovisionsofSection
3.5.2.3maybeappliedtothedesignoftheplatematerial
whenstiffenersmeetminimumrequirementsasfollows:
[
a
[aJ2 Aa] .
I=0 6 -+0 2 - +3.0
-'-bf3-ln
4
o •b . b b2t
A=areaofonelongitudinalstiffener insquareinches.
If
Ocisgreaterthan aTadistanceequaltotwicethedistancefromtheinnersurfaceofthecompres­
sionflangetotheneutralaxisshall
besubstitutedinplaceof "h"inequationfor 1o.
10=1.2[0.3+0.4~+1.3[~J2+14~~~}f3-in
4
3.5.2.3Themomentofinertiaoflongitudinalstiffenersweldedtoonesideofaplateshall becalculatedabout
theinterfaceoftheplateadjacenttothestiffener.Forelementsofthestiffenerssupportedalong
oneedge,themaximumwidthtothicknessratioshallnotbegreaterthan12.7,andforelements
supportedalongbothedges,themaximumwidthtothicknessratioshallnot
begreaterthan42.2.
Iftheratioof12.7isexceededfortheelementofthestiffenersupportedalongoneedge,butapor­
tionofthestiffenerelementconformstothemaximumwidth-thicknessratioandmeetsthestress
requirementswiththeexcessconsideredasremoved,thememberisconsideredacceptable.
3.5.3
StiffenedPlates
inCompression:
3.5.2
3.5.2.1
If
Ocisgreaterthan aTadistanceequaltotwicethedistancefromtheinnersurfaceofthecompres­
sionfiangetotheneutralaxisshall
besubstitutedinplaceof "h"inequationfor1 o.
3.5.2.2Whentwolongitudinalstiffenersareused,theyshould beplacedsothattheircenterlinesareap­
proximately0.25and0.55timesthedistance,respectively,fromtheinnersurfaceofthecompres­
sionflangeplatetotheneutralaxis.Theyshalleachhaveamomentofinertianolessthan:

where:
to=minimumrequiredwebthickness-inches
a
=350t
'IV
a=longitudinaldistancebetweendiaphragmsortransversestiffeners-inches
As=areaofthestiffener-squareinches
t
=thicknessofthestiffenedplate
-inches
where:a
=longitudinaldistancebetweendiaphragmsortransversestiffeners
-inches
t
=thicknessofwebininches
StiffenersshallbedesignedtotheprovisionsofSection
3.5.2.3.
DiaphragmsandVerticalStiffeners
Thespacingoftheverticalwebstiffenersininchesshalinotexceedtheamountgivenbythe
I
=1.2h
3
t0
3in4
a0
2
3.5.4
where:
aD=requireddistancebetweenstiffeners
-inches
3.5.3.4Forthreelongitudinalstiffeners,spacedequidistantattheonefourthwidthlocationswhere
theunsupportedwidth,andlimitedtoalblessthanthree,themomentofinertiaofeachofthe
stiffenersshall
benolessthan:
i.=[0.35~+1.10[~J2+12~:~]bt3-in
4
3.5.3.3Fortwolongitudinalstiffenersatthethirdpointsofthecompressionfiange,wherebl3istheun'iUp·
portedwidth,andAtheareaofonestiffener,themomentofinertia ofeachofthetwostiffeners
benolessthan:
I
=[04
~+0 8[~J2+80A,a]bP-in
4
•'b'b'b2t
Themomentofinertianeednotbegreaterinanycasethan:
I=[9+56
~+90[~J2 ]bP-in
4
• bt bt
3.5.4.1
v
=shearstressinwebplates(k.s.!.)
Norshouldthespacingexceed72inches
orh,thedepthoftheweb,whicheverisgreater.
3.5.4.2Fulldepthdiaphragmsmaybeincludedasverticalwebstiffenerstowardmeetingthis
3.5.4.3Themomentofinertiaofanytransversestiffenerabouttheinterface
ofthewebplate,ifused
absenceofdiaphragms,shallbenolessthan:
Thismomentofinertiadoesnotincludeadditionalrequirements,
ifany,forlocalmoments.
elementsshall
beproportionedtotheprovisionsofSection 3.5.2.3.
3.5.4.4Webplatesshallbesuitablyreinforcedwithfulldepthdiaphragmsorstiffenersatallmajorload
3.5.4.5Alldiaphragmsshallbearagainstthetopcoverplateandshallbeweldedtothewebplate
thicknessofthediaphragmplateshall
besufficienttoresistthetrolleywheelloadinbearing
allowablebearingstressontheassumptionthatthewheelloadisdistributedoveradistance
tothewidth
oftherailbasepiustwicethedistancefromtherailbasetothe topofthediaphragm
26

3.5.4.6Shortdiaphragmsshall beplacedbetweenfulldepthdiaphragms sothatthemaximumdistance be­
tweenadjacentdiaphragmswilllimitthemaximumbendingstress inthetrolleyrailwithout VIFforces
to
18ksiforloadcombinationCase 1,Section3.3.2.4.1based on:
(trolleywheelload)(distancebetweendiaphragms)
<;18ksi
6(sectionmodulusofrail)
maximum
=19.8ksiforCase2and22.5 ksiforCase3
3.5.5 DeflectionandCamber
3.5.5.1Themaximumverticaldeflectionofthegirderproducedbytheweightofthetrolleyandtherated
loadshallnotexceed0.001125inchperinchofspan.VIFforcesshallnot
beconsideredindetermin­
ingdeflection.
3.5.5.2Boxgirdersshould
becamberedanamountequaltothedeadloaddeflectionplusone-halfofthe
liveloaddeflection.
3.5.5 WeldedTorsionBoxGirders:
3.5.6.1Torsiongirders,withthetrolleyrailoveronewebplate,areto
bedesignedwiththetrolleywheel
loadassumedto
bedistributedoveradistanceofthewebplate asindicatedinSection3.3.2.3.
3.5.6.2Forboxgirdershavingcompressionflangeareas
nomorethan 50percentgreaterthanthatofthe
tensionflange,andwithnomorethan
50percentdifferencebetweentheareasofthetwowebs,
theshearcentermay
beassumedto beatthecentroidalaxisofthecrosssection.
3.5.7 SingleWebGirders
Singlewebgirdersincludewideflangebeams,standardIbeams,orbeamsreinforcedwithplate,
orotherstructuralconfigurationshavingasingleweb.Wherenecessary,
anauxiliarygirder orother
suitablemeansshould
beprovidedtosupportover-hangingloadstopreventunduetorsionaland
lateraldeflections.
Themaximumverticaldeflectionofthegirderproducedbytheweightofthetrolleyandtherated
loadshallnotexceed.001125inchperinchofspan.
VIFforcesshallnot beconsideredindetermin­
ingdeflection.
ThemaximumstresseswithcombinedloadingforCase1shallnotexceed:
Tension(netsection)
=0.6Oyp
Compression=12,000withmaximumof 0.60
yp
Ld
At
Forcases2and 3,proportionstresses inaccordancewithSections3.4.1,2and 3.
where:L =span(unbracedlengthoftopflange) ininches
At=areaofcompressionflangeinsquareinches
d
=depthofbeam ininches
Shear
=0.35Oyp
3.5.8
BoxSectionGirdersBuiltofTwoBeams
Boxsectiongirdersbuiltupoftwobeams,eitherwithorwithoutreinforcingflangeplates,shall
be
designedaccordingtothesamedesigndata asforboxsectiongirdercranesforstressanddeflec­
tionvaluesonly.
27

3.10BRIDGERAILS
3.9TROLLEYFRAMES
3.8OPERATOR'SCAB
Bridgerailsshall
besecurelyfastened inplacetomaintaincenterdistanceofrails.
Bridge
andtrolleyrailsshould beinaccordancewith Table4.13.3-4andconsistent
diameter
andthemaximumwheelload.
Allbridgerailsshall beoffirstquality andconformtoallrequirementssetforth inthe
oftheASCE,
ARA,AREAoranyothercommercialrolledsectionswithequivalent
Bridgerailsshall
bejoinedbystandardjointbars orwelded.Theendsofnon-welded
besquare
andcSectionsjoinedwithoutopeningbetweenends.Provisionshall be
creepingofthebridgerails.
3.9.1 Thetrolleyframeshall beconstructedofstructuralsteel andshallbedesignedtotrar,srtl
tothebridgerailswithoutdeflectionwhichwillimpairfunctionaloperationof
3.8.5 Meansofaccessandegress
fromcabshouldcomplywithANSI 1330.2.
Afootwalkwithasubstantialhandrailshould beprovidedwhererequired andspecified.
railshallbeatleast42incheshigh andprovidedwith anintermediaterailing.The
fnr,lw:.1I
haveaslip-resistantwalkingsurface.Thefootwalkshall beprotectedonallexposed
suitabletoeguard.Allfootwalksshall
bedesignedforaliveloadof 50poundsper sou'are
allowablestresses, usestresslevel 2,Section3.4.2.
3.9.2 Provisionshould
bemadetopreventadropofmorethanoneinch incaseofaxle
3.6.1 Thecranebridgeshall becarriedonendtrucksdesigned tocarrytheratedload whenlifted
endofthecranebridge.Thewheelbaseofthe
endtruckshall be1/7ofthespanor
3.6.2 Endtrucksmay
beoftherotatingaxleorfixedaxletype asspecifiedbythecranemanufa
3.6.3 Thebridge
endtrucksshould beconstructedofstructuralsteelorothersuitablematerial.
Pro
shallbemadetopreventadropofthecranenotmorethan oneinchincaseofaxlefailure.(j
shallbeprovidedinfrontofeachoutsidewheelandshallprojectbelowthetopoftherunW
Loadcombinationsandbasicallowablestresses aretobeinaccordancewithSections 3.3.2.4
3.9.3 Loadcombinationsandallowablestressesare tobeasspecifiedinSections
3.10.1
3.10.2
3.10.3
3.10.4
3.8.4 Thecontrollers
ortheiroperatinghandlesarelocated asshowninSection5.7forthe
unlessotherwisespecified.
3.8.1 Thestandardlocationoftheoperator'scabisatoneendofthecranebridgeonthe
sideunlessotherwisespecified.
Itshallbesolocatedasnottointerferewiththehook
Theoperator'scabshall
beopentypeforindoorserviceunlessotherwisespecified.
beadequatelybraced topreventswayingorvibration,butnot soastointerferewith
caborthevisionoftheoperator.Allboltsforsupportingmemberconnectionsshould
Cabshallbeprovidedwith
anaudiblewarningdeviceandfireextinguisher.
3.8.2 Provisionshall
bemadeintheoperator'scabforplacementofthenecessary
Anllin,m,ml,
fittings.Allcabsshould beprovidedwithaseatunlessotherwisespecified.
3.8.3 Forallowablestresses,
usestresslevel 2,Section3.4.2.
3.6BRIDGE ENDTRUCK
3.7FOOTWALKS ANDHANDRAILS
28

29
rT
8-WHEElEQUALIZING
16-WHEElEQUALIZING
12-WHEElEQUALIZING
8-WHEElCOMPENSATING
16-WHEElCOMPENSATING
FIGURE3.12.2-1
12-WHEElCOMPENSATING
'ij'if
ItII
rr
Whenappropriate,equalizerbridgetrucksaretobeincorporatedtopromotesharing ofbridgewheel
loads.Equalizingpinsareto beprovidedbetweenequalizertruckandequalizerbeamsand/orrigid
bridgestructures.
Fortypicalarrangementof
8,12and16wheelcranes,seeFigure3.12.2-1.
Endtiesareto
beprovidedbetweengirderswhendeemednecessaryforstabilityofthegirders,to
assist
insquaringthecrane,toparticipatewiththegirders incontinuousframeactiontoresisthorizon­
talloads,andtoaccommodateunbaiancedtorsionalloads
onthegirders.Whenequalizerbridge
trucksareincorporated
inthecranedesign,theendtiesshallbeofrigidconstructionandofade­
quatestrengthtoresistalloftheaboveloads.Flexibilityoftheendtieisnecessarywhenequalizing
provisionsarenotemployed.Dueconsiderationshouldbegiventothevarioustypesofloadingcon­
ditionsandtheresultingstresses,whichshallnotexceedthevalues
asstatedinSection3.4.
3.12.1
3.12.2
3.12BRIDGETRUCKSFOR8,12AND16WHEELCRANES
3.11ENDTIES

3.13STRUCTURAL BOLTING
3.14GANTRYCRANES
30
3.13.1
3.13.2
3.13.3
Jointsdesignedashighstrengthboltedconnectionsaretoconformtotherequirements
"SpecificationforStructuralJointsUsingASTMA325orA490Bolts,"aspublished
by
combination,Case 1,Section3.3.2.4.1.ZinccausesstresscorrosioninA490andshouldnot
Finishedandunfinishedbolts,ASTMA307,aretobeusedatvaluesof90percentofthose
inPart4ofthecurrentissueoftheAISCManualofSteelConstructionforloadcOlnbinal:ion
1,Section3.3.2.4.1.
AllowableboltstressesforloadcombinationCases2and
3,Sections3.3.2.4.2and3,are
portionedinaccordancewithSections3.4.1;2and
3.
Designofleg,endtie,strut,andsillmembersshallconformtoapplicablesectionsofthis

TABLE4.1.3-1
31
3(maximumload)
3(ratedload+
trolleyweight)
2(ratedload)+3(trolley weight)
2(maximumload)+ (minimumload)
Classof
A B C D E F
Service
Cd .64 .72 .8.91.01.16
Kw=
Meaneffectiveload =Maximumloadx Kw
Kwh=
_.:::2>:.(r:::.at:.::e:::.d,::lo:..:a:.:d:L)--,+c...::3>:.(lo:..:w.:..:e:.:,r-,::b:.::lo:;-c:.::k...:w.:..:e:;;ig'''h:.:,t),----­
3(ratedload+ lowerblockweight)
Kw1=
TheloadfactorKwhforthehoistmachineryisestablishedbythefollowingformula:
Kwb
=
-----'2::>(""ra:.:te:..:d:..-:..:lo:::.ad~)':--'-+--'3:.>(t=ro:cI.:.:le:Ly...:w'_;e:.::ig"'h:..:t _+,-;-"bc-:ri:::.dg",e=--.:..:w.;:-e'7'ig.:.;ht:l...)_
3(ratedload+ trolleyweight+bridgeweight)
MachineryServiceFactor Cd
70-4MECHANICAL DESIGN
Note: In ordertofacilitatea measureofdurability,loadand servicefactorsshallbeusedtodeterminethe
meaneffectiveloadina serviceclassificationfor mechanicalcomponents.
Themaximumloadusedintheaboveformulashallbeestablishedbyusingtheratedload soposi­
tionedastoresultin themaximumreactionon thecomponentunderconsideration.Impactshall
notbeincluded.Theminimumloadtobeusedshallbeestablishedbythedeadloadofthebridge
andortrolleyonly.
4.1.2 Loadfactors
Kwconvertmaximumloadsintomeaneffectiveloadsasfollows,andaretobe used
forgeardurabilityhorsepowerandbearinglifecalculations.
4.1.3
ThemachineservicefactorCdlistedinTable4.1.3-1 dependsontheclassofcraneserviceand
accountsforexpecteddifferencesofloadspectrumdensityandseverityofserviceandisusedto
determinegeardurabilityhorsepower.
4.1.4 StressconcentrationfactorscanbeobtainedfromdatainstressconcentrationfactorsbyR.E.
Peterson(seeSection1.1.6).
4.1.1
ThemechanicalmeaneffectiveloadfactorKwshallbeestablishedbytheuseofthefollowingbasic
formula.
4.1.2.4
ForKwfactorsoftrolleyandbridgewheelassemblies, seeSection4.13.3.KbwandKtware to
beusedforaxlebearing selection.
4.1.2.1
Lowerblocks
weighinglessthan2percentofratedcapacitymaybeignoredresultingIn
4.1.2.2
TheloadfactorKwtfor thetrolleydrivemachineryisestablishedbythefollowingformula:
4.1.2.3
TheloadfactorKWbforthebridgedrivemachineryisestablishedbythefollowingformula:
4.1
MEANEFFECTIVELOAD

4.3OVERLOAD LIMITDEVICE
4.2LOADBLOCKS
-OR-
Theloadblockframeshouldbe ofsteelconstruction.Careshallbetakentominimize changes'
geometrythatmaycausestressconcentrations.Theframeshallbedesignedforratedload.Til
ratedloadstressshallnotexceed20percentoftheaverageultimatestrength ofthematerialuse
Wherestressconcentrationsexist,thestressasamplifiedbytheappropriateamplificationfact
withdueconsiderationforimpactandserviceshallnotexceedthe endurancestrengthofthe
mate'
used.Othermaterialsagreeduponbythemanufacturerandrecognizedassuitablefortheapplic
tionmaybeused,providedthepartsareproportionatetogiveappropriatedesignfactors.
Thehookshallbeofrolledsteel,forgedsteeloramaterialagreeduponbythemanufacturera
recognizedassuitablefortheapplication.Thehookshallbedesignedbased
ontheratedloa
Thehookratedioadstressshallbecalculatedconsideringtheratedload
onthehookusing:
A.Straightbeamtheorywiththecalculatedcombinedstressesnottoexceed20percentof
material'saverageultimatestrength.
B.Modifiedcurvedbeamtheorywiththecalculatedcombinedstressesnottoexceed 33
ofthematerial'saverageultimatestrength.
-OR-
4.2.2
4.2.1
4.2.2.1
C.Plastictheoryortestingwiththecombinedstressesnottoexceed20percentofthestress
ducedbythestraighteningloadasobtainedbytestorcalculationbythistheory.
4.2.2.2Thehookshallrotatefreelyandbesupported
onathrustbearing.Thehookshankstress
calculatedconsideringtheratedloadandshallnotexceed20percentofthematerial'saverageulti
strength.Atpointsofgeometricdiscontinuities,thecalculatedstressasamplifiedbytheappropr
stressamplificationfactorwithdueconsiderationforimpactandserviceshallnotexceed
tile
durancestrength.
4.2.2.3Otherliftingattachingdevices,suchaseyeboltsandtwistlocks,shallbedesignedtoapplica
portion
ofSections4.2.2.1and4.2.2.2.
4.2.2.4LoadblocksheavepinsandtrunnionsshallbedesignedpertheapplicableSection4.11.4of
t
specification.
