PriteshParmar13
7,632 views
103 slides
Feb 28, 2020
Slide 1 of 103
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
About This Presentation
Very useful presentation, to create interaction diagrams for column design.
Size: 9.67 MB
Language: en
Added: Feb 28, 2020
Slides: 103 pages
Slide Content
Construction of Interaction Diagram For Columns ~ Pritesh Parmar Semster -8 Department of Civil Engineering, DDU. 1
What is Interaction Diagram ?? The Graph showing the curve of different combination of Pu (Axial load) and Mu (Bending Moment) for each failure mode (Compression, Balanced, Tensile) of a given column section. The Interaction diagram is useful either for designing the section or for the checking the section. 2
What is Interaction Diagram ?? Typical Interaction Diagram 3
Why Construction of Interaction Diagram is req. ?? To overcame following limitations of SP-16 construction of interaction diagram is required : When column is reinforced equally on two opposite longer face then there is no information of moment capacity of column about minor axis, hence in such cases column can’t design for Biaxial Bending. SP-16 is used only for Rectangle, Square and Circular columns. SP-16 for Rectangle, Square and Circular can be used for specific d’/D ratios.( i.e d’/D = 0.05, 0.1, 0.15, 0.2) More difficulties for detailing of reinforcement for the case of reinforcement equally distributed on all sides. When Column is reinforced equally on two opposite face then strength of column due to minimum bar req. on another face is not accounted. 4
Design Strength of Concrete : 5
Design Strength of Concrete : Design Compressive stress f c : 6
Design Strength of Reinforcing Steel: 7
Design Strength of Reinforcing Steel: Strain level Strain Stress Up to 0.8 f yd Stress / Modulus of Elasticity Strain * Modulus of Elasticity 0.8 f yd 0.00144 288.7 0.85 f yd 0.00163 306.7 0.9 f yd 0.00192 324.8 0.95 f yd 0.00241 342.8 0.975 f yd 0.00276 351.8 1.0 f yd 0.00380 360.9 Stress – Strain Relationship for Fe415 grade steel 8
Design Strength of Reinforcing Steel: Strain level Strain Stress Up to 0.8 f yd Stress / Modulus of Elasticity Strain * Modulus of Elasticity 0.8 f yd 0.00174 347.8 0.85 f yd 0.00195 369.6 0.9 f yd 0.00226 391.3 0.95 f yd 0.00277 413.0 0.975 f yd 0.00312 423.9 1.0 f yd 0.00417 434.8 Stress – Strain Relationship for Fe500 grade steel 9
Design Procedure : The Interaction Diagram are constructed for Pu versus Mu for Different values of p t , where is p t percentage of Reinforcement. Base on loading conditions they are classified as : Pure Axial Load, Axial load with Uniaxial moment, Axial load with Biaxial moment. 10
Design Procedure : Case 1 :Pure Axial load Assumption : The maximum compressive strain in concrete under axial loading at the limit state of collapse in compression is specified as ε c = 0.002 by the Code (Cl. 39.1a). Corresponding to this limiting strain of 0.002, the design stress in the concrete is 0.67 f ck /1.5 = 0.446 f ck and the design stress in steel is interpolated from table of stress-strain relationship. 11
Design Procedure : Case 1 :Pure Axial load Pure Axial load , Pu = 0.446* f ck *b* D+A sc *( f sc -f cc ) Where, f sc = stress in steel bar of given grade corresponding 0.002 strain, f cc = stress in concrete corresponding 0.002 strain, A sc = area of steel, f ck = characteristics strength of concrete, 12
