Complex

SiddiquiMeraj 1,929 views 46 slides Jan 18, 2019
Slide 1
Slide 1 of 46
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46

About This Presentation

Physical Pharmacy


Slide Content

COMPLEXATION
ShaikhSabina Meraj
Assistant Professor
Y.B. ChavanCollege of Pharmacy.
1

DEFINITION
Complexcompoundsaredefinedasthose
moleculesinwhichmostofthebonding
structurescanbedescribedbyclassical
theoriesofvalencybetweenatoms,butoneormore
of these bonds are somewhat
anomalous(different).
Acomplexisaspeciesformedbythereversibleor
irreversibleassociationoftwoormoreinteracting
moleculesorions.
Complexeshavebeenusuallyreferredtoascoordination
compounds.
2

INTRODUCTION
Intermolecularforcesinvolvedintheformationof
complexesare
Coordinatecovalenceisimportantinmetalcomplexes.
VanderWaalsforcesofdispersion
Hydrogenbonding:provideasignificantforceinsome
molecularcomplexes
Hydrophobicinteraction
3

INTRODUCTION
Oncecomplexationoccurs,thephysicalandchemical
propertiesofthecomplexingspeciesarealtered
(solubility,stability,partitioning,energyabsorption,and
emissionandconductance)
Complexformationusuallyaltersthephysicaland
chemicalpropertiesofthedrug.Forexamples:
(1)chelatesoftetracyclinewithcalciumarelesswater
solubleandarepoorlyabsorbed.
4

INTRODUCTION
(2)Theophyllinecomplexedwithethylenediaminetoform
aminophyllineismorewatersolubleandisusedfor
parenteralandrectaladministration.
Theophylline
Aminophylline
(Water-soluble)
5

INTRODUCTION
(3)cyclodextrinsareusedtoformcomplexeswithmany
drugstoincreasetheirwatersolubility.
Hydrophilic
exterior
Hydrophobic
interior
Hydrophobic
drug
6

INTRODUCTION:
Complexes,accordingtotheclassicdefinition,resultfroma
donor-acceptormechanismorLewisacid-basereaction
betweentwoormoredifferentchemicalconstituents.
ALewisacidisamoleculeorionthatacceptsanelectronpair
toformacovalentbond.Theacceptor,orconstituentthat
acceptsashareinthepairofelectrons,isfrequentlyametallic
ion,althoughitcanbeaneutralion.
ALewisbase(Ligand)isamoleculethatprovidesapairof
unsharedelectronsbywhichthebasecoordinateswiththe
acid.Anynonmetallicatomorion,whetherfreeorcontained
inaneutralmoleculeorinanioniccompound,thatcandonate
anelectronpairmayserveasthedonor. 7

8

CLASSIFICATIONOFCOMPLEXES
Complexesmaybedividedbroadlyintotwoclasses
dependingonwhethertheacceptorcomponentisa
metallicionoranorganicmolecule;theseareclassified
accordingtoonepossiblearrangement.
Athirdclass,theinclusion/occlusioncompounds,
involvingtheentrapmentofonecompoundinthe
molecularframeworkofanother.
9

CLASSIFICATIONOFCOMPLEXES
1. Metal Ion Complexes:
a. Inorganic Type
b. Chelates
c. Mental-olefins
2. Organic molecular Complexes
a. .Drug andcaffeinecomplexes
b. Polymertypes
c. Picricacidtypes
d. Quinhydronetypes
3. Inclusion/occlusion Complexes
a. channel lattice type
b. layer type
c. clathrates
d. monomolecular inclusion compounds
10

METALCOMPLEXES
Inthistypeofcoordinationcomplexes,components
areorganicmoleculesandtheseareheldtogetherby
weakerforcesorhydrogenbonding.
11