4.3.1 Anoverloadlimitingdeviceisnormallyoniyprovidedwhenspecified.Suchdeviceis
anemerg
deviceintendedtopermitthehoisttoliftafreelysuspendedloadwithinitsratedcapacity,butpre\!
lifting
ofanoverloadthatwouldcausepermanentdamagetoaproperlymaintainedhoist, tr
orcrane.
4.3.1.1Variablesexperiencedwithinthehoistsystem,suchas,butnotlimitedto,acceleration
ofthe
lo~
dynamicsofthesystem,typeandlength ofwirerope,andoperatorexperience,renderitimpossi
toadjustanoverloaddevicethatwouldpreventtheliftingofanyoverloadorloadinexcessofr
load.
4.3.1.2Theadjustmentof
anoverloaddevice,whenfurnished,willallowthelifting ofanoverloadof
magnitudethatwillnotcausepermanentdamagetothehoist,trolley,orcrane,andshall
pre
theliftingofanoverloadofsuchmagnitudethatcouldcausepermanentdamagetoaproperly
tainedhoist,trolley,orcrane.
32

iGroove
4°'7__40or1in14Slope
Fig.4.4.3.1-1
_+_---'\-\--I\------Bt&-!?rum:..:....- _
4.4.3.2Ropefleetangleforsheaves.Thefleetangleoftheropeshouldbelimitedto1in12slope (4degrees-45
minutes)asshowninFigure4.4.3.2-1.
Whereverexposedtotemperaturesatwhichfibrecoreswouldbedamaged,ropeshaving
anindepen­
dentwire-rope,wirestrandcore,orothertemperature-resistantcoreshallbeused.
4.4.3 RopeFleetAngle
4.4.3.1Ropefleetanglefordrums.Thefleetangleoftheropeshouldbelimitedto1in14slope
(4degrees)
asshowninFigure4.4.3.1-1.
4.4.1 Thehoistingropeshallbe
ofproperdesignandconstructionforcraneservice.Theratedcapacity
loadplustheioadblockweightdivided
bythenumberofpartsofropeshallnotexceed20percent
ofthepublishedbreakingstrengthoftheropeexceptropesusedforholdingorliftingmoltenmetal
whichshallnotexceed12.5percentofthepublishedbreakingstrengthoftherope.
4.4.2 Thewireropeconstructionshallbeasspecifiedbythecranemanufacturer.Whenextrastrength
steel
orwirecenterropeisused,thecranemanufacturer'sspecificationsshallsostate.
4.3.1.3Theoverloaddeviceisactuatedonlybyloadsincurredwhenliftinga
freelysuspendedloadonthe
hook.Therefore,anoverloaddevicecannot
bereliedupontorenderthehoistingmechanismin­
operative
ifothersources,suchasbutnotlimitedto,snaggingoftheload,twoblocking oftheload
block,
orsnatchingaload,induceloadsintothehoistingsystem.
4.3.1.4Theoverioadlimitdeviceisconnectedintothehoistingcontrolcircuitand,therefore,willnotprevent
damagetothehoist,trolley,orcrane,ifexcessiveoverloadsareinducedintothehoistingsystem
whenthehoistingmechanismisinanonoperatingorstaticmode.
4.4
HOISTINGROPES
':~5,J~
1in12 V 900
__S_iope.L
Fig.4.4.3.2-1
i/'i\
kSheave
33

~~~------------~~~~~~
4.6.4 Table4.6.4-1isaguideforminimumpitchdiameterofdrums.Smallerdrumsmaycause anincrease
inropemaintenance.
TABLE4.6.4-1
GUIDEFORMINIMUMPITCHDIAMETEROFDRUMS
CMAA
6
x37ClassRope 6 x19ClassRope
Class
A&B 16
}
'dro}
C 18 24
D
20 24 x d
E 24
30
F 30 30
d
=ropediameter
4.6.5 Whenspecialclearance,liftorlowheadroomisrequired,itmay
benecessarytodeviatefrom
theselimitations.
4.7
GEARING
4.7.1 Thetypesofgearingshall bespecifiedbythecranemanufacturer.
4.7.2 Allgearsandpinionsshall
beconstructedofsteel orothermaterialofadequatestrengthanddurability
tomeettherequirementsfortheintendedclassofservice,andmanufacturedtoAGMAqualityclass
5orbetter.
Forthepurposeofthisspecification,thestrengthanddurabilityshall
bebasedonthetorque re­
quiredtolifttheratedloadforhoistgearingandthemotornameplateratingfortravelgearing. Due
considerationshall begiventothemaximumbraketorquewhichcan beappliedtothedrive.Also,
considerationshall
begiventothefactthatgearingfortraveldrivestransmitalargerportionofthe
totalmotortorquethangearingforhoistdrives.
4.7.3 Thehorsepowerratingforallspur,helicalandherringbonegearingshall
bebaseduponAmerican
GearManufacturersAssociation(AGMA)Standards:220.02,'RatingtheStrengthofSpurGearTeeth',
210.02,'SurfaceDurability(Pitting)ofSpurGearTeeth',221.02,'RatingtheStrengthofHelicaland
HerringboneGearTeeth',and211.02,'SurfaceDurability(Pitting)ofHelicalandHerringboneGear
Teeth'.Forthepurposeofthisspecification,thepowerformulamay
bewritten:
NOTE:Publishedyeardatesto
bereferencedinanotherpartofthespecification.
Allowablestrength
horsepower-
Pat
=Npd Kv. FSat J
126000 KmPdSf
Allowabledurability
horsepower-
Pac
=NpFICv .[SaCdChJ2
126000CmSfd Cp
35

36
where:Pat allowablestrengthhorsepower
Pac allowabledurabilityhorsepower
Np pinionspeed-revolutionperminute
d pitchdiameter
ofpinion-inches
Kv dynamicfactor(strength)
Cv dynamicfactor(durability)
F netfacewidthofthenarrowestofthematinggears
Km loaddistributionfactor(strength)
Cm loaddistributionfactor(durability)
Cp-elasticcoefficient
Ch
-hardnessfactor(durability)
J - geometryfactor(strength)
, - geometryfactor(durability)
Pd
-diametralpitch
Sat-allowablebendingstressformaterial-poundspersquareinch
Sac-allowablecontactstressnumber(durability)
Sf-craneservicefactor(strength)
Sfd-craneservicefactor(durability)
Thevaluesfor
Kv,Cv,Ch,Km,Cm,Gp,J,I,SacandSat canbedeterminedfrom the
curvesintheappropriateAGMAspecificationpreviouslymentioned,Sf inSection4.7.4,t
ingvalueswill
bephysicalcharacteristicspertaining tothegearsfortheiroperation
"hAr",,;
Craneservicefactor SfdshallbedeterminedfromtheformulaSfd =CdxKw.For
KwrefertoSection 4.1andforthevalues ofCdrefertoSection4.1.3forthecrane
Kw=LoadFactor,Cd=MachineryServiceFactor.
4.7.4 Thecraneservicefactorsforstrengthhorsepower areasshowninTable4.7.4-1.
TABLE4.7.4-1
CraneClass Sf
A
.75
B .85
C .90
D
.95
E 1.0
F 1.05
4.7.5 Whenwormgearing iscalledfor,itshallberatedbythegearmanufacturerwith
Anr,rrll'l
factors.Dueconsiderationshould begivenforlock upwhenselectinggearratios
4.7.6 Meansshall beprovidedtoinsureadequateandproper lubrication onalloearilna.
4.7.7 Allgearingnotenclosed ingearcaseswhichmayconstituteahazardundernormal
tionsshallbeguardedwithprovisionforlubricationandinspection.
4.8BEARINGS
4.8.1 Thetypeofbearingshall beasspecifiedbythecranemanufacturer.
---------------------------------

4.8.2 Anti-frictionbearingsshall beselectedtogiveaminimumlifeexpectancybased onfullratedspeed
asfollows:
AFBMA
L
ol0BEARING
LIFE
ClassA 1250Hours
ClassB 2500Hours
ClassC 5000Hours
ClassD10000Hours
ClassE20000Hours
ClassF40000Hours
UseKwloadfactorforallapplications asdeterminedinSection4.1ofthisspecification.
*Dueconsideration
tobegiventotheselectionofthebearing intheeventacraneisusedfora
limitedtimeat
anincreasedserviceclasssuch as:
Example-'duringaconstructionphase.'
4.8.3 Sleevebearingsshallhaveamaximumallowableunitbearingpressure
asrecommendedbythe
bearingmanufacturer.
4.8.4 Allbearingsshall
beprovidedwithproperlubricationormeansoflubrication.Bearingenclosures
should
bedesignedasfaraspracticabletoexcludedirt andpreventleakageof oilorgrease.
4.9BRAKES
4.9.1 HolstHoldingBrakes
4.9.1.1Eachindependenthoistingunitofacraneshall
beequippedwithatleastoneholdingbrake.ThiS
brakeshall
beapplieddirectly tothemotorshaftorsomeothershaft inthehoistgeartrain.
4.9.1.2Hoistholdingbrakesshall
haveminimumtorqueratings,statedasapercentageoftheratedload
hoistingtorque,
atthepointwheretheholdingbrake isappliedasfollows:
4.9.1.2.1125percentwhenusedwithacontrolbrakingmeansotherthanmechanical.
4.9.1.2.2100percentwhenusedwithmechanicalcontrolbrakingmeans.
4.9.1.2.3100percentforeachholdingbrakeiftwoholdingbrakesareprovided
..
4.9.1.3Hoistholdingbrakesshall havethermalcapacityforthefrequencyofoperationrequired bytheservice.
4.9.1.4Hoistholdingbrakesshall
beprovidedwithmeans tocompensateforlining wear.
4.9.1.5Eachindependenthoistingunitofacranethathandlesmoltenmaterialsshall haveoneofthefollow­
ingarrangements:
4.9.1.5.1Twoholdingbrakes(oneofwhich
ismountedonagearreducershaft)pluscontrolbrakingmeans
shall
beprovided.Eachbrakeshall haveaminimumtorqueratingequal toratedloadhoistingtorque
atthepointwherethebrake
isapplied.
4.9.1.5.2Ifthehoistunithasamechanicalloadbrakeoracontrolledbrakingmeansthatprovidesemergency
braking
intheloweringdirectionuponlossofpower,onlyoneholdingbrake isrequired.Theholding
brakeshall
haveaminimumtorqueratingequal to150percentoftheratedloadhoistingtorque
atthepointwherethebrake
isapplied.
37

----------,-----~-----
Emergen
Drag
orN
Coasting
MechaniC:
Drive
Outdoor
RemoteorPulpit
Operated
FLOOR
Emergencyor
DragorNon­
Coasting
Mechanical
Drive
Indoor
Drag
Outdoor
Attachedto
Bridge
Drag
Indoor
Service
Emergency
Parking
Outdoor
CABOPERATED
Attachedto
Trolley
FIGURE4.9.3.7-1
TrolleyBrakes
Service
Emergency
Indoor
IZIAtrolleybrakeisrequired.
oAtrolleybrakeisnotrequired.
4.9.3.1Oncaboperated(non-skeleton)craneswithcab
ontrolley,atrolleybrakeshall beprovidedh
torquecapabilitytostopthetrolleymotionwithindistance
infeetequalto 10percentof rate
speedinfeetperminutewhentravelingatratedspeedwithratedload.
4.9.3.2
Oncab-operated(non-skeleton)craneswithcab onbridge,atrolleybrakeornon-coasting mec:
drivemaybeprovidedwhenspecified.Whenprovided,thebrakeornon-coastingmechanic
shallmeetthestoptraveldistancerequirementsofSection4.9.3.1
4.9.3.3Onfloor,remoteorpUlpit-operatedcranes,includingskeletoncab-operatedcranes,atrolle
ornon-coastingmechanicaldrivemay
beprovidedwhenspecified.Whenprovided,thebrake
coastingmechanicaldriveshallmeetthestoptraveldistancerequirementsofSection
4.
4.9.3.4Trolleybrakes,whenprovided,shallhavethermalcapacityforthefrequencyof
bytheservice.
4.9.3.5Ifatrolleyparkingbrakeisprovided,itshouldhaveatorqueratingofatleast50percent
motortorque.
4.9.3.6Adragbrakemaybeappliedtoholdthetrolley
inadesiredposition onthebridgeand
creepwiththepoweroff.
4.9.3.7TheminimumrequirementsfortrolleybrakesandbrakingmeansperANSIB30.2.0is
4.9.3.7-1.
4.9.3 TrolleyBrakes
4.9.2.3Hoistcontrolbrakingmeansshallhavethermalcapacityforthefrequencyofoperationrequirg
theservice.
4.9.2 HoistControlBrakingMeans
4.9.2.1Eachindependenthoistingunitofacrane,exceptworm-gearedhoists,theangleofwhose
issuch
astopreventtheloadfromaccelerating intheloweringdirection,shall beequipped
controlbrakingmeanstocontrolloweringspeeds.
4.9.2.2Controlbrakingmeansshallbemechanical,hydraulic,pneumaticorelectricpower(such
as
current,dynamic,regenerativeorcountertorque).Allmethodsmustbecapableofmaintaining
6
trolledloweringspeeds.Theinherentregenerativecontrolledbrakingmeansofasquirrelcagem
may
beusediftheholdingbrake isdesignedtomeettheadditional'requirementofretardinga de
ing loaduponpowerremoval.
38

4.9BRAKES
4.9.4 BridgeBrakes.
4,9.4,1
Oncab-operated(non-skeleton)cranes,abridgebrakeshall berequiredhavingtorquecapability
tostopthebridgemotionwithinadistance infeetequal to10percentofratedloadspeed infeet
perminute
whentravelingatratedspeedwithratedload,
4,9.4,2
Onfloor,remote orpulpit-operatedcranesincludingskeleton(dummy)cab-operatedcranes,abridge
brakeornon-coastingmechanicaldriveshall
berequiredhavingtorquecapability tostopthebridge
motionwithinadistance
infeetequal to10percentofratedloadspeed infeetperminutewhen
travelingatratedspeedwithratedload.
4.9.4.3Bridgebrakes,when prOVided,shallhavethermalcapacityforthefrequencyofoperationrequired
bytheservice,
4.9.4.4
Ifabridgeparkingbrake isprovided,itshouldhaveatorqueratingofatleast 50percentoftherated
motortorque.
4,9.4.5Oncranesdesignedwithhighspeed andhighaccelerationrates,considerationshould begivento
provide brakingmeans toachieveproportionallyhighdecelerationrates,
4,9.5 Generalbrakecommentsfornormalcab-operatedcranes.
4,9.5,1Footoperatedbrakesshallrequire
anappliedforceofnotmorethan 70poundstodeveloprated
braketorque.
4.9,5.2Brakepedals,latches,
andieversshould bedesignedtoallowreleasewithoutthe
Av."tir,n
forcethanwasused inapplyingthebrake.
4.9,5.3Brakesshould
beappliedbymechanical,electrical,pneumatic,hydraulic orgravitymeahS,
4.9,5.4Allfoot-brakepedalsshall beconstructedsothattheoperator'sfootwillnotreadilyslipoffthe
4,9.5,5Foot-operatedbrakesshall
beeqUippedwithameansforpositivereleasewhenforce isreleased
fromthepedal.
4,9.5,6Thefoot-brakepedalsshould
besolocatedthattheyareconvenient totheoperatoratthecontrols,
4.9,5.7Ifparkingbrakesareprovided
onthebridgeortrolley,theyshallnotprohibitthe useofadriftpoint
inthecontrolcircuit.
4,9.5,8Theminimumrequirementsforbridgebrakes
andbrakingmeansper ANSIB30,2,OisshowninFigure
4.9,5.8-1.
Figure4.9.5.8-1
BridgeBrakes
CABOPERATED FLOOR
Attachedto Attached
to RemoteorPulpit
Trolley Bridge Operated
Indoor Outdoor IndoorOutdoor Indoor Outdoor
Service Service ServiceService Emergencyor Emergencyor
Emergency Emergency Non-Coasting Non-Coasting
Mechanical Mechanical
I:?!IDrive Drive
~ ~ ~ i:I';J Y'A
~Abridgebrake isrequired.
oAbridgebrake isnotrequired.
39

._--_._._--.....
IICRANE
,
r-IICRANE
j<-IICRANE
,..1'"Ir·t···. t.,"I n .
, '.•I •.... I
-----'--;:r-r-I~ ~-
"'jJ"lCJ"j-'"
,.----....II:~A~:
FIGURE4.10-1-1
ARRANGEMENT OFCRANEBRIDGEDRIVES
-----------_.---
Bridgedrivesshallconsist ofoneofthefollowingarrangements,asspecifiedoninformation
andasillustratedinFigure4.10.1-1.Thesearrangementscovermostfouroreightwheelcrane
Forthenumber
ofdrivenwheelsforaspecificacceleration rate-refertotheelectricalS
5.2.9.1.2.1A
&Bofthisspecification.
4.10
BRIDGEDRIVES
4.10.1
40

4.10.1.1A-1Drive:Themotorislocatednearthecenterofthebridgeandconnectedto
reductionunitlocatednearthecenterofthebridge.Outputofthegearreduction
directlytothetruckwheelaxlesbymeansofsuitableshaftsandcouplings.
4.10.1.2A-2Drive:Themotorisconnectedtoaself-containedgearreductionunitlocatednearthecenter
ofthebridge.Thetruckwheelsshallbedriventhroughgearspressedandkeyed
ontheiraxlesor
bygearsfastenedto,orintegralwith,thetruckwheelsandwithpinionsmounted
ontheendsections
ofthecross-shaft.Theendsectionsofthecross-shaftshall
beconnectedbysuitablecouplings.
4.10.1.3A-3Drive:Themotorislocatedatthecenterofthebridgeandisconnectedtothecross-shaftand
thegearreductionunitswithsuitablecouplings.Self-containedgearreductionunitslocatednear
eachendofthebridgeshallbeeitherdirectlyconnectedtothewheelaxleextensionorconnected
towheelaxles
bymeansofshaftswithsuitablecouplings.