Design Procedure : Case 2 : Axial load with uniaxial moment When the column is subjected to an axial load and uniaxial moment, the following procedure is applied : Assume different positions of Neutral Axis(N.A), Draw strain and stress diagrams, Calculate stresses in reinforcement from strains, Equate ∑V = 0 , ∑M = 0 and find Capacity of column. 13
Design Procedure : Case 2 : Axial load with uniaxial moment Following two cases occur in design : Neutral Axis lies outside the section, Neutral Axis lies inside the section. 14
Design Procedure : Case 2(a) : Neutral Axis lies outside the section Assumption : The maximum compressive strain at highly compressed extreme fibre in concrete subjected to axial compression and bending and when there is no tension on section shall be 0.0035 minus 0.75 times the strain at the least compressed extreme fibre . According to the assumption of the code, the point F (shown in fig.) is assumed to be a fulcrum and the strain distribution line for any case where there is no tension on the section is assumed to pass through this point. The fulcrum F lies at from highly compressed edge. 15
Design Procedure : Case 2(a) : Neutral Axis lies outside the section 16
Design Procedure : Case 2(a) : Neutral Axis lies outside the section 17
Design Procedure : Case 2(a) : Neutral Axis lies outside the section Stress block parameter when N.A. lies outside the section : Area of stress block A = C 1 * f ck *D C 1 = 0.446* Centroid of stress block from highly compressed edge = C 2 *D C 2 = = fck * 18
Design Procedure : Case 2(a) : Neutral Axis lies outside the section Axial load, Pu = Cc + ∑ Csi Where, Cc = compression provided by concrete, Csi = compression provided by i th row of reinforcement. Pu = C1* fck *b*D+ Asi *( fsi-fci ) Where,C 1 =coefficient for the area of stress block, n=no. of rows of reinforcement. 19
Design Procedure : Case 2(a) : Neutral Axis lies outside the section Moment, Mu = Cc*(0.5*D-C 2 *D) + ∑ Csi * yi Where, Cc = compression provided by concrete, Csi = compression provided by i th row of reinforcement, yi = Distance from centroid of section to the i th row (Positive towards highly compressed edge ). Mu = C1* fck *b*D*(0.5*D-C 2 *D)+ Asi *( fsi-fci )* yi Where,C 1 =coefficient for the area of stress block, C 2 =Distance of centroid of concrete stress block, n=no. of rows of reinforcement. 20
Design Procedure : Case 2(b) : Neutral Axis lies inside the section Assumption : The maximum compressive strain at highly compressed extreme fibre in concrete subjected to axial compression and bending shall be 0.0035. 21
Design Procedure : Case 2(b) : Neutral Axis lies inside the section 22
Design Procedure : Case 2(b) : Neutral Axis lies outside the section Stress block parameter when N.A. lies outside the section : Area of stress block A = 0.36* f ck * kD Centroid of stress block from highly compressed edge = 0.42* kD K=Depth of N.A/D 23
Design Procedure : Case 2(b) : Neutral Axis lies inside the section Axial load, Pu = Cc + ∑ Csi Where, Cc = compression provided by concrete, Csi = compression provided by i th row of reinforcement. Pu = 0.36* fck *b* kD + Asi *( fsi-fci ) Where, n=no. of rows of reinforcement. 24