INORGANICCOMPLEXES
Theammoniamoleculesinhexamminecobalt(III)
chloride,asthecompound[Co(NH3)6]3+Cl3-is
called,astheligandsandaresaidtobecoordinatedto
thecobaltion.
Thecoordinationnumberofthecobaltion,ornumberof
ammoniagroupscoordinatedtothemetalions,issix.
Othercomplexionsbelongingtotheinorganicgroup
include[Ag(NH3)2]+,[Fe(CN)6]4-,and[Cr(H2O)6]
3+.
Eachliganddonatesapairofelectronstoforma
coordinatecovalentlinkbetweenitselfandthecentral
ionhavinganincompleteelectronshell.
12

For example
13
LigandssuchasH
2O:,H
3N:,NC:
-
,orCl:
-
donatea
pairofelectronsinformingacomplexwithametal
ion,andtheelectronpairentersoneoftheunfilled
orbitalsonthemetalion.

14
Hybridizationplaysanimportantpartin
coordinationcompoundsinwhichsufficientbonding
orbital'sarenotordinarilyavailableinthemetalion.

CHELATES
Whenaligandprovidesonegroupforattachmenttothe
centralion,thenitscalledmonodentate.
Moleculeswithtwoorthreegroupsarecalledbidentateand
tridentaterespectively(multidentateorpolydentate).
Ifametalionbindstotwoormoresitesonamultidentate
ligand,acycliccomplexisformed;thiscycliccomplexis
knownasachelate.
Chelatesarecomplexesthattypicallyinvolvearing-like
structureformedbytheinteractionbetweenapartialringof
atomandametal.
Inchelates,ligandsareusuallyorganicmolecules,knownas
chelatingagents,chelators,chelantsorsequesteringagents.
15

Someofthebondsinachelatemaybeionicorofthe
primarycovalenttype,whileothersarecoordinate
covalentlinks.
Theformationofchelatecomplexesiscontrolledby
stringentstericrequirementsonboththemetalionand
theligand.
16

17
Manybiologicallyimportantmolecules(e.g.
hemoglobin,insulin,cyanocobalamine,chlorophyll)are
chelates.
Otherbiologicalchelatesincludealbumin,themost
commonplasmaproteinwhichactsasacarrierof
variousmetalions(Cu2+andNi2+)andsmallmolecules
intheblood.

Hemoglobinalsocontainsaporphyrinchelatingagent
bondedtoanironIIion.
Inchlorophyllthecentralionismagnesium,andthe
largeorganicmoleculeisaporphyrin.Theporphyrin
containsfournitrogenatomsthatformbondsto
magnesiuminasquareplanararrangement.
18

Ethylenediaminetetraaceticacid(EDTA)hassixpoints
forattachmenttothemetalionandaccordinglyis
hexadentate.
19

EDTAisasyntheticchelatingagentusedtosequester
ions(ironandcopper)thatcatalyzesoxidative
degradationreactionsindrugpreparation.
EDTAisalsowidelyusedtosequesterandremove
calciumionsfromhardwater.
20

Thechelatingpropertiesofprocainamide(Sodium
channelblocker,ClassIAantiarrhythmic)hasbeenused
asanassayforitscontentinpharmaceutical
preparations.
ComplexformationwithCu2+resultsinacolored
compoundthatcanbemeasuredbyvisible
spectrophotometry.
Thuscalorimetricmethodstoassayprocainamidein
injectablesolutionsisbasedontheformationofa1:1
complexofprocainamidewithcupricionatpH4to4.5.
21

22
Tetracyclineantibioticsarecapableofactingaschelating
agentsandbindingavarietyofpolyvalentmetalions
(Fe2+,Mg2+,Al3+,Bi3+).
Thecomplexationresultsinchangesinboththedrugs’
andthemetalions’physicalandchemicalproperties.
Thecomplexationbetweentetracyclineantibioticsand
metalionseitherinfood(cabbage)orinpharmaceutical
preparations(ironcontainingsupplements)hasbeen
foundtoreduceboththesolubilityandbioavailabilityof
theantibiotics.

23
Tetracyclinesarecontraindicatedinpediatricpatients
sincetheyarepronetotetracyclinecomplexationof
calciuminteethandbonesresultinginteeth
discolorationandbonegrowthproblems.