4.10.1.4A-4Drive:Themotorsarelocatedneareachendofthebridgewithouttorqueshafts.Themotors
shall
beconnectedtoself-containedgearreductionunits.Thegearreductionunitsshallbeapplied
tothetruckwheelsbymeansofeithersuitableshaftsandcouplingsordirectlymountedtothewheel
axleshaftextension.Anothervariationofthisdrivewouldseparatethehighspeedandfinalreduc­
tionsbylocatingthemotorsneareachendofthebridgewithouttorqueshafts.Themotorswill
be
connectedtoself-containedhighspeedgearboxeswhichwilldrivethetruckwheelsthroughgears
pressedandkeyed
ontheiraxlesorbygearsfastenedtothetruckwheels,andwithpinionsmounted
ontheendsection ontheshaftfromthehighspeedgearboxandthefinalreductionshall becon­
nectedbymeansofsuitableshaftsandcouplings.
4.10.1.5
A-5Drive:Themotorislocatednearthecenterofthebridgeandisconnectedtoaself-contained
gearreductionunitlocatednearthecenterofthebridge.Thisreductionunitshallbeconnectedby
sectionsofcross-shafthavingsuitablecouplingstoself-containedgearreductionunitslocatednear
eachendofthecrane,andthese
inturnconnectedtotruckwheelaxlesbymeansofshaftswith
suitablecouplings.
4.10.1.6A-6Drive:Themotorsarelocatedneareachendofthebridgeandconnectedwithatorqueshaft.
Onthedriveend,themotorsshall
beconnectedtoself-containedgearreductionunitsbysuitable
couplings.Theoutputofthegearreductionunitsshall
beconnecteddirectlytothetruckwheelaxle
bymeansofsuitableshaftsandcouplings.
4.11
SHAFTING
4.11.1GeneralNomenclatureandValues forSection4.11
TABLE4.11.1-1
SURFACECONDITIONFACTOR
Ksc
Ksc SURFACECONDITION
1.4 ForPolished-Heattreatedandinspectedshafting
1.0 ForMachined-Heattreatedandinspectedshafting
.75ForMachined-Generalusageshafting
TABLE4.11.1-2
CRANE CRANE CLASSFACTOR
CLASS Kc
A 1.0
B 1.015
C 1.03
D 1.06
E 1.125
F 1.25
41

4.760,000D
L=
Thetorsionaldeflectionofthebridgecross-shaftshallnotexceedthevaluesshownon
ThetypesofdrivereferredtoonthetableareasdefinedinSection4.9andthepercent
istheportionofthefullloadtorqueofthebridgedrivemotor(s)atitsnormaltime
iceinvolved,increasedbyanygearreductionbetweenthemotorandtheshaft.The
deflectionisexpressedindegreesperfoot.
Inadditionthetotalangulardeflection
motortorqueinTable4.11.3-1shouldresultinabridgedrivewheelmovementno
percentofthewheelcircumferenceor0.5inchonthecircumference,whicheveris
1.2N
L
=Distancebetweenbearingcenters(inches)
D
=Shaftdiameter(inches)
N
=Maximumshaftspeed(RPM)
L=
y432,000D2
L=Distancebetweenbearingcenters(inches)
D
=Shaftdiameter(inches)
Whentheshaftspeedexceeds400RPM.thebearingspacingshallnotexceedthat
thefollowingformula,orthepreceedingformulawhicheverislessinordertoavoid
vibrationatcriticalshaftspeeds:
Se
=endurancestrengthofshaftmaterial =.36Su'Ksc
Su=averagetensilestrength ofshaftmaterial
Su'=minimumtensilestrengthofshaftmaterial
Syp
=minimumyieldstrengthofshaftmaterial
Oav=thatpartofthebendingstressnotduetofluctuatingloads
Tav=thatpartoftheshearstressnotduetofluctuatingloads
Or=thatpartofthebendingstressduetofluctuatingloads
Tr=thatpartoftheshearstressduetofluctuatingloads
Kt
=stressamplificationfactorfortensionorbending
Ks
=stressamplificationfactorforshear
Kc
=
craneclassfactor
Ksc
=surfaceconditionfactor
Thebearingspacingforrotatingshaftslessthan400RPMshallnotexceedthat
cal<;ula
Allshafts,exceptthebridgecross-shaftsectionswhichdonotcarrygears,should becold
qualityorbetter.Theshaftdiameterandmethodofsupportshall
beasspecifiedbythe
facturer.
4.11.3
4.11.2
42

TABLE4.11.3-1
MaximumAllowableAngular
DeflectionDegreesPerFoot
Typeof Percent CabControlledFloor
&Remote
DriveMotorTorque Cranes ControlledCranes
A1 67 .080 0.10
A2 50 .080 0.10
A3 67 .080 0.10
A4 100 .070 0.10
A5 50 .080 0.10
A6 100 .070 0.10
4.11.4StressCalculations
Allshaftingshall
bedesignedtomeetthestresses encountered inactualoperation.Forthepur­
posesofthisspecification,thestrengthshall
bebasedonthetorquerequiredtolifttheratedload
forhoistmachineryandthemotornameplateratingfordrivemachinery.Dueconsiderationshall
begiventothemaximumbraketorquewhichmay beappliedtotheshaft.Whensignificantstresses
areproducedbyotherforces,theseforcesshall
bepositionedtoprovidethemaximumstressesat
thesectionunderconsideration.Impactshallnot
beincluded.
4.11.4.1StaticStressCheck
forOperatingConditions
A.Forshaftingsubjectedtoaxialloads,thestressshall becalculatedasfollows-(forshaftingnot
limitedbybuckling)
P =totalaxialload
a=PIAA =crosssectionalareaofshaft
Thisaxialstressshallnotexceed
Su/5.
B.Forshaftingloaded inbending,thestressshall becalculatedasfollows­
M =bendingmomentatpointofexamination
a=Mrllr =outsideradiusofshaftatpointofexamination
I =bendingmomentofinertiaatpointofexamination
Thisbendingstressshallnotexceed
Su/5.
C.Forshaftingloaded intorque,theshearstressshall becalculatedasfollows-
D.Transverseshearstress inshaftingshall becalculatedasfollows-
Theseshearstressesshallnotexceed
Su/(5
v3).
T =torqueatpointofexamination
T =
Tr/Jr =outsideradiusofshaftatpointofexamination
J=polarmomentofinertiaofshaftatpointofexamination
Thisshearstressshallnotexceed
Su/(5
v3).
43
V =shearloadatpointofexamination
A =crosssectionalareaatpointofexaminationT=1.33VIA
T=2VIA
ForSolidShaft-
ForHollowShafts-

4.11.4.2FatigueStressCheckforFluctuating,OperatingStresses
Thisstressshallnotexceed
Suf5.
E.Whencombinationsofstressesarepresent onthesame element,theyshouldbecombined
follows·
C.Forcombinedstresseswherealloftheshearandbendingisfluctuating·
a=
y(K,O)2+3(K,T)2.;Sa
t K.,
D.Forcombinedshearandbendingwhereonlypartofthestressesarefluctuating·
at=Y(O.,+K,SypJSe)2+3(T.,+K,S
ypTJS,)2 .;~:
Shaftinginbearingmustbecheckedforoperatingconditions.Thebearingstressis<""~U1"""
dividingtheradialloadbytheprojectedarea,ie,Pf(d. L),wheredistheshaftdiameter
thelength
inbearing.Thisbearingstressmustnotexceed50percentoftheminimumyield
rotatingshafting.
Thisbearingstressmustnotexceed20percentoftheminimumyieldforoscillating
sh~lftirlo
notlimitedbythebushingmaterial.
B.Shearandcombinedshear,ie,T
A.Tensileandbendingstress,ie, a
axialandbendingstresses
a=a,+O 2+0 3+...+0
0
andshallnotexceed Su/5
Anyshaftingsubjectedtofluctuatingstressessuch asthebending inrotatingshaftsorthe
inreversingdrivesmustbecheckedforfatigue.Thischeck isinadditiontoSection 4.11.4.1
needonlybeperformedatpointsofgeometricdiscontinuitywhere stressconcentrationsexist,
asfillets,holes,keys,pressfits,etc.pure stresses,ie,(notcombined)aretobecalculated
Section
4.11.4.1exceptmultiplied bytheappropriatestressamplificationfactor.Theallowable
slre,s.qe
areasfollows.
axialandbendingwithshear:
at=
Y02+3T2
shearstresses
T
=T,+T2+...+
To
andshallnotexceed SUf(5V3).
Notethatbendingandtorsionalstressesaremaximum ontheouterfibersoftheshaftand
becombined.Thetransverseshearstressesaremaximumatthecenteroftheshaftanddonot co
binewithbendingortorsionalstresses.
4.11.5
44

4.13WHEELS
45
y
T
x
SPAN
y
I
0-\
Cross-shaftcouplings,otherthanflexibletype,shall besteelorminimumASTMGradeA48,latest
edition,Ciass40castironorequalmaterial
asspecifiedbythecranemanufacturer.Thetypeof
coupling(otherthanflexible)maybecompression,sleeveorflangetype.Flexiblecouplingsshall
bethecranemanufacturer'sstandardtype.
Motorcouplingsshallbe
asspecifiedbythecranemanufacturer.
wheeldiameter
=D(inches)
effectiverailheadwidth
=W(inches)
hardnesscoefficientofthewheel
=K
where:K
=BHNx5(forwheelswithBHN
<;260)
K=1300(BHN/260)33(forwheelswithBHN;;.260)
Unlessothermeansofrestrictinglateralmovementareprovided,wheelsshallbedoubleflanged
withtreadsaccuratelymachined.Bridgewheelsmayhaveeitherstraighttreads
ortaperedtreads
assembiedwiththelargediametertowardthecenterofthespan.Trolleywheelsshouldhavestraight
treads.Drivewheelsshall
bematchedpairswithin .001inchesperinchofdiameteroratotal of.010
inches
onthediameter,whicheverissmaller.Whenflangelesswheelandsiderollerassembliesare
provided,theyshall
beofatypeanddesignrecommendedbythecranemanufacturer.
Wheeisshall
berolledorforgedfromopenhearth,basicoxygenorelectricfurnacesteel,orcast
of
anacceptablecarbonoralloysteelunlessotherwisespecified. Wheelsshall beheattreatedonly
ifspecified.Othersuitablematerialsmaybeused.Dueconsiderationshallbegiventothebrittleness
andimpactstrengthofthematerialused.
SizingofWheelsandRalls.
Wheeisshallbedesignedtocarrythemaximumwheelloadundernormalconditionswithoutundue
wear.Themaximumwheelloadisthatwheelloadproducedwithtrolleyhandlingtheratedload
in
thepositiontoproducethemaximumreaction atthewheel,notincludingimpact.Whensizingwheels
andrails,thefollowingparametersshallbeconsidered.
Thebasicbridgeandtrolleyrecommendeddurabilitywheelloadingfordifferentwheelhardnesses
andsizes
incombinationwithdifferentrailsizesareshown inTable4.13.3-4.Thevalues inthetable
areestablishedbytheproductofD
xWxK.Inaddition,theloadfactor, Kw,thespeedfactorCs,
andthecraneserviceclassshall
beconsidered.
4.12.1
4.12.2
TheloadfactorKbwforthebridgewheelsisestablishedbythe
follOWingformulaorTable4.13.3-1
maybeusedforstandardhookcranes
inlieuofcalculatingtheexactvalueforaparticularapplica­
tion.Othercranesmayrequirespecialconsiderations.Thefactorsshownat1
DO-toncapacitymay
beusedforcapacitiesabove1
DO-tons.
4.13.1
4.13.2
4.13.3.1TheloadfactorKtwforthetrolleywheelsisestablishedbythefollowingformula:
K
(2Yrated
10adfT)+1.5TW
tw
=
"'------'-----
(3Yrated 10adfT)+1.5TW
WhereTW
=trolleyweight
WhereKtw
=trolleyloadfactor
4.13.3
4.12COUPLINGS

46
Kbw=_.7_5-,-(B_W)--,-+--,f(_LL-,-)_+_.S-,-(TW)--,_-_.5_f(TW),---,­
.75(BW)+1.5f(LL)
where:BW
=bridgeweight
LL
=trolleyweight +ratedload
f=Xlspan
TABLE4.13.3-1
TYPICALBRIDGE
LOADFACTORSKbw
BRIDGE
CAPACITYINTONS
SPAN
FT. 3 5 7V. 10 15 20 25
20 .812 .782 .762 .747 .732 .722
..716
30 .817 .785 .767 .750 .736 .725 .718
40 .827 .794 .777 .760 .744 .732 .723
50 .842 .809
.791 .771 .758 .740 .738
60
.861 .830 .807 .790 .773 .754 .747
70 .877 .844 .825 .807 .789 .768 .760
80 .888 .857 .835 .818 .802 .779 .770
90 .898 .869 .850 .832 .815 .792 .782
100 .912 .883 .867 .848 .826 .806 .796
110 .926 .890 .882 .863 .844 .823 .812
120 .934 .909 .894 .879 .860 .834 .827
TABLE4.13.3-1-
Continued
TYPICALBRIDGELOADFACTORSKbw
BRIDGE
CAPACITY
INTONS
SPANFT 30 35 40 50 60 75 100
20 .716 .714 .713 .713 .709 .709 .708
30 .718 .715 .713 .711 .708 .708 .706
40 .723 .722 .717 .714
.711 .711 .708
50
.731 .728 .723 .720 .716 .715 .711
60 .741 .736 .729 .726 .722 .721 .717
70 .752 .746 .738 .734 .729 .727 .723
80
.761 .754 .746 .742 .738 .735 .730
90 .774 .767 .758 .754 .747 .744 .737
100 .786 .780 .770 .763 .756 .753 .745
110 .800 .793 .782 .777 .768 .762 .755
120 .814 .807 .797 .790 .782 .774 .763

,
i
4.13.3.2Thespeedfactor Csdependsontherotationalspeedofthewheelandis listed inTable4.13.3-2.
Thesefactorsareobtainedfromthefollowingformulas:
for
RPM
~31.5
for
RPM
;;,31.5
Cs=[1+(RPM3~0 31.5)J2
CS=1+(RPM-31.5)
328.5
TABLE4.13.3-2
SPEEDFACTOR
Cs
WHEEL
SPEED
INFEETPERMINUTE
DlA.
IN
30 50 75 100 125 150 175 200 250 300 350 400
INCHES
8 .907.9581.0131.0491.0861.122 1.158 1.195 1.267 1.340 1.4131.485
9 .898.944
1.0011.0331.066 1.098 1.130 1.163 1.227 1.2921.356 1.421
10 .892.932.9841.0201.049 1.079 1.108 1.137 1.195 1.253 1.3111.369
12 .882.915.958
1.0011.025 1.049 1.0741.098 1.146 1.195 1.243 1.292
15 .872 .898 .932.967
1.0011.0201.0401.0591.0981.1371.1751.214
18 .865.887.915.944.973 1.0011.0171.033 1.066 1.098 1.1301.163
21 .860 .879 .903.927.952 .977 1.0011.0151.043 1.070 1.098 1.126
24 .857 .873 .894.915.937.958.980
1.0011.025 1.049 1.074 1.098
27 .854.869 .887 .906 .925 .944.963 .982 1.0121.0331.055 1.076
30 .852 .865 .882 .898 .915.932 .949 .967
1.0011.020 1.040 1.059
36 .849 .860 .873.887 .901.915.929.944 .973 1.0011.0171.033
4.13.3.3ThewheelservicefactorSmisequalto1.25timesthemachineryservicefactor
Cdandisshown
intheTable4.13.3-3forthedifferentserviceclassifications.Thisfactorrecognizesthattheinterac­
tionbetweenrailandwheelismoredemanding
intermsofdurabilitythanwellalignedandlubricated
interactionofmachinedparts.
4.13.3.4Thewheelloadservicecoefficient
Kwl
=Kwx Csx8mwiththefollowinglimitations:
Kwlmaynot besmallerthan Kwlmin.shown inTable4.13.3-3.
4.13.3.5Theequivalentdurabilitywheelload
Peshallbedeterminedasfollows:
P
e
=Max.wheelloadx KwltheequivalentdurabilitywheelloadPeshallnot
exceedwheelloadslisted
inTable4.13.3-4.
4.13.4
4.13.5
ProperClearance forBridgeWheels
Atotalofapproximately
3,4inchtooneinchwiderthanrailheadshould beprovidedbetweenthe
wheelflangesandrailhead.Taperedtreadwheelsmayhaveaclearanceovertherailheadof150
percentoftheclearanceprovidedforstraighttreadwheelsasrecommendedbythecrane
manufacturer.
Whenrotatingaxlesareused,wheelsshould
bemountedontheaxlewithapressfitalone,press
fitandkeys,orwithkeysalone.
47

48
TABLE4.13.3-3
WHEELSERVICEFACTOR
SmANDMINIMUMLOADSERVICEFACTORKwlMINIM
CLASSOF
CRANE
A BC D E F
SERVICE
KwlMIN..75 .75 .8.85.9 .95
8m .8.91.1.12 1.25 1.45
TABLE4.13.3-4
GUIDEFORBASICBRIDGEANDTROLLEYWHEELLOADINGS,POUNDS.(P)(KDW)
ASCE
Wheel ASCE 80 &85#
Wheel
dia.ASCE ASCE ASCE ASCE ARA-A 60&70# ARA-A ASCE BETH
BHN (D) 20# 25# 30# 40# 90# ARA-B 100# 100# &USS
Inches 100# BETH104 135#
USS105#
8 6750 8000 8500 10000
9 7600 9000 950011250 14900 15750
10 84501000010600 12500 16550 17500
12 12000127501500019850 21000 22500 25500
200 15 159501875024850 25250 28150 31900
18 191502250029800 31500 33750 3825040500
21 2625034800 35750 39400 4465047250
24 39750 42000 45000 5100054000
27 50650 57400 60750
30 56250 63750 67500
36 7650081000
8 880010400 11100 13000
9 990011700124001460019400 20500
10 11000 13000 138001625021500 22750
12 15600166001950025800 27300 29250 33200
260 15 207002440032300 34100 36600 41400
18 24900 29250 38750 41000 43900 49700 52650
21 3410045200 47800 51200 58000 61400
24 51700 54600 58500 6630070200
27 65800 74600 79000
30 73100 82900 87750
36 99500105300
8 940011200 11800 13900
9 1060012500 13300 15700 20800 21900
10 118001390014800 17400 23100 24400
320 12 16700 17800 20900 27700 29300 31300 35500
15 22200 26100 34600 36600 39200 44400
18 267003130041500 43900 47000 53300 56400
21 3660048400 51200 54900 62200 65800
24 55400 58500 62700 71100 75200
27 70500 79900 84600
30 78400 88800 94000
36 106600112800
EffectiveWidthof
RailHead (W)
Inches .844 1.000 1.063 1.250 1.656 1.750 1.875 2.1252.250
(Topofheadminus
cornerradii)

4.14BUMPERSANDSTOPS
4.14.1Bridgebumpers-Acraneshallbeprovidedwithbumpersorothermeansprovidingequivalenteffect,
unlessthecranehasahighdecelerationrateduetotheuseofsleevebearings,orisnotoperated
neartheendsofbridgetravel,
orisrestrictedtoalimiteddistancebythenatureofthecraneopera­
tion andthereis
nohazardofstrikinganyobject inthislimitedarea.Thesebumpers,whenused,
shallhavethefollowingminimumcharacteristics:
4.14.1.1Haveenergyabsorbing(ordissipating)capacitytostopthecranewhentravelingwithpoweroff in
eitherdirectionataspeedofatleast40percentofratedloadspeed.