Design Procedure : Case 2(b) : Neutral Axis lies inside the section Moment, Mu = Cc*(0.5*D-0.42* kD ) + ∑ Csi * yi Where, Cc = compression provided by concrete, Csi = compression provided by i th row of reinforcement, yi = Distance from centroid of section to the i th row (Positive towards highly compressed edge ). Mu = 0.36* fck *b* kD *(0.5*D-0.42* kD )+ Asi *( fsi-fci )* yi Where, n=no. of rows of reinforcement. 25
Illustrative Example * Construct the Interaction Diagram for the following column section : Steel Grade : Fe415 Concrete Grade : M25 b = 300 mm D = 500 mm 26
Illustrative Example b = 300 mm D = 500 mm fy = 415MPa fck = 25MPa Asc = 10 * /4 * 25 2 = 4908.74 mm 2 27
Illustrative Example Major axis moment capacity : Case(1) : Pure axial load Pu = 0.446* f ck *b* D+A sc *( f sc -f cc ) f sc = 327.7 Mpa (for Fe415 grade at 0.002 strain) f cc = 0.446*25=11.15 MPa Pu = 3226.36 kN , Mu = 0 kN /m 28
Illustrative Example Case(2) : Axial load + Major axis Moment Case(a) N.A lies outside the section : ith row Area( Asi ) mm 2 Distance from C.g mm 1 981.75 189.5 2 981.75 94.75 3 981.75 4 981.75 -94.75 5 981.75 -189.5 29
Illustrative Example Assuming Xu = 1.2*D As per assumption at a distance 3D/7 strain is 0.002 then strain at highly compressed edge is equal to 0.0031(from similar triangle). 30
Illustrative Example Similarly from similar triangles strains and stresses at each rows are : ith row Strain fcc fsi 1 0.002797 11.15 352.1273 2 0.002306 11.15 338.9837 3 0.001815 11.07919 318.2350 4 0.001324 9.896504 264.7037 5 0.000832 7.365149 166.4444 31
Illustrative Example Axial compression and Moment due to steel : ith row Area( Asi ) (mm 2 ) Strain fcc ( Mpa ) fsi ( Mpa ) Yi (mm) Pu* ( kN ) Mux* ( kN /m) 1 981.75 0.002797 11.150 352.1273 189.5 334.75 63.44 2 981.75 0.002306 11.150 338.9837 94.75 321.85 3 0.50 3 981.75 0.001815 11.079 318.23 301.55 4 981.75 0.001324 9.896 264.70 -94.75 250.15 -23.70 5 981.75 0.000832 7.365 166.44 -189.5 156.17 -29.59 Total 1364.48 40.63 * Pu = ∑( fsi-fcc )* Asi Mu = Pu* yi 32
Illustrative Example Axial compression and Moment due to concrete : Pu = C1* fck *b*D = 0.4*25*300*500 = 1501.059 kN Mu = C1* fck *b*D*(0.5*D-C 2 *D) = 0.4*25*300*500*(0.5*500-0.4583*500) = 31.275 KN/m 33
Illustrative Example Axial compression and Moment due to concrete and steel : Pu = 1501.095+1364.48kN =2865.54 kN Mu = 31.275+40.63 kN /m =71.905 kN /m 34
Illustrative Example Similarly For different values of Xu , Pu and Mux are calculated which is tabulated as : K = Xu/D Pu( kN ) Mu( kN /m) 5 3215.937 4.348085 4.5 3213.018 5.071197 4 3209.07 6.034953 3.5 3203.466 7.378555 3 3194.986 9.369612 2.5 3178.859 12.97953 2 3145.267 20.15933 1.5 3037.081 40.96572 1.2 2865.544 71.91761 1.1 2758.144 90.36026 35
Illustrative Example Case(2) : Axial load + Major axis Moment Case(b) N.A lies inside the section : ith row Area( Asi ) mm 2 Distance from C.g mm 1 981.75 189.5 2 981.75 94.75 3 981.75 4 981.75 -94.75 5 981.75 -189.5 36
Illustrative Example Assuming Xu = 0.7*D As per assumption strain at highly compressed edge is equal to 0.0035 37
Illustrative Example From similar triangles strains and stresses at each rows are : ith row Strain fcc fsi 1 0.002895 11.150 352.98 2 0.001948 11.167 325.81 3 0.001 8.381 200 4 0.5789 10.5 5 -0.0009 -179 38
Illustrative Example Axial compression and Moment due to steel : ith row Area( Asi ) (mm 2 ) Strain fcc ( Mpa ) fsi ( Mpa ) Yi (mm) Pu* ( kN ) Mux* ( kN /m) 1 981.75 0.002895 11.150 352.98 189.5 335.60 63.594 2 981.75 0.001948 11.167 325.81 94.75 308.91 29.268 3 981.75 0.001 8.381 200 188.12 4 981.75 0.5789 10.5 -94.75 9 .74 0.922 5 981.75 -0.0009 -179 -189.5 -175.73 33.301 Total 666.62 126.57 * Pu = ∑( fsi-fcc )* Asi Mu = Pu* yi 39