OLEFINTYPES
Thesetypesofcomplexesareusedascatalystsinthe
manufactureofbulkdrugs,intermediatesand
intheanalysisofdrugs.
24

ORGANICMOLECULARCOMPLEX
Inthistypeofcoordinationcomplexes,components
areorganicmoleculesandtheseareheldtogetherby
weakerforcesorhydrogenbonding.
Classification oforganicmolecularcomplex
a. Drug andcaffeinecomplexes
b. Polymertypes
c. Picricacidtypes
d. Quinhydronetypes
25

ORGANICMOLECULARCOMPLEX
Hydrogenbonds-Heredipole-dipoleandlondontypeof
forcesareresponsibleforitsstability.
ThecompoundsN-dimethylanilineand2,4,6-
trinitroanisolereactinthecoldtogiveamolecular
complex:
26

27
Chargetransfercomplexes-Inthistypeonemolecule
polarizeother,resultinginelectrostaticinteraction
formingacomplexwithionictypeofinteraction.
Resonancemakethemaincontributionforstability.
For example, the polar nitro groups of trinitrobenzene
induce a dipole in the readily polarizablebenzene
molecule, and the electrostatic interaction that results
leads to complex formation:

28
Electrondonor–acceptormechanism:-Thetypeof
bondingexistinginmolecularcomplexesinwhich
hydrogenbondingplaysnopartisnotfullyunderstood,
butitmaybeconsideredaselectrondonor–acceptor
mechanism.

A. DRUGANDCAFFEINECOMPLEXES
Caffeinecomplexingwithanumberofacidicdrugs,such
assulfonamideorbarbiturate.
Mechanism:a.dipole–dipoleforceorhydrogenbonding
betweenthepolarizedcarbonylgroupsofcaffeineand
thehydrogenatomoftheacid.
b.interactionprobablyoccursbetweenthe
nonpolarpartsofthemolecules,andtheresultant
complexis“squeezedout”oftheaqueousphaseowing
tothegreatinternalpressureofwater.
29

IncaffinemoleculeNitrogenbecomesmorestrongly
electrophillicoracidduetowithdrawalofoxygenfrom
boththesides,formingapositivecenterwhichisoffered
forcomplexation.
Inbenzocainemoleculeesterbecomepolarizeinsucha
waythatcarboxyoxygenactsasneutrophillorbase.
Thecomplexresultinformationofdipoledipole
interactionbetweencarboxyoxygengroupofbenzocaine
andelectrophillicNitrogenofcaffine.
30

Caffeineformscomplexeswithorganicacidanionsthat
aremoresolublethanthepurexanthine,butthe
complexesformedwithorganicacids,suchasgentisic
acid,arelesssolublethancaffeinealone.
Suchinsolublecomplexesprovidecaffeineinaformthat
masksitsnormallybittertasteandshouldserveasa
suitablestateforchewabletablets.
31

B. POLYMERTYPES
Polyethyleneglycols,polystyrene,carboxymethylcellulose,
andsimilarpolymerscontainingnucleophilicoxygenscan
formcomplexeswithvariousdrugs.,canbeattributedtothese
interactions.Theinteractionsthatmayoccurinsuspensions,
emulsions,ointmentsandsuppositories.
Theincompatibilitiesofcertainpolyethers,suchasthe
Carbowaxes,Pluronics,andTweenswithtannicacid,salicylic
acid,andphenolmaybemanifestedasa
precipitate,
flocculate,
delayedbiologicabsorption,
lossofpreservativeaction,
undesirablephysical,chemical,andpharmacologiceffects.
32

C. PICRICACIDTYPES
Picricacid,beingastrongacid,formsorganic
molecularcomplexeswithweakbases,whereasit
combineswithstrongbases(anestheticactivityof
butesin)toyieldsalts.
Picricacidcomplexes–suchasButesinpicratewhich
combinestheantisepticpropertyofpicricacidand
anestheticpropertyofButesinusedasa1%ointmentfor
burnsandpainfulskinabrasions.
33