4.14.1.2Becapableofstoppingthecrane(notincludingloadblockandliftedloadunlessguidedvertically)
atarateofdecelerationnottoexceedanaverageof3feetpersecondpersecondwhentraveling
withpoweroff
ineitherdirectionat20percentofratedloadspeed.
4.14.1.3Besomountedthatthereis nodirectshear onboltsuponimpact.
4.14.2Bumpersshall bedesignedandinstalledtominimizepartsfallingfromthecrane incaseofbreakage
orlooseningofboltedconnections.
4.14.3Whenmorethanonecraneislocatedandoperatedonthesamerunway,bumpersshallbeprovided
ontheiradjacentendsorononeendofonecranetomeettherequirementsofSections 4.14.1.1
thru4.14.2.
4.14.4
Itistheresponsibilityoftheownerorspecifiertoprovidethecranemanufacturerwithinformation
forbumperdesign.Informationnecessaryforproperbumperdesignincludes:
4.14.4.1Numberofcranesonrunway,bridgespeed,approximateweight,etc.
.4.14.4.2Heightofrunwaystopsorbumperabovetherunwayrail.
4.14.4.3Clearancebetweencranesandendofrunway.
4.14.5Runwaystopsarenormallydesignedandprovidedbytheowner orspecifierandarelocatedatthe
limitsofthebridgetravelandengagethefullsurfaceofthebumper.
4.14.6Runwaystopsengagingthetreadofthewheelarenotrecommended.
4.14.7TrolleyBumpers
-Atrolleyshall beprovidedwithbumpersorothermeansofequivalenteffect,unless
thetrolleyisnotoperatedneartheendsoftrolleytravel,orisrestrictedtoalimiteddistanceofthe
bridgegirderandthereis
nohazardofstrikinganyobject inthislimitedarea.Thesebumpers,when
used,shallhavethefollowingminimumcharacteristics:
4.14.7.1Haveenergyabsorbing(ordissipating)capacitytostopthetrolleywhentravelingwithpoweroff in
eitherdirectionataspeedofatleast50percentofratedloadspeed.
4.14.7.2Becapableofstoppingthetrolley(notincludingloadblockandliftedloadunlessgUidedvertically)
atarateofdecelerationnottoexceedanaverageof
4.7feetpersecondpersecondwhentraveling
withpoweroff
ineitherdirectionat
'13ofratedloadspeed.
49

50
4.14.7.3Be somountedthatthereis nodirectshear onboltsuponimpact.
4.14.8Bumpersshall
bedesignedandinstalledtominimizepartsfallingfromthetrolley incaseof
4.14.9Whenmorethanonetrolleyisoperated
onthesamebridge,bumpersshall beprovided
adjacentendsor
ononeendofonetrolleytomeettherequirementsofSections4.14.7.1thru
4.14.10Trolleystopsshall
beprovidedatthelimit ofthetrolleytravel,andshallengagethefull
thebumper.
4.14.11Trolleystopsengagingthetreadofthewheelarenotrecommended.

70·5ELECTRICALEQUIPMENT
5.1GENERAL
TABLE5.2.2-1
5.2
MOTORS·ACand DC
51
DCMotors..
TEFC&
OpenDripproof TENV
100Deg.C 110Deg.C
130Deg.C 140Deg.C
155Deg.C 165Deg.C
A CMotors
InsulationOpenDripproof
Class&TEFC TENV
B 80Deg.C
85Deg.C
F 105Deg.C 110Deg.C
H 125Deg.C 135Deg.C
"Ifambienttemperaturesexceed40Deg. C,thepermissibleWindingtemperaturerisemust be
decreasedbythesameamount,ormay bedecreasedpertheapplicableNEMAStandards.
+Thecranemanufacturerwillassume 40Deg.Cambienttemperatureunlessotherwisespecified
bythepurchaser.
5.2.1 Motorsshall bedesignedspecificallyforcraneandhoistdutyandshallconformtoNEMAStandards
MG1orAISEStandards NO.1or1A,whereapplicable.Designsnot inaccordancewiththesestand­
ardsmay
bespecified.
5.2.1.1
ACinductionmotorsmay bewoundrotor(slip ring)orsquirrelcage(singlespeed ormulti-speed)types.
5.2.1.2
DCmotorsmay beseries,shunt,orcompoundwound.
5.2.2 MotorInsulations
Unlessotherwisespecifiedbythecranemanufacturer,theinsulationratingshall
beinaccordance
withTable5.2.2-1.
5.1.5 ElectricalequipmentshallcomplywithANSIB30.2.0SafetyStandardforOverhead
andGantryCranes.
NEMAPermissibleMotorWindingTemperature
Rise,Above40DegreesCAmbient,Measured
by
Resistance"+
5.2.3 Motorsshall beprovided withanti-frictionbearings.
5.1.1 Theelectricalequipmentsectionofthisspecificationisintendedtocovertoprunningbridgeand
gantrytype,multiplegirderelectricoverheadtravelingcranesforoperationwithalternatingcurrent
ordirectcurrentpowersupplies.
Cranesforalternatingcurrentpowersuppliesmay
beequippedwithsquirrelcageandwoundrotor
motorswithcompatiblecontrolforsinglespeed,multi-speedorvariablespeedoperation.Cranes
for directcurrentpowersupplies,oralternatingcurrentpowersupplyrectified
onthecrane,may
beequippedwithseries,shuntorcompoundwoundmotorswithcompatiblecontrolforsinglespeed
orvariablespeedoperation.
5.1.2 Theproposalofthecranemanufacturershallincludetheratinganddescriptionof
allmotors,brakes,
controlandprotectiveandsafetyfeatures.
5.1.3 Thecranemanufacturershallfurnishandmountallelectricalequipment,conduitandwiring,unless
otherwisespecified.Ifitisnecessarytopartiallydisassemblethecraneforshipment,
allconduitand
wiringaffectedshall
becuttolengthandidentifiedtofacilitatereassembly.Bridgeconductors,run­
waycollectorsandotheraccessoryequipmentmay
beremovedforshipment.
5.1.4 WiringandequipmentshallcomplywithArticle610oftheNationalElectricalCode.

----------
TABLE5.2.4-1
Motor
Rated
Voltage
115
240 150or24
AdjustableVoltage
ShuntorCompound
230or240
(3)(8)
460
230or240
(3) (8)
575
230 230
200
380
500 240or
300.
ConstantPotential
Series,Shunt,
230
(4) 230(5)
Armature ShuntField
ThreePhase SinglePhaseDC
250
(7) (9)
(6) (9)
(9)
360Max.
460Max.
(9)
Nominal
System
Voltage
400
240
AC
120
600
208
480
208
thru
600
400-3-60
240-3-60
460-3-60
NominalSystemandMotorRatedVoltage
50Hz
Rectified
60Hz
(1) (2)
Generatoror
Battery
AC
DC
SOURCEDESCRIPTION
Motorratedvoltageandcorrespondingnominalsystemvoltageshall
beinaccordancewith
5.2.4.-1(References:AC-ANSIC84.1-1977,AppendixandTableC3.DC-AISEStd.
No.1,
Re',isEld
September1968,Electrical 2.VoltageSourceand3.FieldVoltage;alsoNEMAMGI-10.62)
(1)Applicabletoallnominalsystemvoltagescontainingthisvoltage.
(2)Fornominalsystemvoltagesotherthanshownabove,themotorratedvoltageshould
thesameasthenominalsystemvoltageorrelatedtothenominalsystemvoltageby
imateratioof115to120.Certainkindsofequipmenthaveamaximumvoltagelimit
themanufacturerand/orpowersuppliershouldbeconsultedtoassureproper
(3)Performancewillnotnecessarilyequalratedperformancewhenappreciableripple
(4)AISEStd. No.1,Rev.9-68Electrical2B(millmotors).
(5)AISEStd. No.1,Rev.9-68Electrical3(millmotors).
(6)NEMAMG1-l0.62B &Table10-4(industrialmotors).
(7)NEMAMG1-10.62B &Table10-5(industrialmotors).
(8)Ratedvoltagemay be250forlarge frames300 HP,850RPM,andlarger.
(9)Maximummotorinputvoltage.
5.2.4
Voltage
52

5.2.4.1Variations-AC
5.2.4.1.1Variation fromRatedVoltage
All
ACInductionmotorswithratedfrequencyandbalancedvoltageappliedshall becapableof
acceleratingandrunningwithratedhookloadatplusorminus
10percentofratedmotorvoltage,
butnotnecessarilyatratedvoltageperformancevalues.(ReferenceNEMA
MG1-12.43)
5.2.4.1.2
VoltageUnbalance
ACpolyphasemotorsshallbecapableofacceleratingandrunningwithratedhookloadwhenthe
voltageunbalanceatthemotorterminalsdoesnotexceed1percent.Performancewillnotnecessarily
bethesame aswhenthemotorisoperatingwithabalancedvoltage atthemotorterminals.(Reference
NEMA
MG1-12.45.a.)
5.2.4.2Variations-
DC
DC
motorsshallbecapableofacceleratingandrunningwithratedhookloadwithappliedarmature
andfieldvoltages
uptoandincluding110percent oftheratedvalues oftheselectedadjustable
voltagepowersupply.Withrectifiedpowersuppliessuccessfuloperationshallresultwhen
ACline
voltagevariationisplusorminus
10percentofrated.Performancewillnotnecessarilybe inaccor­
dancewiththestandardsforoperationatratedvoltage.(ReferenceNEMA
MG1-12.63)
5.2.5 Operationwithvoltagevariationsbeyondthoseshown
inSections5.2.4.1and5.2.4.2.Operation
atreducedvoltagemayresult
inunsatisfactorydriveperformancewithratedhookloadsuch asreduced
speed,sloweracceleration,increasedmotorcurrent,noise,andheating.Protectivedevicesmay
operatestoppingthedrive
inordertoprotecttheequipment.Operationatelevatedvoltagesmay
result
inunsatisfactoryoperation,such as,excessivetorques.Promptcorrectiveactionisrecom­
mended;theurgencyforsuchactiondependsuponmanyfactorssuch
asthelocationandnature
oftheloadandcircuitsinvolvedandthemagnitudeanddurationofthedeviationofthevoltage.
(ReferencesANSIC84.1.2.4.3range
B,alsoIEEEStandard141).
5.2.6 Deviationsfromratedlinefrequencyand/orcombinationsofdeviationsoflinefrequencyandvoltage
mayresult
inunsatisfactorydriveoperation.Theseconditionsshould bereviewedbased onthetype
ofdriveused.
5.2.7
MotorTimeRatings
Unlessotherwisespecifiedbythecranemanufacturer,theminimummotortimeratingshall
beIn
acccordancewithTable
5.2.7-1.
53

TABLE5.2.7-1MIN.MOTORTIMERATINGSINMINUTES 3.
ELECTRICALCONTROL TYPE
HOISTS BRIDGES& TROLLEYS
CMAA
ACORDCMAG- DCMAGNETIC ACMAGNETIC ACSTATIC ACORDC ACSTATICWITH
SERVICE
CLASS
NETICWITH CONSTANT orDCSTATIC WITHFIXED MAGNETIC FIXEDSECONDARY
MECHANICAL POTENTIAL ADJ.VOLTAGE SECONDARY CONSTANT RESISTANCE orDC
LOADBRAKE WITHCONTROL WITHCONTROL RESISTANCE POTENTIAL STATICADJ.
BRAKING BRAKING VOLTAGE
A 15 15 30 60 15 30
B
15 15 30 60 15 30
C
30 30 30 60 30 60
D 301 30
'
60
'
60
' 30
'
60
'
E Notrecommended 60
5
60
2 60
2
60
2
60
2
F
Notrecommended 60
5 60
2
60
2
60
2 60
2
Note:
1Selectionoftimeratingandinsulationclassdependsonanalysis ofactualservicerequirement.
21nsulationclassshouldbe
ofahigherpermissibletemperaturerisethan theratedtemperatureriseofthemotor.However,the
temperatureriseofthemotorshallnotexceeditsratedtemperaturerise.Theactual
dutycycleofthedriveshouldalsobeanalyzed
beforefinalmotorselection.
'Insulationclassesshall bemanufacturer'sstandardunlessindicatedotherwise.
'Underunusualconditions,suchaslonglifts atreducedspeeds,abnormalinching orjoggingrequirements,shortrepeatedtravel
drivemovements,altitudesover3,300feetabovesealevel,abnormalambienttemperatures,etc.,the
motortimeratingmustbe
increasedaccordingly.
5ForD.C.drives,appropriateservicefactorsmaybeapplied
tothemotorhorsepowerratingforthedesignatedtimerating,inaddi­
tionto
the5.2.9.1.1.2K
c
factor,toattainadequatethermaldissipatingability,withcontroldesignedaccordingly.

5.2.8 Squirrelcagemotorsshallhavehighstartingtorque,lowstartingcurrentandhighslipatfullload,
simiiartoNEMADesign
D,unlessotherwisespecifiedbythecrane manufacturer.
5.2.9 Motorsizeselection:Themotorsizeselectioninvolvestorqueandthermalconsiderations.
5.2.9.1Themotorratingofanydrive,hoistorhorizontaltravel, usingeither
ACorDCpower,isbasically
themechanicalhorsepowerwithconsiderationsfortheeffectofcontrol,ambienttemperature,and
serviceclass.
5.2.9.1.1 HoistDrives
5.2.9.1.1.1MechanicaiHorsepower
Mechanical
HP= W x V
33000xE
W=totalweight inpoundsto beliftedbythehoistdriveropesystem.Thisincludes allitems
applicabletothehoistsuch
asthepurchaser'sliftedload,whichincludespurchaserfurn­
ishedattachmentsandcranemanufacturersfurnisheditemsincludingthehookblockand
attachments.
V
=specifiedspeed infeetperminutewhenliftingweightW
E
=mechanicalefficiencybetweentheloadandthemotor,expressed indecimalform,where:
Eg=efficiencypergearreduction.
n
=numberofgearreductions.
Es=ropesystemefficiencyperrotatingsheave.
m
=thenumber ofrotatingsheavesbetweendrumandequalizerpassedoverbyeachpartof
themovingropeattachedtothedrum.
TABLE
5.2.9.1.1.1-1
TypicalEfficiencyValues
,Bearings Eg*
Es
Anti-friction .97 .99
Sleeve .93 .98
*Note:Thevaluesofgearefficiencyshownapplyprimarilytospur,herringbone,andhelicalgear­
ing,andarenotintendedforspecialcasessuchaswormgearing.
55

56
HOISTMECHANICALEFFICIENCY
Thetabulatedvaluesofoverallhoistmechanicalefficiency, E,asdefinedforanti-friction~h~,~,,~
bearingsareshowninthefollowingTable 5.2.9.1.1.1-2.
TABLE5.2.9.1.1.1-2
HOISTOVERALL MECHANICALEFFICIENCY
TotalNumberof TotalNumber Efficiencyof
OverallCombined
Efficiency,E
RopesSupporting ofRotating RopesOnly
2Gear 3Gear
OneHookBlock Sheavesfor (Es)m
ReductionsReductions
EachRope
Double Single
OffDrum
n
=2 n=3
Reeved Reeved
m (.99
m
)
Egn
=.9409Egn=.9127
4 2 1 .990 .931 .903
6 3 2 .980 .922 .894
8 4 3 .970 .913 .885
10 5 4 .960 .904 .877
12 6 5 .951 .895 .868
14 7 6 .941 .886 .859
16 8 7 .932 .877 .850
18 9 8 .922 .868 .842
20 10 9 .913 .859 .834
22
11 10 .904 .851 .825
24 12 11 .895 .842 .817
26 13 12 .886 .834 .809
28 14 13 .877 .826 .801
30 15 14 .869 .817 .793
32 16 15 .860 .809 .785
34 17 16 .851 .801 .777
36 18 17 .843 .793 .769
38 19 18 .834 .785 .761
40 20 19 .826 .777 .754
42
21 20 .818 .769 .746
5.2.9.1.1.2RequiredMotorHorsepower:
Thehoistmotorshallbeselectedsothatitshorsepowerratingshouldnotbelessthanthat
bythefollowingformula:
Requiredratedhorsepower
=MechanicalhorsepowerxKc
whereKc
=Controlfactor,which isacorrectionvaluethataccountsfortheeffectsthe
onmotortorqueandspeed.
Kc
=1forthemajorityofcontrolssuchasACwoundrotormagneticorstatic
wheretherearenosecondarypermanentslipresistors,systemsfor
"mllm.,
motors,andconstantpotentialmagneticsystemswithDCPowershop
ForACwoundrotorsystems,magneticorstaticcontrol,withsecondarypermanentslip
Kc
= motorratedfullload RPM
*motoroperatingRPM,whenhoisting
*Atratedtorquewithpermanentslipresistors
Kcvaluesforpowersuppliesrectifiedonthecrane,forusewithDCmotors,magnetic
controlsystems,shallbedeterminedbyconsultationwiththemotorandcontrol
Themethodsdescribedforhoistmotorhorsepowerselectionarerecommendedforuse
CMAAClass
D.ForClassesEand F,dueconsiderationshallalsobegiventothe
th~,m.,1

HP
Ka
=
Ks=
W=
V=
causedbytheservice.Forexample,thismayrequirelargerframe,largerhorsepower,forced
cooling,etc.
Latitudeispermittedinselectingthenearestratedmotorhorsepower,overorundertherequired
horsepower,toutilizecommerciallyavailablemotors.Ineithercase,dueconsiderationmustbe
giventoproperperformance
ofthedrive.