Illustrative Example Axial compression and Moment due to concrete : Pu = 0.36* fck *b* kD = 0.36*25*300*0.7*500 = 945 kN Mu = 0.36* fck *b* kD *(0.5*D-0.42* kD ) = 0.36*25*300*0.7*500*(0.5*500-0.42*0.7*500) = 97.33 kN /m 40
Illustrative Example Axial compression and Moment due to concrete and steel : Pu = 945+666.62kN =1611.62 kN Mu = 97.33+126.57 kN /m =223.90 kN /m 41
Illustrative Example Similarly For different values of Xu , Pu and Mux are calculated which is tabulated as : K = Xu/D Pu( kN ) Mu( kN /m) 1 2601.684 117.3975 0.975 2530.07 126.3234 0.95 2464.392 135.4014 0.9 2325.603 153.1392 0.85 2176.497 170.693 0.8 2002.588 188.2468 0.75 1815.451 205.8785 0.7 1611.62 223.8995 0.65 1382.683 242.7411 0.6 1144.413 259.4264 0.55 916.9 268.6581 0.5 654.3266 274.7856 0.45 399.1637 273.0583 0.4 147.4722 265.161 0.35 -126.736 251.9698 0.3 -347.461 233.9146 0.25 -588.151 208.8237 0.2 -850.778 176.2809 0.15 -1087.58 135.5028 0.1 -1426.57 70.73621 42
Illustrative Example Minor axis moment capacity : Case(1) : Pure axial load Pu = 0.446* f ck *b* D+A sc *( f sc -f cc ) f sc = 327.7 Mpa (for Fe415 grade at 0.002 strain) f cc = 0.446*25=11.15 MPa Pu = 3226.36 kN , Mu = 0 kN /m 45
Illustrative Example Case(2) : Axial load + Minor axis Moment Case(a) N.A lies outside the section : ith row Area( Asi ) mm 2 Distance from C.g mm 1 2454.369 89.5 2 2454.369 -89.5 46
Illustrative Example Assuming Xu = 1.2*D As per assumption at a distance 3D/7 strain is 0.002 then strain at highly compressed edge is equal to 0.0031(from similar triangle). 47
Illustrative Example Similarly from similar triangles strains and stresses at each rows are : ith row Strain fcc fsi 1 0.002588 11.150 347.384 2 0.001041 8.607 208.271 48
Illustrative Example Axial compression and Moment due to steel : ith row Area( Asi ) (mm 2 ) Strain fcc ( Mpa ) fsi ( Mpa ) Yi (mm) Pu* ( kN ) Mux* ( kN /m) 1 2454.369 0.002588 11.150 347.384 89.5 825.24 73.859 2 2454.369 0.001041 8.607 208.271 -89.5 490.05 -43.859 Total 1315.29 30 * Pu = ∑( fsi-fcc )* Asi Mu = Pu* yi 49
Illustrative Example Axial compression and Moment due to concrete : Pu = C1* fck *b*D = 0.4*25*300*500 = 1501.059kN Mu = C1* fck *b*D*(0.5*b-C 2 *b) = 0.4*25*300*500*(0.5*300-0.4583*300) = 18.765 kN /m 50
Illustrative Example Axial compression and Moment due to concrete and steel : Pu = 1501.059+1315.29kN =2816.35 kN Mu = 18.765+30 kN /m = 48.765 kN /m 51
Illustrative Example Similarly For different values of Xu , Pu and Mux are calculated which is tabulated as : K = Xu/D Pu( kN ) Mu( kN /m) 5 3214.642 3.091646 4.5 3211.444 3.597555 4 3207.139 4.267939 3.5 3201.066 5.196079 3 3191.939 6.559853 2.5 3176.922 8.741857 2 3140.547 13.4386 1.5 3019.053 27.27909 1.2 2816.351 48.77028 1.1 2697.741 61.36487 52
Illustrative Example Case(2) : Axial load + Minor axis Moment Case(b) N.A lies inside the section : ith row Area( Asi ) mm 2 Distance from C.g mm 1 2454.369 89.5 2 2454.369 -89.5 53
Illustrative Example Assuming Xu = 0.7*D As per assumption strain at highly compressed edge is equal to 0.0035 54
Illustrative Example From similar triangles strains and stresses at each rows are : ith row Strain fcc fsi 1 0.002492 11.150 344.9 2 -0.00049 -98.33 55