34
2
Butesin Picric acid

Quinhydronecomplexes–quindronecomplexis
formedbymixingalcoholicsolutionsofbenzoquinone
andhydroquinoneforminggreencrystals.
Quinhydrone, the complex disassociates into equivalent
amounts of quinoneand hydroquinone in an Aqueous
Saturated solution.
35

Thesecomplexesarealsocalledocclusion
compoundsinwhichoneofthecomponentsis
trappedintheopenlatticeorcagelikecrystal
structureoftheother.
A class of addition compounds where one of the
constituent of the complex is trapped in the theother to
yield a stable layout.
Type of Host-Guest compound.
Depends on the architecture arrangement rather than the
chemical affinity.
36

CHANNELTYPES
Whenthepowder(host)crystallizesintheformof
channels,thesechannelshavespecificcharacteristicsand
stereochemistrythatallowsonlySpecifictypeofguest
moleculetofitin.
Averycommonexampleofsuchcomplexesistheone
formedbystarchandiodinewhereiodinemoleculesare
trappedwithinchannelsconsistingofspiralsofglucose
residuesofstarch;othermaterialscapableofforming
thesechannelsincludebileacids,ureaandtheorem.
37

LAYERTYPE
Compoundssuchasclays,montomorillorite
(constituentofbentonite),canentraphydrocarbons,
alcoholsandglycols.
Theyformalternatemonomolecular(monoatomic)
layersofguestandhost.
Theirusesarecurrentlyquitelimited;howeverthese
maybeusefulforcatalysisonaccountofalarger
surfacearea.
38

CLATHRATES
39
Theclathratescrystallizeintheformofacagelikelattice
inwhichthecoordinatingcompoundisentrapped.
Chemicalbondsarenotinvolvedinthesecomplexes,and
onlythemolecularsizeoftheencagedcomponentisof
importance.
Thestabilityofaclathrateisduetothestrengthofthe
structure,thatis,tothehighenergythatmustbe
expendedtodecomposethecompound.

the highly toxic agent hydroquinone (quinol) crystallizes
in a cage like hydrogen-bonded structure.
The holes have a diameter of 4.2 A and permit the
entrapment of one small molecule to about every two
quinolmolecules. Small molecules such as methyl
alcohol, CO2, and HClmay be trapped in these cages,
But larger molecules such as ethanol cannot be
accommodated.
40

41
Cagelikestructureformedthroughhydrogenbondingofhydroquinonemolecules.
Smallmoleculessuchasmethanolaretrappedinthecagestoformtheclathrate

In this class of inclusion compounds, a single guest
molecule is entrapped in the cavity of one host molecule.
A representative example of such compounds is
cyclodextrins.
Cyclodextrinsare cyclic oligosaccharides containing a
minimum of six D (+) glucopyranoseunits attached by
an -1,4 linkage.
Cyclodextrinsare produced from starch by the action of
bacterial amylase.

42

43
Host molecule
Cavity for guest molecule
Hydrophobic interior
Hydrophilic entrance

TheinterioroftheCDcavityisusuallyhydrophobic
becauseoftheCH2groups,whiletheexteriorofthe
cavityishydrophilicbecauseofthepresenceofthe
hydroxylgroups.
ComplexationwithCDdoesnotordinarilyinvolvethe
formationofcovalentbonds.Moleculesofappropriate
sizeandstereochemistrycanbeincludedinthe
cyclodextrincavitybyhydrophobicinteraction.
44

Thenaturallyoccurringα-CD,β-CDandγ-CDcontain6,
7and8unitsofglucoserespectively.
Thecyclodextrinsformaringandthemoleculeactually
existsasatruncatedconeinwhichguestmoleculescan
beaccommodatedtoformaninclusioncomplex.
Thesizeofthecavityincreasesbyincreasingthenumber
ofglucoseunits,α-CDbeingthesmallest,α-CDisnot
veryusefulforpharmaceuticalapplications,β-CDand
γ-CDaremoreusefulowingtothelargecavity.
45

Thankyou
46
Tags