5.2.9.1.2
BridgeandTrolleyDrives
5.2.9.1.2.1indoorCranes:BridgeandTrolley
RequiredMotorHorsepower:
Thetravelmotorshallbeselectedsothatthehorsepowerratingisnotlessthanthatgivenby
the followingformula:
KaxWxVxKs
accelerationfactorfortypeofmotorused
servicefactorwhichaccountsforthetype
ofdriveand dutycycle.
ForreferenceseeTable5.2.9.1.2.1-E
totalweighttobemovedincludingalldeadand
liveloadsintons
rateddrive speed
infeetperminute
Forthegeneralcase
ofbridgeandtrolleydrives:
Ka
=
f+2000axCr
g
xE
----"------,--,-x
33,000xKt
Nr
Nf
g=
E=
Nr=
Nf=
Kt=
f =rollingfriction ofdrive(includingtransmissionlosses)inpounds
perton)(Ref.Table5.2.9.1.2.1-0)
a
=averageorequivalentuniformaccelerationrate infeetpersecond
perseconduptoratedmotorRPM.Forguidance,seeTable
5.2.9.1.2.1-AandTable5.2.9.1.2.1-B
Cr=rotationalinertiafactor.
=WK2ofcrane&load+ WK2ofrotatingmass
WK2ofcrane&load
or1.05+
(all.5)ifWK2isunknown
32.2feetpersecondpersecond.
mechanicalefficiency
ofdrivemachineryexpressedasaperunit
decimal.(suggestuseof.9ifefficiencyisunknown).
ratedspeed
ofmotorinRPMatfullload.
freerunningRPM
ofmotorwhendrivingatspeedV(seealso
Section5.2.10.2)
equivalentsteadystatetorquerelativetoratedmotortorque
whichresultsinacceleratinguptoratedmotorRPM(Nr)inthe
sametimeastheactualvariabletorquespeedcharacteristicof
themotorandcontrolcharacteristicused.SeeTable5.2.9.1.2.1-C
fortypicalvalues
ofKt.
57

FreeRunning
a
=Acceleration
Rate
in
FullLoadSpeed
FeetperSec.perSec.
Ft.perMin.
Ft.perSec.forACor
DOMotors
60 1.0 .25Min.
120 2.0 .25-.80
180 3.0 .30-1.0
240 4.0
.40-1.0
300 5.0 .50- 1.1
360 6.0 .60- 1.1
420 7.0 .70-1.2
480 8.0 .80-1.3
540 9.0
.90-1.4
600 10.0 1.0-1.6
Guide
forTravelMotion
TypicalAccelerationRatesRange'
GUIDEFOR
MaximumAccelerationRatetoPreventWheelSkidding
TABLE5.2.9.1.2.1-A
RECOMMENDED VALUES
OFKr(ACCELERATINGTORQUEFACTOR)
Type
ofMotor TypeofControl 1K
r
ACWoundRotor Contactor-Resistor 1.3-1.5
2
ACWoundRotor StaticStepless 1.3-1.52
ACWoundRotor,Mill Contactor-Resistor
1.5-1.72
ACSqCage BallastResistor 1.3
DCShuntWound AdjustableVoltage 1.5
DCSeriesWound Contactor-Resistor 1.35
2Lowendofrangeisrecommendedwhenpermanentslipresistanceisused.
1Krisafunctionofcontroland/orresistordesign.
PercentofDrivenWheels 100 50 33.33 25 16.67
MaximumAccelerationRate
FeetperSec.perSec.-Dry
4.8 2.4 1.6 1.2
.8
Rails-Based on.2Coefficient
ofFriction
AccelerationRate
-WetRails-Basedon
2.9 1.5 1.0 .7 .5
.12Coefficient
ofFriction
TABLE5.2.9.1.2.1-C
Note'-Theactualaccelerationratesshallbeselectedtoaccount
forproperperformanceincluding
suchitems
asaccelerationtime,freerunningtime,motorandresistorheating,dutycycle,loadspot­
tingcapability,andhookswing.Theaccelerationrateshallnotexceedthevaluesshown
inTable
5.2.9.1.2.1-Btoavoidwheelskidding.
Note2-ForD.C.seriesmotorstheaccelerationrate'a'isthevalueoccurringwhileonseriesresistors.
Thiswouid
beintherangeof50to80percentofthefreerunningspeed(Nf).
TABLE5.2.9.1.2.1-B
58

------------------------------
TABLE5.2.9.1.2.1-0
SuggestedValues
forf(FrictionFactor)
ForBridges
&TrolleyswithMetallicWheels
&Anti-FrictionBearings
WheelDia.
Inches
36 30 27242118 15 12 1086
Friction
LblTon(f)10
1012 1212 15 15 15 15 16 16
Note1-Forcranesequippedwithsleevebearingsofnormalproportions,
africtionfactorof
24poundspertonmay beused.
Note
2-Theabovefrictionfactorsmayrequiremodificationsforother
variablessuchaslowefficiencywormgearing,non-metallicwheels,special
bearings,andunusualrailconditions.
TABLE5.2.9.1.2.1-E
Recommended Values
ofTravelDriveServiceClassFactor Ks3
DCConstantPotential
ACMagnetic
ACStaticwith
CMAA w/AISESeriesMillMtrs' fixedSecondary
Service AdjustableVoitage Resistance
Class
60Minutes30Minuteswith DCShuntMotors(PermanentSlip)
A
.75 1.0 1.0 1.2
B .75 1.0 1.0 1.2
C
.75 1.0 1.0 1.2
D
.85 1.15 1.1 1.3
E1 1.0 N/A 1.2 1.4
F2 1.4 N/A 1.4 1.6
1TherecommendedvaluesshownforClassEarebased onamaximumof 30
percenttime onandamaximumof 25cyclesperhourofthedrive.Acyclefora
bridgeortrolleyconsistsoftwo
(2)moves(one (1)loadedandone (1)unloaded).
Fordrivedutyhigherthanthisbasis,itisrecommendedthatdutycyclemethods
ofanalysis
beused.
2TherecommendedvaluesshownforClassFarebased onamaximumof 50per­
centtime
onandamaximumof 45cyclesperhourofthedrive.Acycleforabridge
ortrolleyconsistsoftwo
(2)moves(one (1)loadedandone (1)unloaded).Fordrive
dutyhigherthanthisbasis,it
isrecommendedthatdutycyclemethodsofanalysis
beused.
3Forrecommendedvaluesof Ksforcontrolsnotshown,consultcranemanufacturer.
'ForindustrialtypeD.C.motors,consultcranemanufacturer.
5.2.9.1.2.2Latitudeispermitted
inselectingthenearestratedmotorhorsepower overorunder,therequired
horsepowertoutilizecommerciallyavailablemotors.
Ineithercase,considerationmust begiven
toproperperformanceofthedrive.
5.2.9.1.2.3OutdoorCranes:Bridgedrivemotorhorsepowerforoutdoorcranes.
59

~._--~._-- •..._---------------
5.2.9.1.2.3.1Computethefreerunningbridgemotorhorsepower(HPF)atratedloadandratedspeed,
inganywindload,usingthefollowingformula:
HPF
=W x V x f
33000
whereW
=fullloadweightto beaccelerated intons.
V
=fullloadspeed infeetperminute.
f
=frictionfactor =poundsperTable5.2.9.1.2.1-D
5.2.9.1.2.3.2Computethefreerunningbridgemotorhorsepowerduetowindforceonly(HPw)using
the
ingformula:
HPw
=P xwindareax V
33000
xE
where:P
=windpressure inpoundspersquarefootcomputedfromtheformulaP =
whereVwisthewindvelocity inmilesperhour.
whenVwisunspecified,P
=5poundspersquarefootshouldbeused.
Windarea
=effectivecranesurfaceareaexposedtowind insquarefeet ascomputedin
3.3.2.1.2.1
V
=fullloadspeed infeetperminute.
E
=bridgedrivemechanicalefficiency.
5.2.9.1.2.3.3Thebridgedrivemotorhorsepowershall
beselectedsothatitshorsepowerrating
belessthangivenbythefollowingformula:
Requiredmotorhorsepower
=0.75(HPF +HPw)Ks
usingHPFandHPw ascomputedabove.
where:
Ks=serviceclassfactorutilizedperTable5.2.9.1.2.1-E
5.2.9.1.2.3.4Thefollowingitemsmustbeconsidered
intheoverallbridgedrivedesigntoassure
tionunderallspecifiedloadandwindconditions:
a.Properspeedcontrol,accelerationandbrakingwithoutwind.
b.Abilityofcontroltoreachfullspeedmodeofoperationagainstwind.
c.Bridgespeed, onanycontrolpoint,whentravelingwiththewindnottoexceed
resulting
inthemaximumsafespeedofthebridgedrivemachinery.
d.Avoidanceofwheelskiddingwhichcouldlikelyoccurunder noload,lowpercent
andwindconditions.
e.Sufficientbrakingmeanstomaintainthebridgebrakingrequirements asdefined
4.9.4.
5.2.9.1.2.4OutdoorCranes:Trolleydrivemotorhorsepowershallusesameselection procedure
cranespersection5.2.9.1.2.1.
5.2.10 Thegearratioshouldbeselectedtoprovidethespecifieddrivespeedwithrated
hook,fortheactualmotorandcontrolsystemused.
60

5.2.10.1 HoistDriveGearRatio.
Hoistdrivegearratio
Nfx
0x
IT
=----
RxVx12
where:Nf =freerunningmotor RPMwhenhoistingratedload W(Ibs)atspeedV(FPM)the
value
Nfisestablishedfromthemotor-controlspeed-torquecurvesatthefullloadhoisting
(HPFL).
HPFL=
WxV
33000xE
E=mechanicalefficiencyper5.2.9.1.1.1.
o=drumpitchdiameter ininches.
V
=specifiedfullloadhoistingspeed inFPM
R=ropereductionratio =totalnumberofropes
supportingtheloadblock
numberofropesfrom
thedrum(s)
5.3.1 Typesofelectricalbrakesforhoistandtraversemotionsshall bespecifiedbythecranemanufacturer.
5.3.6 Brakecoiltimeratingshall
beselectedforthedurationandfrequencyofoperationrequired bythe
service.Anyelectricaltraversedrivebrakeusedonlyforemergencystop
onpowerlossorsetting
byoperatorchoiceshallhaveacoilratedforcontinuousduty.
5.3.2 RefertoSection4.9ofthisspecificationforbrakeselectionandrating.
5.3.3 Holdingbrakesshall
beappliedautomaticallywhenpowertothebrakeisremoved.
5.3.4
Onhoistsequippedwithtwoelectricholdingbrakes,atimedelaysetting ofonebrakemaybeincluded.
5.3.5
Ondirectcurrent shuntbrakes,itmay bedesirabletoincludeaforcingcircuittoproviderapidset­
tingandrelease.
61
Nf=freerunning RPMofthemotor,afterthedrivehasaccelerated,withratedload
tothesteadystatespeed
V.ThevalueofNfisestablishedfromthemotor-controlspeed­
torquecurves
atthefreerunninghorsepower (HPFR)
HPFR=WxfxV
33000
TravelDriveGear Ratios-BridgeandTrolley.
Bridgeortrolleydrivegearratio
=NfxOwx
IT
Vx12
where:W=totalload intons.
f
=rollingfriction inpoundspertonreferenceTable5.2.9.1.2.1-0
V
=specifiedfullloadtraveldrivespeed infeetperminute.
Ow=wheeltreaddiameter ininches.
Variationsfromthecalculatedgearratioispermissibletofacilitatetheuseofstandardavailable
ratios,providedthatmotorheatingandoperationalperformanceisnotadverselyaffected.The
actualfullloaddrivespeedmayvaryamaximumof
±10percentofthespecifiedfullloadspeed.
5.3BRAKES
5.2.10.3
5.2.10.2

MaximumIntermittent Rating"
Sizeof 8-hour Horsepowerat
ContactorOpenRating,Amperes'
460and
Amperes
230Volts575Volts
0 20 20 3 5
1 30 30
7V2 10
2 50 67 20 40
3 100 133 40 80
4 150 200 63 125
5 300 400 150 300
6 600 800 300 600
7 900 1200 450 900
8 1350 1800 600 1200
Typicalpowermeansincludedynamiclowering,eddy-currentbraking,counter-torque,regenerat
braking,variablefrequency,andadjustableorvariablevoltage.
Typicalmechanicalmeansincludemechanicalloadbrakesorself-lockingwormdrives.
BridgeandTrolleyTravel
Withtheexceptionofflooroperatedpendantcontrolclass
A,B&Ccranes,allbridgesandtroll
shall
befurnishedwithreversingcontrolsystemsincorporatingpluggingprotection.Typical
pi
gingprotectionincludeamagneticpluggingcontactor,ballastresistors,slipcouplings,m
characteristics,orstaticcontrolledtorque.
Oncraneswithacombinationofcabwithmasterswitches,andpendantfioorcontrol,theapplicabl
specificationsforcabcontrolledcranesshallapply.Onflooroperatedcraneswherethependa
masterisalsoused
ina'skeleton'cab,theapplicablespecificationsforfloorcontrolledcranes sha
apply.
MagneticControl
Eachmagneticcontrolshallhavecontactorsofasizeandquantityforstarting,accelerating,
rey
ing,andstopping,andforthespecifiedCMAAcraneserviceclass.Allreversingcontactors
bemechanicallyandelectricallyinterlocked.
TheminimumNEMAsizeofmagneticcontactorsshallbe
inaccordancewithTables
WoundRotor,5.4.5.2-2
ACSquirrelCage,and5.4.5.2-3 DC.Definitepurposecontactors
~n"r.ifil
ratedforcrane andhoistdutyservicemaybeusedforCMAAcraneserviceclasses A,
providedtheapplicationdoesnotexceedthecontactormanufacturer'spublishedratings.
TABLE5.4.5.2-1
ACCONTACTOR RATINGSFORWOUNDROTORMOTORS
Onremotecontrolledcranes,such
asbyradioorcarriersignaltheapplicablefloorcontrolspecific
tionsshallapply,unlessotherwisespecified.
Controlsystemsmaybemanual,magnetic,staticor
incombinationasspecified.
Hoistsshall
befurnishedwithacontrolbrakingmeans,eithermechanicalorpower.
'Theultimatetripcurrentofoverload(overcurrent)relaysorothermotorprotective
de'{ioElS
shallnotexceed115percentofthesevaluesor125percentofthemotorfullloadcurrent,
issmaller.
•'Woundrotorprimarycontactorsshallbeselectedtobenotlessthanthecurrentand
ratings.Woundrotorsecondarycontactorsshallbeselectedto benotlessthanthe
secondarycurrent,usingcontactorintermittentrating.Theampereintermittentratingofa
secondarycontactorwithpoles
indeltashallbe
1
1
/2timesitswoundrotor
5.4.2
5.4.4
5.4.5.2
5.4.3
5.4.4.1
5.4.4.2
5.4.5
5.4.5.1
5.4CONTROLLERS, ALTERNATINGANDDIRECTCURRENT
5.4.1 Scope-Thissectioncoversrequirementsforselectingandcontrollingthedirection,speed,acceler
tionandelectricalbrakingofthecranehoistandtravelmotors.Othercontrolrequirementssucha
protectionandmasterswitchesarecovered
inothersections.
62

TABLE5.4.5.2-2
ACCONTACTOR RATINGSFORSQUIRRELCAGEMOTORS
MAXIMUMINTERMITTENTHORSEPOWER RATING
Sizeof 230 460
&575
ContactorVolts Volts
0 3 5
1
7
112 10
2 15 25*
3 30* 50*
*Squirrelcagemotorsover20horsepowerarenotnormallyusedforcranemotions.
TABLE5.4.5.2-3
DC
CONTACTORRATINGSFOR230 VOLTCONTROLS**
8-hour MaximumIntermittentRating
Sizeof OpenRating,
Contactor Amperes Amperes Horsepower
1 25
30 7V2
2 50 67 15
3 100 133 35
4 150 200
55
5 300 400 110
6 600 800 225
7* 900 1200 330
8* 1350 1800 500
9' 2500 3330 1000
*Resistorsteppingcontactorsmay
beratedfortheactualcurrentcarried.
**ForconstantpotentialD.C.drivesotherthan230to250volts,refertoNEMAICS3-443.20.3.
ForadjustablevoltageD.C.drives
atvoltageotherthan230volts,thecontactorhorsepowerratings
will
bedirectlyproportionaltothevoltageuptoamaximumof 600volts.
5.4.5.3Theminimumnumberofresistorsteppingcontactors,timedelaydevicesandspeedpointsforA.C.
woundrotormotorsandD.C.motorsshallbe
asshowninTable5.4.5.3-1.
63

TABLE5.4.5.3-1
NotestoTablecontinueonnextpage.
MINIMUMNUMBEROFRESISTORSTEPPINGCONTACTORS,
TIMEDELAYDEVICESANDSPEEDPOINTSFORMAGNETICCONTROLS
4
4
5
5
6
6
7
4
5
4
5
5
5
5
6
3
4
3
4
2
3
FORD.C.MOTORSERIESRESISTORS @230VOLTS
CASCONTROLCRANES
FORD.C.MOTORSERIESRESISTORS @230VOLTS
FLOORCONTROLCRANES
2 2 3 1 1
Sameasforcabcontrolcranes
CMAACLASS CMAACLASS CMAACLASS
A,SCD,E,F A,SC D,E,FA,SC D,E,F
FORA.C.WOUNDROTORSECONDARY RESISTORS
CASCONTROLCRANES
MIN.NO.OF MIN.NO.OF MIN.NO.OF
RESISTORSTEPPING TIMEDELAY SPEEDPOINTS
CONTACTORS DEVICES
(SeeNote 1) (SeeNote 2) (SeeNote 3)
FORA.C.WOUNDROTORSECONDARY RESISTOR
FLOORCONTROLCRANES
2 2 3 1 1
3 3 4 2 2
Same
asforcabcontrolcranes
33312244
3 4 4 1 3**3** 4 5
3 4 4 1 3**3** 4 5
3 4 4 1
3** 3** 4 5
4 4 4
3** 3** 3** 5 5
5 5 5
4**4** 4** 6 6
2*3 3 1 2 2 3
4
33312244
3*4 4 1 3 3 4 5
44413355
55514466
55544466
66655577
HORSEPOWER
Lessthan 30
Greaterthan 30
othru15
16thru30
Greaterthan 30
Lessthan8
8thru
15
16thru30
31thru75
76
thru125
126thru200
Greaterthan 200
Lessthan8
8thru
15
16
thru35
36
thru55
56thru110
Greaterthan 110
64

FootNotestoTable5.4.5.3-1
•A10percentslipresistanceorone (1)additionalcontactorshall beprovidedonbridgeandtrolley
drives.