Illustrative Example Axial compression and Moment due to steel : ith row Area( Asi ) (mm 2 ) Strain fcc ( Mpa ) fsi ( Mpa ) Yi (mm) Pu* ( kN ) Mux* ( kN /m) 1 2454.369 0.002492 11.150 344.9 89.5 819.15 73.31 2 2454.369 -0.00049 -98.33 -89.5 -241.338 21.60 Total 577.79 94.91 * Pu = ∑( fsi-fcc )* Asi Mu = Pu* yi 56
Illustrative Example Axial compression and Moment due to concrete : Pu = 0.36* fck *b* kD = 0.36*25*500*0.7*300 = 945 kN Mu = 0.36* fck *b* kD *(0.5*b-0.42*kb) = 0.36*25*300*0.7*500*(0.5*300-0.42*0.7*300) = 59.1948 kN /m 57
Illustrative Example Axial compression and Moment due to concrete and steel : Pu = 945+577.799kN =1522.799 kN Mu = 59.1948+94.91 kN /m =154.10 kN /m 58
Illustrative Example Similarly For different values of Xu , Pu and Mux are calculated which is tabulated as : K = Xu/D Pu( kN ) Mu( kN /m) 1 2524.847 79.5213 0.975 2449.346 85.58437 0.95 2379.494 91.76559 0.9 2232.592 103.8652 0.85 2076.782 115.8647 0.8 1910.48 127.8958 0.75 1725.169 140.7076 0.7 1522.799 154.1088 0.65 1299.681 168.4079 0.6 1048.289 183.8306 0.55 797.861 198.0393 0.5 647.6338 202.0925 0.45 518.0742 202.988 0.4 402.9299 199.1211 0.35 279.7732 191.5421 0.3 59.91849 173.257 0.25 -231.544 147.7206 0.2 -630.099 111.7569 0.15 -1275.06 52.89775 0.1 -1631.37 19.0297 59
Illustrative Example * Construct the Interaction Diagram for the following column section : Steel Grade : Fe415 Concrete Grade : M25 D = 500 mm 64
Illustrative Example D = 500 mm fy = 415MPa fck = 25MPa Asc = 10 * /4 * 20 2 = 3141.59 mm 2 Ag = /4 * 400 2 = 125663.70 mm 2 65
Illustrative Example Major axis moment capacity : Case(1) : Pure axial load Pu = 0.446* f ck * /4 *D 2 +A sc *( f sc -f cc ) f sc = 327.7 Mpa (for Fe415 grade at 0.002 strain) f cc = 0.446*25=11.15 MPa Pu = 2395.62 kN , Mu = 0 kN /m 66
Illustrative Example Case(2) : Axial load + Major axis Moment Case(a) N.A lies outside the section : ith row Area( Asi ) mm 2 Distance from C.g mm 1 628.32 135.05 2 628.32 83.46551 3 628.32 4 628.32 -83.46551 5 628.32 -135.05 67
Illustrative Example Assuming Xu = 1.2*D As per assumption at a distance 3D/7 strain is 0.002 then strain at highly compressed edge is equal to 0.0031(from similar triangle). 68
Illustrative Example Similarly from similar triangles strains and stresses at each rows are : ith row Strain fcc Fsi 1 0.002690 11.150 350.00 2 0.002356 11.150 340.81 3 0.001815 11.079 318.23 4 0.001274 9.7018 254.77 5 0.000939 8.0329 187.89 69
Illustrative Example Axial compression and Moment due to steel : ith row Area( Asi ) (mm 2 ) Strain fcc ( Mpa ) fsi ( Mpa ) Yi (mm) Pu* ( kN ) Mux* ( kN /m) 1 628.32 0.002690 11.150 350.00 135.05 212.90 28.852 2 628.32 0.002356 11.150 340.81 83.46551 207.131 17.288 3 628.32 0.001815 11.079 318.23 192.989 4 628.32 0.001274 9.7018 254.77 -83.46551 153.981 -12.852 5 628.32 0.000939 8.0329 187.89 -135.05 113.007 -15.261 Total 783.523 1 7.93 * Pu = ∑( fsi-fcc )* Asi Mu = Pu* yi 70
Illustrative Example Axial compression and Moment due to concrete : Pu = C1* fck * /4 *D 2 = 0.4*25* /4 *400 2 = 1257.52kN Mu = C1* fck * /4 *D 2 *( 0.5*D-C 2 *D) = 0.4*25* /4 *400 2 *(0.5*400-0.4583*400) = 20.96 kN /m 71
Illustrative Example Axial compression and Moment due to concrete and steel : Pu = 1257.52+783.523kN =2041.043 kN Mu = 20.96+17.93 kN /m =38.89 kN /m 72