..Numbersshownapplytobridgeandtrolleydrives.Forhoists,aminimumoftwo (2)timedelay
devicesarerequired
inthehoistingdirection.
Note
1:One(1)contactorofthenumbershownmaybeusedforpluggingonbridgeortrolleycon­
trolsorlowtorque
onhoistcontrols.
Ifmorethanone
(1)pluggingstep isused,additionalcontactorsmayberequired.
Note
2:Pluggingdetectionmeansshall beaddedtopreventclosureofthepluggingcontactorsuntil
thebridgeortrolleydrivehasreachedapproximatelyzerospeed.
Note
3:Aspeedpointmaybemanualhandcontrolled,orautomatic. asrequired.
Theminimumnumberofoperatorstationhandcontrolledspeedpointsshall
bethree(3)ineach
directionexcept
asfollows:
(a)ClassC,D,Eand F,caboperatedhoistcontrollerswithfour (4)ormoreresistorsteppingcontac­
torsshallhaveaminimumoffive
(5)handcontrolledspeedpoints ineachdirection.
(b)CiassAand B,controllersfor A.C.woundrotormotorslessthan8horsepowershallhaveaminimum
oftwo
(2)handcontrolledspeedpoints ineachdirection.
(c)Controllersforflooroperatedbridgeandtrolleymotionsshallhaveaminimumofone (1)hand
controlledspeedpoint
ineachdirection.
(d)Whenspecified,adriftpoint(nomotorpower,brakereleased)shall
beincludedasahandcon­
trolledspeedpoint
inadditiontotheaboveminimumrequirementsforbridgeandtrolleymotions.
Onmulti-motordrives,thecontactorrequirementsofthissectionapplytoeachmotorindividually,
exceptifonesetoflinereversingcontactorsisusedforallmotors
inparallel,thenthelinecontactors
shallbesizedforthesumoftheindividualhorsepowers.Theresistorsteppingcontactorsmay
be
commonmulti-poledevices,ifdesired. Anindividualsetofaccelerationresistorsforeachmotorshall
beprovidedunlessotherwisespecified.Timingshall
bedonewithone (1)setoftimedelaydevices.
StaticControl
Staticpowercomponentssuch asrectifiers,reactors,resistors,etc., asrequired,shall besizedwith
dueconsiderationofthemotorratings,driverequirements,serviceclass,dutycycle,andapplica­
tion
inthecontrol.
Magneticcontactors,ifused,shall
beratedinaccordancewithSection5.4.5.2.
Staticcontrolsystemsmay
beregulatedornon-regulated,providingsteppedorsteplesscontrolus­
ingACor
DCmotors,asspecified.
Traveldrivessystemsmay
bespeedand/ortorqueregulated, asspecified.Ifaspeedregulatedsystem
isselectedthemethodofdecelerationtoaslowerspeedmay
bebydrivefrictionordrivetorque
reversal,
asspecified.Hoistdrivesareassumed tobeinherentlyspeedregulatedanddueconsidera­
tionshall
begiventotheavailablespeedrange,thedegreeofspeedregulation,andoptionalloadfloat.
PrimaryreversingofACmotordrivesshallbeaccomplishedwithmagneticcontactorsorstaticcom­
ponents
asspecified.Whenstaticcomponentsareused,alinecontactorshall befurnishedforthe
drive.
Currentandtorquelimitingprovisionsshallbeincludednottoexceedthemotordesignlimitations,
andwithconsiderationfordesiredacceleration.
65

5.4.7 Enclosures
5.4.7.3Unlessotherwisespecified,enclosuresforelectricalequipmentotherthancontrolsshall
be
fortheenvironment,and inaccordancewiththefollowingpractices.:
ENCLOSURES FORHAZARDOUS LOCATIONS
ENCLOSURES FORNON-HAZARDOUS LOCATIONS
-Generalpurpose-Indoor.
-Generalpurpose-Indoor-Gasketed.
(Note:
Type1-Aenclosureisnotcurrentlyrecognizedby NEMA)
-Dripproof-Indoor.
-Dusttight,raintightandsleet-resistant,ice-resistant-Outdoor.
-Rainproofandsleet-resistant,ice-resistant-Outdoor.
-Dusttight,raintightandsleet(Ice-)proof-Outdoor.
-Watertightand
dusttight-IndoorandOutdoor.
-Watertight,dusttightandcorrosion-resistant-IndoorandOutdoor.
-Industrial
Use-Dusttightanddriptight-Indoor.
-Oiltight
anddusttight-Indoor.
Type1
Type1A
Type2
Type3
Type3R
Type3S
Type4
Type4X
Type12
Type13
Type7 -Class I,DivisionI,GroupA,B,C,orD-IndoorHazardous
Locations-Air-breakEquipment.
Type9 -Class II,DivisionI,GroupE,F,orG-IndoorHazardousLocations­
Air-breakEquipment.
(a)Auxiliarydevicessuch assafetyswitches,junctionboxes,transformers,pendant
maIS"!fS.
panels,mainlinedisconnects,accessorydrivecontrols,brakerectifierpanels,limit~witr.i,"~
maybesuppliedinenclosuresotherthanspecifiedforthecontrolpanel.
(b)Resistorcoversforindoorcranes,ifrequired topreventaccidentalcontactundernormal
conditions,shallincludenecessaryscreening
andventilation.Resistorcoversfor VUI.VV'UI
shallbeadequatelyventilated.
(c)Brakecovers:
1.Brakes,forindoorcranes,may besuppliedwithoutcovers.
2.Brakes,foroutdoorcranes,shall besuppliedwithcovers.
5.4.7.2Enclosurescontainingdevicesthatproduceexcessiveheatorozoneordevicesthatrequire
forproperoperation,mayrequireventilationmeans.Theseenclosuresshall
beequipped
necessaryventilationsuch
aslouversorforcedcooling.Airfilters orsimilardevicesmay be
dependingontheenvironment.Sincetheoriginaldefinitionoftheenclosureperits
~n"r.ifiArl
maybesomewhatalteredbythenatureoftheventilationmeans,thefinaldesign
functionalintent.
5.4.7.1Controlpanelsshould
beenclosedandshall besuitablefortheenvironment andtypeof
cnrmrlL
Thetypeofenclosureshall bedeterminedbyagreementbetweenthepurchaser andthe
manufacturer.Atypicalnon-ventilatedenclosuremay
beinaccordancewith oneofthefollowing
StandardspublicationICS6classifications:
5.4.6.9Thecranespecificationsshallstatewhetherthehoistmotorhorsepowerusedwithstaticcontrol
onthebasisofaveragehoistingandloweringspeedwithratedloador onthebasisofactual
hni~tir,n
speedtoraiseratedload.
5.4.6.7Controltorquepluggingprovisionsshall
beincludedforbridgeortrolleydrives.
5.4.6.8Permanentslipresistancemay
beincludedprovidingdueconsideration isgiventotheactual
speedsunderratedconditions.
66

5.5RESISTORS
5.5.1 Resistors(exceptthoseinpermanentsections)shallhaveathermalcapacityofnotlessthanNEMA
Class150seriesforCMAAcraneserviceclasses
A,BandCandnotlessthanNEMAClass160
seriesforCMAAserviceclasses
D,E,andF.
5.5.2 Resistorsusedwithpowerelectricalbrakingsystems onA.C.hoistsnotequippedwithmechanical
loadbrakesshallhaveathermalcapacityofnotlessthanNEMAClass160series.
5.5.3 Resistorsshallbedesignedtoprovidetheproperspeedandtorqueasrequiredbythecontrolsystem
used.
5.5.4 Resistorsshall
beinstalledwithadequateventilation,andwithpropersupportstowithstandvibra­
tionandtopreventbrokenpartsormoltenmetalfallingfromthecrane.
5.6PROTECTION ANDSAFETYFEATURES
5.6.1 Acranedisconnectingmeans,eitheracurrent-ratedcircuitbreakerormotorratedswitch,lockable
intheopenposition,shallbeprovided
intheleadsfromtherunwaycontactconductorsorotherpower
supply.
5.6.2 Thecontinuouscurrentratingoftheswitchorcircuitbreaker
inSection5.6.1shallnotbelessthan
50percentofthecombinedshorttimemotorfullloadcurrents,norlessthan
75percentofthesum
oftheshorttimefullloadcurrentsofthemotorsrequiredforanysinglecranemotion,plusanyaddi­
tionalloadsfedbythe
device.
5.6.3 ThedisconnectingmeansinSection5.6.1shallhave anopeningmeanslocatedwhereitisreadily
accessibletotheoperator'sstation,oramainlinecontactorconnectedafterthe
deviceinSection
5.6.1maybefurnishedandshallbeoperablefromtheoperator'sstation.
5.6.4 Powercircuitfaultprotection
devicesshallbefurnishedinaccordancewithNECSections110-9In­
terruptingRating.Theusershallstatetheavailablefaultcurrentorthecranemanufacturershall
stateinthespecificationtheinterruptingratingbeingfurnished.
5.6.5 BranchcircuitprotectionshallbeprovidedperNECSection610-42BranchCircuitProtection.
5.6.6 MagneticMainlinecontactors,whenused,shallbeasshowninTables5.6.6-1and5.6.6-2.Thesize
shallnot
belessthantheratingofthelargestprimarycontactorused onanyonemotion.
67
===......----------------IIiIIIII----.iI.fu1j!lil~I.I.••••1I

7'12
15
35
55
110
225
330
500
Maximum
Horsepower
foranyMotion
10
22
55
80
160
320
480
725
MaximumTotal
MotorHorsepower
30
67
133
200
400
800
1200
1800
3330
Maximum
Intermittent
DutyRating
Amperes
TABLE
5.6.6-2
RATINGSAT230to250VOLTS OFDC
CONTACTORS
forMainlineService
25
50
100
150
300
600
900
1350
2500
8-hour
Openrating
Amperes1
2
3
4
5
6
7
8
9
TABLE5.6.6-1
ACCONTACTOR RATINGS
forMainlineService
8-hour
Maximum
MaximumTotal MaximumHorsepower
Sizeof
Openrating
Intermittent MotorHorsepower for anyMotion
Contactors
Amperes
DutyRating
460& 460&
Amperes'
230V 575V 230V 575V
0 20 20 6 6 3 5
1 30 30 10 20 7V2 10
2 50 67 30 60 20 40
3 100 133 63 125 40 80
4 150 200 110 225 63 125
5 300 400 225 450 150 300
6 600 800 450 900 300 600
7 900 1200 675 1350 450 900
8 1350 1800 900 1800 600 1200
Sizeof
Contactors
'Theultimatetripcurrentofoverload(overcurrent)relaysorothermotorprotectivedevices
shallnotexceed115percentofthesevaluesor125percentofthemotorfullloadcurrent,
whichE1Ver
issmaller.
68

5.6.7 Motorrunningovercurrentprotectionshall beprovidedinaccordancewithNEC610-43MotorRun­
ningOvercurrentProtection.
5.6.8 Controlcircuitsshall
beprotectedinaccordancewithNEC610-53overcurrentprotection.
5.6.9 Undervoltageprotectionshall
beprovidedasafunctionofeachmotorcontroller,or anenclosedpro­
tectivepanel,oramagneticmainlinecontactor,oramanual-magneticdisconnectswitch.
5.6.10
Anautomaticallyresetinstantaneoustripoverloadrelaysetatapproximately200percentofthehoist
motor
fUllloadcurrentshall befurnishedforD.C.hoists.Devicesofferingequivalentmotortorque
limitationmay
beusedinlieuoftheoverloadrelay.
5.6.11Cranesnotequippedwithspring-returncontrollers, spring-returnmasterswitches,ormomentarycon­
tactpushbuttons,shallbeprovidedwithadevicewhichwilldisconnectallmotorsfromtheline
on
failureofpowerandwillnotpermitanymotorto berestarteduntilthecontrollerhandleisbrought
tothe'off'position,oraresetswitchorbuttonisoperated.
5.6.12Remoteradiocranesshallbeprovidedwithapermissiveradiosignal
inadditiontoacranemotion
radiosignal,andbothsignalsshall
bepresentinordertostartandmaintainacranemotion.
5.6.13Onautomaticcranes,all
motionsshallbediscontinued ifthecranedoesnotoperate inaccordance
withtheautomaticsequenceofoperation.
5.6.14WorkingspacedimensionsshallapplyonlytobridgemountedcontrolpanelenclosuresorsWitching
devicesthatareserviceablefromacranemountedwalkway.Thehorizontaldistancefromthesur­
faceoftheenclosuredoor
tothenearestmetallicorotherobstructionshallbea minimumof30inches.
Inaddition,theworkspace infrontoftheenclosureshallbeatleast aswideastheenclosureand
shallnot
belessthan30incheswide.
5.6.15WarningDevices
5.6.15.1Exceptforfloor-operatedcranesagongorothereffectivewarningsignalshall
beprovidedforeach
craneequippedwithapowertravelingmechanism.
5.6.15.2OwnerorSpecifier,havingfullknowledgeoftheenvironment
inwhichthecranewill beoperated,
isresponsiblefortheadequacyofthewarningdevices.
5.7MASTERSWiTCHES
5.7.1 Cabcontrolledcranesshall befurnishedwithmasterswitchesforhoist,trolleyandbridgemotions,
asapplicable,thatarelocatedwithinreachoftheoperator.
5.7.2 Cabmasterswitchesshall
beprovidedwitha notch,orspringreturnarrangementlatch,which, in
the'off'positionpreventsthehandlefrombeinginadvertentlymovedtothe'on'position.
5.7.3 Themovementofeachmasterswitchhandleshouldbe
inthesamegeneraldirection astheresult­
antmovementoftheload,except
asshowninFigures5.7.3aand5.7.3b,unlessotherwisespecified.
5.7.4 ThearrangementofmasterswitchesshouldconformtoFigures5.7.3aand5.7.3b,unlessotherwise
specified.
5.7.5 Thearrangementofothermasterswitches,leverswitchesorpushbuttonsforcontroller,.otherthan
hoist,trolleyorbridge,(such
asgrabs,magneticdisconnects,turntables,etc.)arenormallyspecified
bythemanufacturer.
5.7.6 Ifamasterswitchisprovidedforamagnetcontroller,the'lift'directionshallbetowardtheoperator
andthe'drop'directionawayfromtheoperator.
5:7.7 Cranesfurnishedwithskelton(dummy)cabsareto
beoperatedviathependantpushbuttonstation
andtherebydonotrequiremasterswitchesunlessotherwisespecifiedbythepurchaser.
5.7.8 Masterswitchesshallbeclearlylabeledtoindicatetheirfunctions.
69

Right-Hand
Bridge
~-=--
M.Hoisl
--<>-+--:::---j-l
Trolley~2
+---<>---+---:,=:--+t=!:
Bridge ~fJ
~----+--1
Right-HandCab
A,Ho;st
M,Hoist
=:::..r,-<>-+--="""""'­
Trolley
~--"""""'-
~-~~
CenterCab
4MotorCrane
Fig.
5.7.3b
CenterCab
3MotorCrane
RECOMMENDED ARRANGEMENT OFCONTROLLERS
M.Hoist
Fig.5.7.3a
RECOMMENDED ARRANGEMENT OFCONTROLLERS
BridgeDriveGirder
Left-handCab
BridgeDriveGirder
Left-HandCab
Bridg<:>
H----~
Bridge
Iff-+----~
Trolley
f-t----::--+-0-+-,'=:.J
®~
Ci:EJ+--=--=::'-----.0---+--r-L=:.J
~~ AHoist
L~+--- +-0--->-TL='-'
70

5.8FLOOROPERATED PENDANTPUSHBUTTON STATIONS
5.8.1 ThearrangementofpendantpushbuttonstationsandradiotransmittersshouldconformtoFigures
5.8.1a,5.8.1b.,or5.8.1c.
5.8.2 Pushbuttonsshalireturntothe'off'positionwhenpressureisreleasedbythecraneoperator.
5.8.3 Pendantpushbuttonstationsshallhaveagroundingconductorbetween agroundterminal
inthe
stationandthecrane.
5.8.4 Themaximumvoltage
inpendantpushbuttonstationsshallbe150Volts ACor300VoltsDC.
5.8.5 Pushbuttonsshallbeguardedorshrouded
topreventaccidentaiactuationofcranemotions.
5.8.6 'Stop'pushbuttonsshallbecoloredred.
5.8.7 Pendantpushbuttonstationenclosuresshall
beasdefinedinSection5.4.7.3(a).
5.8.8 Pendantpushbuttonstationsshalibesupported
inamannerthatwillprotecttheelectricalconduc­
torsagainststrain.
5.8.9 Minimumwiresizeofmulticonductorflexiblecordsforpendantpushbuttonstationsshall
be#16AWG
unlessotherwisepermittedbyArticle610oftheNationalElectricalCode.
71

Fig.5.8.1b
PendantPushbuttonStation
Arrangements
4MOlion
BridgeTrolley
Main Aux.
HoistHoist
X y DownDown
ff
1
f~
wz Up Up
~~
:3Motion
BridgeTrolleyHoist
X y Down
J
iti
wz Up
~~
Fig.5.8.1c
RadioCraneControl
TransmitterLever
Arrangement
Note:
Markingsonthecrane,visiblefrom
thefloor,shallindicatethedirection
ofbridgeandtrolleytraveicorresponding
tothe
W,X,YandZdesignations on
thetransmitter.
Thelettersusedareonlyintendedfor
thepurposeofillustration.
Designationsshould
beselectedas
appropriatetoeachinstallation.
0
PowerOn
0
PowerOn
0
Up
0
Down
MainHoist
0
Up
0
Down
Aux.Hoist
0
Right
0
L'ft
Trolley
0
Forward
0
Reverse
Bridge
0, Off
I I I
Power
Fig.5.8.1a
Ineachuserlocation,therelativearrangement
ofunits
oncranependantpushbuttonstations
shouldbestandardized.
Intheabsenceofsuch
standardization,suggestedarrangementsare
shown
inFigure5.8.1aand5.8.1 b.