Illustrative Example Similarly For different values of Xu , Pu and Mux are calculated which is tabulated as : K = Xu/D Pu( kN ) Mu( kN /m) 5 2289.763 2.136539 4.5 2287.699 2.514077 4 2284.877 3.023173 3.5 2280.824 3.742756 3 2274.604 4.826779 2.5 2263.613 6.683625 2 2240.562 10.42133 1.5 2166.762 21.34521 1.2 2041.043 38.89433 1.1 1963.559 49.58864 73
Illustrative Example Case(2) : Axial load + Major axis Moment Case(b) N.A lies inside the section : ith row Area( Asi ) mm 2 Distance from C.g mm 1 981.75 189.5 2 981.75 94.75 3 981.75 4 981.75 -94.75 5 981.75 -189.5 74
Illustrative Example Assuming Xu = 0.7*D As per assumption strain at highly compressed edge is equal to 0.0035 75
Illustrative Example From similar triangles strains and stresses at each rows are : ith row Strain fcc fsi 1 0.002688 349.9518 11.1500 2 0.002043 329.3301 11.1500 3 0.001000 200.0000 8.3813 4 -0.000043 -8.6638 0.0000 5 -0.000688 -137.6251 0.0000 76
Illustrative Example Axial compression and Moment due to steel : ith row Area( Asi ) (mm 2 ) Strain fcc ( Mpa ) fsi ( Mpa ) Yi (mm) Pu* ( kN ) Mux* ( kN /m) 1 628.32 0.002688 349.9518 11.1500 135.05 212.875 28.748 2 628.32 0.002043 329.3301 11.1500 83.46551 199.918 16.686 3 628.32 0.001000 200.0000 8.3813 120.397 4 628.32 -0.000043 -8.6638 0.0000 -83.46551 -5.4436 0.454 5 628.32 -0.000688 -137.6251 0.0000 -135.05 -86.472 11.678 Total 3 80.995 57.568 * Pu = ∑( fsi-fcc )* Asi Mu = Pu* yi 77
Illustrative Example Axial compression and Moment due to concrete : Pu = 0.36* fck *area = 0.36*25*93956.77 area = area of sector OACB + area of triangle OAB = 845.61 kN =93956.77 mm 2 Mu = 0.36* fck *area*(0.5*D-0.42* kD ) = 0.36*25*93956.77 *(0.5*400-0.42*0.7*400) = 70.625 kN /m 78
Illustrative Example Axial compression and Moment due to concrete and steel : Pu = 845.61+380.955kN =1226.565 kN Mu = 70.625+57.568 kN /m =128.193 kN /m 79
Illustrative Example Similarly For different values of Xu , Pu and Mux are calculated which is tabulated as : K = Xu/D Pu( kN ) Mu( kN /m) 1 1847.789 65.30064 0.975 1815.785 71.33543 0.95 1783.071 77.35583 0.9 1703.045 88.80941 0.85 1608.026 99.51099 0.8 1494.581 109.6482 0.75 1367.655 119.1865 0.7 1226.565 128.1932 0.65 1069.067 137.0112 0.6 892.5082 145.6539 0.55 724.4656 150.6523 0.5 551.6559 152.9305 0.45 393.6139 149.0577 0.4 235.2792 142.0242 0.35 72.90425 131.7054 0.3 -79.1051 118.2974 0.25 -270.178 98.51626 0.2 -518.493 71.12209 0.15 -721.48 44.57439 0.1 -945.626 13.03535 80
Illustrative Example Minor axis moment capacity : Case(1) : Pure axial load Pu = 0.446* f ck * /4 *D 2 +A sc *( f sc -f cc ) f sc = 327.7 Mpa (for Fe415 grade at 0.002 strain) f cc = 0.446*25=11.15 MPa Pu = 2395.62 kN , Mu = 0 kN /m 83
Illustrative Example Case(2) : Axial load + Minor axis Moment Case(a) N.A lies outside the section : ith row Area( Asi ) mm 2 Distance from C.g mm 1 314.159 142 2 628.318 115.43 3 628.318 43.88 4 628.318 -43.88 5 628.318 -115.43 6 314.159 142 84
Illustrative Example Assuming Xu = 1.2*D As per assumption at a distance 3D/7 strain is 0.002 then strain at highly compressed edge is equal to 0.0031(from similar triangle). 85
Illustrative Example Similarly from similar triangles strains and stresses at each rows are : ith row Strain fcc Fsi 1 0.002735 11.1500 351.1619 2 0.002559 11.1500 346.6420 3 0.002099 11.1500 331.3838 4 0.001530 10.5589 297.2647 5 0.000894 8.7598 214.0439 6 0.000894 7.7603 178.8889 86
Illustrative Example Axial compression and Moment due to steel : ith row Area( Asi ) (mm 2 ) Strain fcc ( Mpa ) fsi ( Mpa ) Yi (mm) Pu* ( kN ) Mux* ( kN /m) 1 314.159 0.002735 11.1500 351.1619 142 106.817 15.168 2 628.318 0.002559 11.1500 346.6420 115.43 210.795 24.332 3 628.318 0.002099 11.1500 331.3838 43.88 201.208 8.829 4 628.318 0.001530 10.5589 297.2647 -43.88 180.142 -7.904 5 628.318 0.000894 8.7598 214.0439 -115.43 128.983 -14.888 6 314.159 0.000894 7.7603 178.8889 142 53.7615 -7.634 Total 882.017 1 7.92 * Pu = ∑( fsi-fcc )* Asi Mu = Pu* yi 87
Illustrative Example Axial compression and Moment due to concrete : Pu = C1* fck * /4 *D 2 = 0.4*25* /4 *400 2 = 1257.52kN Mu = C1* fck * /4 *D 2 *( 0.5*D-C 2 *D) = 0.4*25* /4 *400 2 *(0.5*400-0.4583*400) = 20.96 kN /m 88
Illustrative Example Axial compression and Moment due to concrete and steel : Pu = 1257.52+882.022kN =2139.542 kN Mu = 20.96+17.93 kN /m =38.89 kN /m 89
Illustrative Example Similarly For different values of Xu , Pu and Mux are calculated which is tabulated as : K = Xu/D Pu( kN ) Mu( kN /m) 5 2389.36 2.128412 4.5 2387.208 2.506113 4 2384.259 3.016103 3.5 2380.038 3.736871 3 2373.585 4.822541 2.5 2362.331 6.673568 2 2338.27 10.46118 1.5 2263.254 21.49601 1.2 2139.542 38.89 1.1 2063.729 49.30666 90
Illustrative Example Case(2) : Axial load + Minor axis Moment Case(b) N.A lies inside the section : ith row Area( Asi ) mm 2 Distance from C.g mm 1 314.159 142 2 628.318 115.43 3 628.318 43.88 4 628.318 -43.88 5 628.318 -115.43 6 314.159 -142 91
Illustrative Example Assuming Xu = 0.7*D As per assumption strain at highly compressed edge is equal to 0.0035 92
Illustrative Example From similar triangles strains and stresses at each rows are : ith row Strain fcc fsi 1 0.002775 11.1500 351.9313 2 0.002436 11.1500 343.4687 3 0.001549 10.6055 298.9794 4 0.000451 4.4760 90.2990 5 -0.000775 0.0000 -87.2010 6 -0.000436 0.0000 -155.0000 93
Illustrative Example Axial compression and Moment due to steel : ith row Area( Asi ) (mm 2 ) Strain fcc ( Mpa ) fsi ( Mpa ) Yi (mm) Pu* ( kN ) Mux* ( kN /m) 1 314.159 0.002775 11.1500 351.9313 142 107.059 15.202 2 628.318 0.002436 11.1500 343.4687 115.43 208.801 24.101 3 628.318 0.001549 10.6055 298.9794 43.88 181.190 7.950 4 628.318 0.000451 4.4760 90.2990 -43.88 53.924 -2.366 5 628.318 -0.000775 0.0000 -87.2010 -115.43 -54.789 6.324 6 314.159 -0.000436 0.0000 -155.0000 -142 -48.694 6.914 Total 447.68 58.125 * Pu = ∑( fsi-fcc )* Asi Mu = Pu* yi 94
Illustrative Example Axial compression and Moment due to concrete : Pu = 0.36* fck *area = 0.36*25*93956.77 area = area of sector OACB + area of triangle OAB = 845.61 kN =93956.77 mm 2 Mu = 0.36* fck *area*(0.5*D-0.42* kD ) = 0.36*25*93956.77 *(0.5*400-0.42*0.7*400) = 70.625 kN /m 95
Illustrative Example Axial compression and Moment due to concrete and steel : Pu = 845.61+477.68kN =1323.29 kN Mu = 70.625+58.125 kN /m =128.75 kN /m 96
Illustrative Example Similarly For different values of Xu , Pu and Mux are calculated which is tabulated as : K = Xu/D Pu( kN ) Mu( kN /m) 1 1946.203 65.11777 0.975 1911.31 71.18564 0.95 1875.557 77.24079 0.9 1789.986 88.79353 0.85 1688.746 99.60895 0.8 1572.112 109.7683 0.75 1440.83 119.4384 0.7 1293.294 128.6088 0.65 1125.112 137.2222 0.6 930.9926 145.2185 0.55 732.088 150.67 0.5 550.6213 151.1498 0.45 360.4001 149.0657 0.4 182.1018 143.4091 0.35 9.406051 132.8055 0.3 -194.348 116.8327 0.25 -400.657 97.81933 0.2 -600.649 74.09924 0.15 -863.611 40.74318 0.1 -1056.64 13.44262 97