0
PowerOn
0
PowerOff
0
Up
0
Down
MainHoist
0
Up
0
Down
Aux.Hoist
0
Right
0
L'ft
Trolley
0
Forward
0
Reverse
Bridge
72

5.9LIMITSWITCHES
5.10INSTALLATION
5.11BRIDGECONDUCTOR SYSTEMS
73
Electricalequipmentshall besolocatedorenclosedtopreventtheoperatorfromaccidentalcontact
withlivepartsundernormaloperatingconditions.
Electricalequipmentshall
beinstalledinaccessiblelocationsandprotectedagainstambientenviron­
mentalconditions
asagreedtobythepurchaserandthecranemanufacturer.
Thecranemanufacturershallstatethetypeconductorstobefurnished.
Currentcollectors,ifused,shall
becompatiblewiththetypeofcontactconductorsfurnishedand
shall
beratedfortheampacityofthecircuit inwhichtheyareused.Two (2)setsofcurrentcollectors
shall
befurnishedforallcontactconductorsthatsupplycurrenttoaliftingmagnet.
Iflocalconditionsrequireenclosedconductors,theymust
bespecifiedbyownerorspecifier.
Thebridgeconductorsmay
bebareharddrawncopperwire,hardcopper,aluminumorsteel inthe
formofstiffshapes,insulatedcables,cablereelpickuporothersuitablemeanstomeetthepar­
ticularapplicationandshall
besizedandinstalled inaccordancewithArticle610oftheNational
ElectricalCode.
Thepublishedcraneintermittentratingsofmanufacturedconductorsystemsshallnot
belessthan
theampacityrequiredforthecircuit
inwhichtheyareused.
RefertoSection1.5of
70-1GeneralSpecificationsforinformation onrunwayconductors.
Currentcollectors,ifused,shallbecompatiblewiththetypeofcontactconductorsfurnished.The
collectorratingshallbesizedforthecraneampacity
ascomputedbyArticle610oftheNational
ElectricalCode.Aminimumoftwocollectorsforeachrunwayconductorshall
befurnishedwhen
thecraneisusedwithaliftingmagnet.
5.11.3
5.11.1
5.9.4 Lowerlimitswitchesshallbeprovidedwherethehookcanbeloweredbeyondtheratedhooktravel
undernormaloperatingconditionsandshall
beofthecontrolcircuittype.
5.9.5 Trolleytravelandbridgetravellimitswitches,whenspecifiedshall
beofthecontrolcircuittype.
5.9.6 Thetrippointofalllimitswitchesshall
belocatedtoallowformaximumrunoutdistanceofthemotion
beingstoppedforthebrakingsystembeingused.
5.9.1 Thehoistmotionofallcranesshallbeequippedwith
anovertravellimitswitch intheraisingdirec­
tiontostophoistingmotion.
5.9.2 Interruptionoftheraisingmotionshallnotinterferewiththeloweringmotion.Loweringoftheblock
shallautomaticallyresetthelimitswitchunlessotherwisespecified.
5.9.3 Theupperlimitswitchshall
bepowercircuittype,controlcircuittypeor asspecifiedbythepurchaser.
Themanufacturersproposalshallstatewhichtype
isbeingfurnished.
5.11.5
5.11.2
5.12.1
5.10.2
5.10.1
5.11.4
5.12.2
5.12RUNWAYCONDUCTOR SYSTEMS

5.13VOLTAGEDROP
74
5.13.1
5.13.2
5.13.3
5.13.4
5.14.5
Thepurchasershallfurnishactualvoltageattherunwayconductorsupplytapsnotmorethan105
percentandnotlessthan
96percentofthenominalsystemvoltage,andshalldefinetherequirements
oftherunwayconductorsystemtoachieve
aninputvoltagenotlessthan93percentofthenominal
systemvoltagetothecraneatthepointofrunwayconductorcollectionfarthestfromtherunway
conductorsupplytaps.
Thecranemanufacturershalllimitthevoltagedropswithinthecranetothemotorsandother
tricalloadstoapproximately2percentofthenominalsystemvoltage.
Allvoltagedrops
inSection5.13.1and5.13.2shall becomputedbyusingmainfeeder
individualmotorcurrents,fixedloadcurrents,anddemandfactorsofmultiplecranes
onthe
runwayasdefinedbyArticle610oftheNationalElectricalCode.
Voltagedropsshall
becalculatedduringmaximuminrush(starting)conditionstoinsurethatthe
terminalvoltagesarenotlessthan
90percentofratedmotorvoltage,andcontrolandbrake
vnl'O"Q"
arenotlessthan 85percentofdeviceratedvoltage.
Theactualoperatingvoltagesatthecranemotorterminalsshallnotexceed110percentornot
below
95percentofmotorratings,forratedrunningconditions,toachievetheresultsdefined
Section5.2.4(voltage.)

70-6RECOMMENDED CRANEINQUIRYDATASHEET
Fig.6.1
Customer _
SpecNo. _
Date _
1.NumberCranesRequired _
2.Capacity:MainHoist TonsAux.Hoist TonsBridge Tons
3.RequiredHookLift(Max.IncludingPitsorWellsBelowFloorEievation)
MainHoist
Ft. In.Aux.Hoist Ft. In.
4.ApproximateLengthofRunway Ft.
5.NumberofCranes onRunway
6.ServiceInformation: C.M.AAClass (SeeSection 70-2)
MainHoist:AverageLift Ft.NumberofLiftsperHour Speed EP.M.
HoursperDay Hook Magnet Bucket
GiveSize
&WeightofMagnetorBucket _
Aux.Hoist:AverageLift
,Ft.NumberofLiftsperHour Speed EP.M.
HoursperDay Hook Magnet Bucket _
GiveSize
&WeightofMagnetorBucket _
Bridge:
TrOlley:
NumberMovesperHour HoursperDay Speed F.P.M.
AverageMovement _
NumberofMovesperHour HoursperDay Speed
F.P.M.
AverageMovement
_
7.Furnishcompleteinformationregardingspecialconditionssuch asacidfumes,steam.hightemperatures,high
altitudes,excessivedustormoisture,verysevereduty,speciaiorpreciseloadhandling:
8.AmbientTemperature inBuiiding:Max. Min.
_
9.MateriaiHandled _
10.Crane toOperate:Indoors Outdoors Both _
75

15.TypeofControlEnclosure:(Ref.5.4.7.1) ~
Trolley _
Bridge _
AuxiliarynOlsl. _
BareWires Angles Other -+-+
Other _
MainHoist _
Describebriefly
(SeeItems7 &8)
--?
FurnishedBy: --......+
11.Power:Volts Phase Hertz ~A.C., Volts D.C.
13.LocationofControl:EndofCrane Center OnTrolley_
14.TypeofControl(Givecompleteinformation,includingnumberofspeedpoints) Ref.5.4.4
12.MethodofControl:Cab Floor Other _
20.ListofSpecialEquipmentorAccessoriesDesired
16.
TypeofMotors:(Givecompleteinformation)
_
17.MustwiringcomplywithSpecialConditionsorCodes ~+
21.Forspecialcraneswithmultiplehooksortrolleyorotheruniquerequirements,providedetailedinf,ornlatio,
onhookspacing,orientation,capacities,andtotalbridgecapacity.
19.RunwayConductorType:Insulated (MFR) _
18.BridgeConductorType:~_+
22.Completeattachedbuildingclearancedrawing,makingspecialnoteofanyobstructionswhichmay
withthecrane,includingspecialclearanceconditionsunderneaththegirdersorcab.
76

CLEARANCES: Completethebuildingdrawingbelow makingspecialnoteofanyobstructionswhichmay
interferewiththecraneincludingspecialclearancerequirementsundergirdersorcab.
77
PitFloorF
-I-'-----" -----"
Lowpointofrooftruss,lights,
sprinkler,orotherobstructions
Operating
Floor
A
(Span-ctocofrunwayrails)
l
<::
<::
L
IdlerGirder ("8"Girder)
'"
CenterlineofHooks--.(])
- - - - -I-,
iii
,
,
>- .-DriveGirder ("A"Girder)
'"
"
<::
oj
"
I
~
Walkway-ifrequired
~
Indicatethe "North"direction,caborpendantlocation,relativelocationsof
mainandauxiliaryhook,runwayconductorlocation,adjacentcranes,etc.
PLAN
-'
'0
ill
'0
a:
n
C--L
,
JI+-_IR<;:;r~A;f:(~SFP.::a"n--,c:...:cto:....:c_o"f"r..:u,-n,-w..:a""y_r,,a,-i1.::s),-_--=;:====-:"L E
-r--+-DH:'RailSize:a r
CapChannelSize:R +;.1p-,
Runway8eamSize' SL..:;::=:L
~
"TRunway/1
L1
M1
N
I
T-~ , U ConductorsIt11
, Type:P
Obstruction" V
8
1
ELEVATION
A H P
8
Q
C J R
D
K S
E L T
F
M U
G N
V

Fig.6.2
SUGGESTED OPERATINGSPEEDS
FEETPERMINUTE
FLOORCONTROLLED CRANES
CAPACITY HOIST TROLLEY BRIDGE
IN
TONS SLOW MEDIUM FAST SLOW MEDIUM FAST SLOW MEDIUM FAST
3 14 35 45 50 80 125 50 115 175
5 14
27 40 50 80 125 50 115 175
7.5 13
27 38 50 80 125 50 115 175
10 13 21 35 50 80 125 50 115 175
15 13 19 31 50 80 125 50 115 175
20 10 17 30 50 80 125 50 115 175
25 8 14 29 50 80 125 50 115 175
30 7
14 28 50 80 125 50 115 150
35 7
12 25 50 80 125 50 115 150
40 7 12 25 40 70 100 40 100 150
50 5 11 20 40 70 100 40 100 150
60 5 9 18 40 70 100 40 75 125
75 4 9 15 40 70 100 30 75 125
100 4 8
13 30 60 80 25 50 100
150 3
6 11 25 60 80 25 50 100
NOTE:Considerationmustbegiven toiengthofrunwayforthebridgespeed,span ofbridgeforthetroiiey
speed,distanceaveragetravei,andspottingcharacteristicsrequired.
Fig.6.3
SUGGESTED OPERATINGSPEEDS
FEETPERMINUTE
CABCONTROLLED CRANES
CAPACITY HOIST TROLLEY BRIDGE
IN
TONS SLOW MEDIUM FAST SLOW MEDIUM FAST SLOW MEDIUM FAST
3 14 35 45 125 150 200 200 300 400
5 14 27
40 125 150 200 200 300 400
7.5
13 27 38 125 150 200 200 300 400
10 13 21 35 125 150 200 200 300 400
15 13 19 31 125 150 200 200 300 400
20 10 17 30 125 150 200 200 300 400
25 8 14 29 100 150 175 200 300 400
30 7 14 28 100 125 175 150 250 350
35 7 12
25 100 125 150 150 250 350
40 7
12 25 100 125 150 150 250 350
50 5
11 20 75 125 150 100 200 300
60 5 9 18 75 100 150 100 200 300
75 4 9 15 50 100 125 75 150 200
100 4 8 13 50 100 125 50 100 150
150 3 6 11 30 75 100 50 75 100
NOTE:Considerationmustbegiven toiengthofrunwayforthebridgespeed,span ofbridgeforthetroiiey
speed,distanceaveragetravei,andspottingcharacteristicsrequired.
78

70-7GLOSSARY
ABNORMAL OPERATINGCONDITIONS:Environmental
conditionsthatareunfavorable,harmfulordetrimentaltoor
fortheoperationofahoist,suchasexcessivelyhigh(over
100deg.
F.)orlow(below0deg. F.)ambienttemperatures,
corrosivefumes,dustladenormoistureladenatmospheres,
andhazardouslocations.
ADJUSTABLEORVARIABLEVOLTAGE:Amethodofcon­
trolbywhichthemotorsupplyvoltagecan
beadjusted.
AUTOMATIC CRANE:Acranewhichwhenactivated
operatesthroughapersetcycleorcycles.
AUXILIARYHOIST:Asuppiementalhoistingunit,usually
designedtohandlelighterloadsatahigherspeedthanthe
mainhoist.
AUXILIARYGIRDER(OUTRIGGER):Agirderarranged
paralleltothemaingirderforsupportingtheplatform,motor
base,operator'scab,controipanels,etc.,toreducethetor­
sianalforcessuchloadwouldotherwiseimposeonthemain
girder.
BEARINGLIFEEXPECTANCY: The
L-10lifeof ananti­
frictionbearingistheminimumexpectediife,hours,of
90
percentofagroupofbearingswhich areoperatingatagiven
speedandloading.Theaverage expectedlifeofthebear­
ingsisapproximatelyfivetimesthe
L-10life.
BHN:Brlnellhardnessnumber,measurementofmaterial
hardness.
BOXSECTION:Therectangularcrosssectionofgirders,
trucksorothermembersenclosed
onfoursides.
BRAKE:Adevice,otherthanamotor,usedforretardingor
stoppingmotionbyfrictionorpowermeans.
(SeeSection4.9)
BRANCHCIRCUIT:Thecircuitconductorsbetweenthefinal
overcurrentdeviceprotectingthecircuitandtheoutiet(s).
BRIDGE:Thatpart
ofanoverheadcraneconsisting ofgirders,
trucks,endties,walkwayanddrivemechanismwhichcar­
riesthetrolleyandtraveis
inadirectionparalleltotherunway.
BRIDGECONDUCTORS: Theelectricaiconductorslocated
alongthebridgestructureofacranetoprovidepowertothe
trolley.
BRIDGERAIL:Therailsupportedbythebridgegirders
on
whichthetrolleytravels.
BUMPER(BUFFER):
Anenergy absorbingdeviceforreduc­
ingimpactwhenamovingcraneortrolleyreachestheend
Ofitspermittedtravel,orwhentwomovingcranesortrolleys
comeintocontact.
CAB·OPERATED CRANE:Acranecontrolled byanoperator
inacablocated onthebridgeortrolley.
CAMBER:Theslightupwardverticalcurvegiventogirders
tocompensatepartiallyfordeflectionduetohookloadand
weightoftheCrane.
CAPACITY:Themaximumratedload
(intons)whichacrane
isdesignedtohandle.
CLEARANCE: Minimumdistancefromtheextremityofa
cranetothenearestobstruction.
CMAA:CraneManufacturersAssociationofAmerica(form­
erly
EOCI-ElectricOverheadCraneInstitute).
COLLECTORS: Contactingdevicesforcollectingcurrent
fromtherunwayorbridgeconductors.Themainlinecollec­
torsaremounted
onthebridgetotransmitcurrentfromthe
runwayconductors,andthetrolleycollectorsaremounted
onthetrolleytotransmitcurrentfromthebridgeconductors.
CONTACTOR,MAGNETIC:
Anelectro-magneticdevicefor
openingandclosing
anelectricpowercircuit.
CONTROLLER: AdeviceforregUlatinginapre-determined
waythepowerdeiiveredtothemotororotherequipment.
COUNTER·TORQUE: Amethodofcontrolbywhichthemotor
isreversedtodeveloppowertotheoppositedirection.
COVERPLATE:Thetoporbottomplateofaboxgirder.
CROSSSHAFT:Theshaftextendingacross
thebridge,used
totransmittorquefrommotortobridgedrivewheels.
CUSHIONEDSTART:
Anelectricalormechanicalmethodfor
reducingtherateofaccelerationofatravelmotion.
DEADLOADS:Theloads
onastructurewhichremain ina
fixedpositionrelativetothestructure.
Onacranebridgesuch
loadsinciudethegirders,footwalk,crossshaft,driveunits,
panels,etc.
DEFLECTION:Displacementduetobendingortwistingin
averticalorlateralplane,causedbytheimposedliveand
deadloads.
DIAPHRAGM:Apiateorpartitionbetweenoppositepartsof
amember,servingadefinitepurposeinthestructuraldesign
ofthemember.
DRIVEGIRDER:Thegirder
onwhichthebridgedrive
machineryismounted.
DUMMYCAB: Anoperator'scompartmentorplatform ona
pendantorradiocontrolledcrane,having
nopermanently­
mountedelectricalcontrols,
inwhichanoperatormayride
whilecontrollingthecrane.
DYNAMICLOWERING:Amethodofcontrolbywhichthe
hoistmotorissoconnectedintheloweringdirection,that
whenitisover-hauledbytheload,itacts
asageneratorand
forcescurrenteitherthroughtheresistorsorbackinto
theline.
EDDY-CURRENT BRAKING:Amethodofcontrolbywhich
themotordrivesthrough
anelectricalinductionloadbrake.
EFFICIENCY
OFGEARINGANDSHEAVES:Thepercentage
offorcetransmittedthroughthesecomponentsthatisnotlost
tofriction.
79

ELECTRICOVERHEADTRAVELINGCRANE: Anelectrically
operatedmachineforlifting,loweringandtransportingloads,
consistingofamovablebridgecarryingafixedormovable
hoistingmechanismandtravelingonanoverheadrunway
structure.
ELECTRICALBRAKINGSYSTEM:
Amethodofcontrolling
cranemotorspeedwheninanoverhaulingcondition,without
theuseoffrictionbraking.
ENCLOSEDCONDUCTOR (S):Aconductororgroupofcon­
ductorssubstantiallyenclosedtopreventaccidentalcontact.
ENCLOSURE:Ahousingtocontainelectricalcomponents,
usuallyspecifiedbyaNEMAclassificationnumber.
ENDAPPROACH:Theminimumhorizontaldistance,parallel
totherunway,betweentheoutermostextremitiesofthecrane
andthecenterlineofthehook.
ENDTIE:Astructuraimemberotherthanthe endtruckwhich
connectstheendsofthegirderstomaintainthesquareness
ofthebridge.
ENDTRUCK: Theunitconsistingoftruckframe,wheels,
bearings,axies,etc.,whichsupportsthebridgegirders.
FAIL-SAFE:Aprovisiondesignedtoautomaticallystopor
safelycontrolanymotioninwhichamalfunctionoccurs.
FIELDWIRING:Thewiringrequiredaftererectionofthe
crane.
FIXEDAXLE: Anaxlewhichisfixed inthetruckand onwhich
thewheelrevolves.
FLOOR·OPERATED CRANE:Acranewhichispendantcon­
trolled
byanoperatorontheflooror anindependentplatform.
FOOTWALK:Thewalkwaywithhandrailandtoeboards,at­
tachedtothebridgeortrolleyforaccesspurposes.
GANTRYCRANE:Acranesimilarto
anoverheadcrane
exceptthatthebridgeforcarryingthetrolleyortrolleys
is
rigidlysupported ontwoormorelegsrunning onfixedrails
orotherrunway.
GIRDERS:Theprincipalhorizontalbeamsofthecranebridge
whichsupportsthetrolleyandissupportedbytheendtrucks.
GROUND FAULT:
Anaccidentalconductingconnection
betweentheelectricalcircuit orequipmentandtheearthor
someconductingbodythatserves inplace oftheearth.
HOIST:Amachineryunitthatisusedforliftingandlowering
aload.
HOLDINGBRAKE:Abrakethatautomaticallyprevents
motionwhenpowerisoff.
HOOKAPPROACH: Theminimumhorizontaldistance
betweenthecenteroftherunwayrailandthehook.
80
HYDRAULICBRAKE:Abrakethatprovidesretardingor
pingmotionbyhydraulicmeans.
IDLERSHEAVE:Asheaveusedtoequalizetension
in
sitepartsofarope.BecauseofitsSlightmovement, itis
termeda funningsheave.
IMPACTALLOWANCE: Additionalhookloadassumed
resultfromthedynamiceffectoftheliveload.
INDUSTRIALDUTYCRANE:Serviceclassification
byCMAASpecificationNo.70,
'Specmcationsfor
OverheadTravelingCranes'.
INSULATIONCLASS:MotorWindinginsulationrating
indicatesitsabilitytowithstandheatandmoisture.
K.S.I.:Kipspersquareinch,measurementofstressinten
KIP:Aunitofforce,equivalentto1000pounds.
KNEEBRACE:Thediagonalstructuralmember
buildingcolumnandrooftruss.
LATERALFORCES:Horizontalforcespel'pendi,cu
axisofthememberbeingconsidered.
LIFT:Maximumsafeverticaldistancethrough
hook,magnet,orbucketcanmove.
LIFTCYCLE:Singleliftingandlowering
withoutload).
LIFTINGDEVICES:Buckets,magnets,grabsand
piementaldevices,theweightofwhichisto
be
partoftheratedload,usedforease inhandling
ofloads.
LIMITSWITCH:Adevicedesignedtocutoff
automatically
atornearthelimitoftravelfor the
LINECONTACTOR:Acontactorto
rli"cormAC!
thesupplylines.
LIVELOAD:Aloadwhichmovesrelativeto
underconsideration.
LOADBLOCK:Theassemblyofhook,
sheaves,pinsandframesuspendedbythe
LOADCARRYINGPART:Anypartofthe
inducedstress
isinfluencedbytheload on
LOADCYCLE:Oneliftcyclewithload
withoutload.
LONGITUDINAL STIFFENERS:
attachedtothewebofthebridge
buckling.

MAGNETICCONTROL:Ameansofcontrollingdirectionand
speedbyusingmagneticcontactorsandrelays.
MAINLINECONTACTOR:Amagneticcontactorused
inthe
incomingpowercircuitfromthemainlinecollectors.
MAINLINEDISCONNECTSWITCH:Amanuaiswitchwhich
breaksthepowerlinesleadingfromthemainlinecollectors.
MANUAL·MAGNETIC DISCONNECT SWITCH:Apower
disconnectingmeansconsistingofamagneticcontactor
that
canbeoperatedbyremotepushbuttonandcanbemanu­
allyoperatedbyahandle
ontheswitch.
MASTERSWITCH:Amanuallyoperateddevicewhichserves
togoverntheoperationofcontactorsandauxiliarydevices
ofanelectriccontrol.
MATCHMARKING:Identificationofnon-interchangeable
partsforreassemblyaftershipment.
MECHANICALLOADBRAKE:
Anautomatictypeoffriction
brakeusedforcontrolling
loadsintheloweringdirection.This
unidirectionaldevicerequirestorquefromthemotortolower
aloadbutdoesnotimposeadditionalload onthemotorwhen
liftingaload.
MEANEFFECTIVELOAD:Aloadused
indurabiiitycalcula­
tionsaccountingforbothmaximumandminimumloads.
MILLDUTYCRANE:Serviceclassificationcovered byAISE
Standard
No.6,'SpecificationforElectricOverheadTravel­
ingCranesforSteelMillService'.
MULTIPLEGIRDERCRANE:Acranewhich
hastwoormore
girdersforsupportingtheiiveload.
NON-COASTING MECHANICAL DRIVE:Adrivewith
coastingcharacteristicssuchthatitwillstopthemotionwithin
adistance
infeetequalto 10percentoftheratedspeed in
feetperminutewhentraveling atratedspeedwithratedload.
OPERATOR'SCAB:Theoperator'scompartmentfromwhich
movementsofthecranearecontrolled.
Tobespecifiedby
themanufacturer asopen,havingonlysides orarailing
aroundtheoperator,orenclosed,complete withroof,
win~
dows,etc.
OVERLOAD:Anyloadgreaterthantheratedload.
OVERLOADLIMITDEVICE:RefertoSection 4.3foracom­
pletedefinition.
OVERLOAD PROTECTION (OVERCURRENT): Adevice
operativeonexcessivecurrenttocauseandmaintainthein­
terruptionorreductionofcurrentflowtotheequipment
governed.
PENDANTPUSHBUTTON STATION:Meanssuspended
fromthecraneoperatingthecontrollersfromthefloororother
levelbeneaththecrane.
PITCHDIAMETER(ROPE):Distancethroughthecenterof
adrum Orsheavefromcentertocenter ofaropepassed
abouttheperiphery.
PLAINREVERSINGCONTROL:Areversingcontrolwhich
hasidenticalcharacteristicsforbothdirectionsofmotor
rotation.
PLUGGING:Acontrolfunctionwhichaccompiishesbraking
byreversingthemotorlinevoltagepolarityorphase
sequence.
PROTECTIVEPANEL: Anassemblycontainingoverloadand
undervoltageprotectionforallcranemotions.
QUALIFIED:Apersonwho,
bypossessionofarecognized
degree,certificateofprofessionalstandingorwhobyexten­
siveknowledge,training,andexperience,hassuccessfully
demonstratedtheabilitytosolveorresolveproblemsrelating
tothesubjectmatterandwork.
RATEDLOAD:Themaximumloadwhichthecraneis
designedtohandlesafely
asdesignatedbythemanufacturer.
REGENERATIVE BRAKING:Amethodofcontrollingspeed
inwhichelectricalenergygeneratedbythemotorisfedback
intothepowersystem.
REGULATED SPEED:Afunctionwhichtendstomaintain
constantmotorspeedforanyloadforagivenspeedsetting
ofthecontroller.
REMOTEOPERATEDCRANE:Acranecontrolledby
an
operatornot inapulpitor inthecabattachedtothecrane,
byanymethodotherthanpendantorropecontrol.
RESISTORRATING:RatingestablishedbyNEMAwhich
classifiesresistorsaccordingtopercentoffullloadcurrent
onfirstpointanddutycycle.
ROTATINGAXLE:
Anaxlewhichrotateswiththewheel.
RUNNINGSHEAVE:Asheavewhichrotatesasthehookis
raisedorlowered.
RUNWAY:Therails,beams,bracketsandframework
on
whichthecraneoperates.
RUNWAYCONDUCTORS: Themainconductorsmounted
onorparalleltotherunwaywhichsuppliescurrenttothe
crane.
RUNWAYRAIL:Therailsupportedbytherunwaybeams on
whichthebridgetravels.
SHALL:Thiswordindicatesthatadherencetotheparticular
requirementisnecessaryinordertoconformtothe
specification.
SHEAVE:Agroovedwheelorpulleyusedwitha ropeorchain
tochangedirectionandpointofapplicationofapullingforce.
SHOULD:Thiswordindicatesthattherequirementisa
recommendation,theadvisabilityofwhichdepends
onthe
facts
ineachsituation.
SKELETONCAB:Same
asdummycab.
SKEWINGFORCES:Lateralforces
onthebridgetruck
wheelscausedbythebridgegirdersnotrunningperpen­
diculartotherunways.Somenormalskewingoccurs
inali
bridges.
81

SPAN:Thehorizontaldistancecenter-to-centerofrunway
rails.
STATICCONTROL:Amethodofswitchingelectricalcircuits
withouttheuseofcontacts.
STEPLESSCONTROL:Atypeofcontrolsystemwithinfinite
speedcontrolbetweenminimumspeedandfullspeed.
STEPPEDCONTROL:Atypeofcontrolsystemwithfixed
speedpoints.
STOP:Adevicetolimittravelofatrolleyorcranebridge.
Thisdevicenormally
isattachedtoafixedstructureandnor­
mallydoesnothaveenergyabsorbingability.
STRENGTH,AVERAGEULTIMATE:Theaveragetensile
forceperunitofcrosssectionalarearequiredtorupturethe
material
asdeterminedbytest.
SWEEP:Maximumlateraldeviationfromstraightnessofa
structuralmember,measured
atrightanglestotheV-Vaxis.
TEFC:Totallyenciosedfancooled.
TENV:Totallyenciosednonventilated.
TORQUE,FULLLOAD(MOTOR):Thetorqueproducedby
amotoroperatingatitsratedhorsepowerandspeed.
TORSIONALBOXGIRDER:Girder
inwhichthetrolleyrail
islocatedoveroneweb.
82
TORSIONALFORCES:Forceswhichcancausetwistingof
amember.
TROLLEY:Theunitcarryingthehoistingmechanismwhich
travels
onthebridgerails.
TROLLEYFRAME:Thebasicstructureofthetrolley
onwhich
aremountedthehoistingandtraversingmechanisms.
TWOBLOCKING:Conditionunderwhichtheloadbiockor
loadsuspendedfromthehookbecomesjammedagainst
thecranestructurepreventingfurtherwindingupofthe
hoistdrum.
UNDERVOLTAGE PROTECTION:Adeviceoperative
on
reductionorfailureofvoltagetocauseandmaintain
interruptionofpowerinthemaincircuit.
VARIABLEFREQUENCY:Amethodofcontrolbywhich
motorsupplyfrequencycanbeadjusted.
VOLTAGEDROP:Thelossofvoltage
inanelectric
cnr'nt"'.
torbetweensupplytapandloadtap.
WEBPLATE:Theverticalplateconnectingtheupper
lowerflangesorcoverplatesofagirder.
WHEELBASE: Distancefromcenter-to-centerofoullerrnb'lt
wheels.
WHEELLOAD:Theloadwithoutimpact
onanywheel
thetrolleyandliftedload(ratedcapacity)positioned
on
bridgetogivemaximumloading.

AccelerationFactors5.2.9.1.2.1C
Acceleration
Rate-Guide Table5.2.9.1.2.1-A
AccelerationRate-MaximumTable5.2.9.1.2.1-B
Accessibility-Control5.10.2
AllowableStress-Structural3.4
Allowable
Stress-Shaft4.11.4.1
Allowable
Stress-Gears4.7.3
Anchors-Rope 4.6.2
Assembly1.10
Bearings4.8
Bearing-CrossShaft4.11.2
BearingLife4.8.2
Block-Hoist4.2
Bolts-Structural3.13
BoxGirder-Proportions
3.5.1
BrakeBridge4.9.4 andFigure4.9.3
BrakeHoistHolding4.9.1and5.3.3and5.3.4
BrakeTrolley4.9.3andFigure4.9.3
BrakeElectrical4.9and5.3
BrakeEnclosures5.4.7.3
(c)
BrakeCoilTimeRating5.3.6
BrakeD CShunt5.3.5
BridgeAccelerationTable5.2.9.1.2.1-A
BridgeConductors
5.11
BridgeDrives-Type4.10andFigure4.10.1
BridgeMotors5.2.9.1.2
BridgeWheels4,13
Buckling3.4.9
BucklingCoefficientTable3.4.9.2-1
Bumpers3.3.2.1.3.2and 4.14
BUilding1.2and1.3
Cab-Operators3.8
Camber-Girder3.5.6
Capacity-Rated1.6
ClassificationofCranes2.0thru2.8
Clearance1.3
Codes-Referenced 1.1.6
Collectors5.11.5 5.12.2
CollisionLoads3.3.2.4.3.2
Collision
Forces-Bumpers 3.3.2.1.3.2
CompressionMember3.4.6
ContactorRatingA.C.SquirrelCage5.4.5.2-2
A.C.WoundRotor5.4.5.2-1
D.C.230Volt5.4.5.2-3
Control-Magnetic5.4.5
Control-Remote5.4.3
Control-Static5.4.6
ContrOllers-ArrangementFigure5.7.3and5.7.4
Controllers-A,C.andD.C.5.4
Controllers-Bridge5.4.4.2
Controllers-Hoist(withcontrolbrakingmeans)5.4.4.1
Controllers-Trolley5.4.4.2.
70·8INDEX
Coupling4.12
Cross
Shaft-Bridge4.11.2,4.11.3
Deflection3.5.6
Diaphragms3.5.5
DisclaimerPage1
Disconnect-Drive5.6
Drawings1.12.1
DrivesBridge4.10 andTable4.10.1
Drum-Rope 4.6
EfficiencyTable5.2.9.1.1.1-1and5.2.9.1.1.1-2
ElectricalEquipment5.10.1
Enclosure-Brake5.4.7.3(c)
Enclosure-Control5.4.7
Enclosure-Resistor5.4.7.3
(b)
Enclosure-Type5.4.7.1
EnclosureVentilated5.4.7.2
EndTies
3.11
EndTrucks-Bridge3.6Figure 3.12-1
EnduranceStress-Shafting4.11.1
EqualizerTrucks
3.11and3.12.1
Erection1.13
EulerStress3.4.9.2
Fatigue-ShaftEndurance4.11.1
Fatigue-StructuralStressTable3.4.8-1
FleetAngle4.4.3
Footwalk3.7
Friction-TravelWheelTagle5.2.9.1.2.1-0
GantryCranes3.14
Gears4.7
Gear
Ratio-Hoist5.2.10.1
GearRatio-Travel5.2.10.2
GearServiceFactorsTable4.7.3
Girder-Box-Proportions3.5.1
Girder-BeamBox3.5.9
Girder-SingleWeb3.5.8
GirderTorsion3.5.7
Girder-WeldingFigure3.4.8-3
Glossary70-7
Handrail3.7
HoistBrakes
4.9.1
HolstControlBrakingMeans4.9.2and5.4.4.1
HoistLoadFactors3.3.2.1.1.4.2
HoistMotors5.2.9.1.1
HoistRopes4.4
Hooks4.2.2
HookBlocks4.2
Inspection1.15
Impact(SeeHoistLoadFactors)
Leg-Gantry3.14
Life-Bearing4.8.2
LimitDevice-Overload4.3
LimitSwitch5.9
83

84
Loads3.3.2
LoadBlock4.2
LoadCombination3.3.2.4
Load
Factor-Dead3.3.2.1.1.4.1
Load
Factor-Hoist3.3.2.1.1.4.2
Load-MeanEffective4.1
LoadPrincipal3.3.2.1.1
LoadSpectrum
2.1
LongitudinalStiffeners3.5.3
Lubrication
1.14,4.7.6,4.7.7,4.8.4
MachineryServiceFactorsTable4.1.3
MagnetControl5.7.6
MagneticControl5.4.5
MainLineContactor5.6.6
Maintenance1.15
MasterSwitches5.7
Material-Structural
3.1
MechanicalLoadBrake4.9.1.2.2and4.9.1.5.2
MoltenMetalCrane4.4.1
Motors5.2
MotorHoist5.2.9.1.1
MotorTravel5.2.9.1.2
Operator1.15
OperatorsCab3.8
Outdoor-BridgeDrivePower5.2.9.1.2.3
OverloadLimitDevice4.3
Paint1.9
Protection-Electrical5.6
PushbuttonPendant5.8Figure
5.8.1
Proportions-BoxGirder3.5.1
Rail-Bridge3.10
RailClipsFigure3.4.8-4
Railing3.7
RadioControl5.6.12,5.8.1,Figure5.8.1-C
RemoteControl5.4.3
Resistors5.5,5.4.5.3
ResistorEnclosure5.4.7.3
(b)
RopeAnchor4.6.2
RopeDrum4.6
Rope-Hoist4.4
Rope-FleetAngle4.4.3
Rope-Sheaves 4.5
Runway1.4
RunwayConductor1.5,5.12
RunwayTolerancesTable1.4.2.1
ServiceClassTable
2.8-1
Shafting4.11
Shafting-BridgeCrossShaft4.11.2
ShaftingEnduranceStress
4.11.1
ShaftAngularDeflection4.11.3
Sheave4.5
Sheave-Idler4.5.3
SkewingForces3.3.2.1.2.2
Speed-FloorControl70-6-1
CabControl70-6-2
Standards-Referenced1.1.6
StabilityAnalysis3.4.5
StiffenedPlates3.5.4
Stiffener-Longitudinal
Web3.5.3
Stiffener-Vertical3.5.5
Stress-AllowableStructural3.4
Stress-AllowableShaft4.11.4
Stress-AllowableRange3.4.8
Stress-Combined3.4.4and
4.11
StressConcentrationFactors4.1.4
Testing
1.11
Ties-End3.11
Torsion-BoxGirders3.3.2.2.1,
BeamBoxGirders3.5.9
Torsion-CrossShaftDeflection
TrolleyBumper4.14.7
TrolleyFrame3.9
Truck3.6Figure
3.12-1
VoltageDrop5.13
WarningDevices5.6.15
WeldStress3.4.4.2
Welding3.2,Figure3.4.8-3,
Wheels4.13
Wheel
LoadLongitudinal
Wheels-MultipleArrangements
WheelLoads4.13.3
Wheel
LoadFactorsTable4.13.3.1
WheelSizing4.13.3,Table
Wheel
Skidding-Maximum
Accelera,tidl
Rate5.2.9.1.2.1-B
WheelSpeedFactor
Table4.13.3-2
WindLoads3.3.2.1.2.1,3.3.2.1.3.1,

CmAA"
CRANEMANUFACTURERS
ASSOCIATIONOFAMERICA,INC.
AnAffiliateOf
TheMaterialHandlingInstitute,Inc.
8720RedOakBlvd.Suite 201
Charlotte,NC28217
704/522-8644
TELEX9102402510MATERIALHANNC
ESL 62952239
©
50004/88
Tags