Concept of Regression in Research Methodology.pdf

661 views 19 slides Apr 12, 2024
Slide 1
Slide 1 of 19
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19

About This Presentation

Regression
Types of Regression
Regression Analysis
Example


Slide Content

REGRESSION
Dr. Balamurugan M
Associate Professor
Acharya Institute of Graduate Studies
Bangalore

Regression
•Regressionanalysismeasuresthenatureandextentofthe
relationshipbetweentwoormorevariables,thusenables
ustomakepredictions.
•Regressionisthemeasureoftheaveragerelationship
betweentwoormorevariables.

Correlation vs. Regression
•Degree&NatureofRelationship
CorrelationisameasureofdegreeofrelationshipbetweenX
&Y.
Regressionstudiesthenatureofrelationshipbetweenthe
variablessothatonemaybeabletopredictthevalueofone
variableonthebasisofanother.
•Cause&EffectRelationship
Correlationdoesnotassumecauseandeffectrelationship
betweentwovariables.
Regressionclearlyexpressesthecauseandeffectrelationship
betweentwovariables.Theindependentvariableisthecause
anddependentvariableiseffect.

Correlation vs. Regression
•Prediction
Correlationdoesnothelpinmakingpredictions.
Regressionenableustomakepredictionsusing
regressionline.
•Symmetric
Correlationcoefficientsaresymmetrical.
Regressioncoefficientsarenotsymmetrical.

Copyright © 2016 Pearson Education, Ltd. Chapter 12, Slide 5
12.1 Regression Models
Y
X
Y
X
Y
Y
X
X
Linear relationships Curvilinear relationships

Copyright © 2016 Pearson Education, Ltd. Chapter 12, Slide 6
Types of Relationships
Y
X
Y
X
Y
Y
X
X
Strong relationships Weak relationships

Copyright © 2016 Pearson Education, Ltd. Chapter 12, Slide 7
Types of Relationships
Y
X
Y
X
No relationship

Regression Analysis
Regressionanalysisisusedto:
Predictthevalueofadependentvariablebasedonthevalueofat
leastoneindependentvariable.
Explaintheimpactofchangesinanindependentvariableonthe
dependentvariable.
Dependentvariable:Thevariablewewishtopredictor
explain.
Independentvariable:Thevariableusedtopredictorexplain
thedependentvariable.

Simple Linear Regression
Model
•Onlyoneindependentvariable,X
•RelationshipbetweenXandYisdescribedbyalinear
function
•ChangesinYareassumedtoberelatedtochangesinX

Copyright © 2016 Pearson Education, Ltd. Chapter 12, Slide 10 ii10i
εXββY 
Linear component
Simple Linear Regression Model
Population
Y intercept
Population
Slope
Coefficient
Random
Error
term
Dependent
Variable
Independent
Variable
Random Error
component

Copyright © 2016 Pearson Education, Ltd. Chapter 12, Slide 11
Simple Linear Regression Equation
(Prediction Line)i10i XbbY
ˆ

The simple linear regression equation provides an
estimateof the population regression line
Estimate of
the regression
intercept
Estimate of the
regression slope
Estimated
(or predicted)
Y value for
observation i
Value of X for
observation i

Interpretation of the Slope
and Intercept
•b
0istheestimatedmeanvalueofYwhenthevalueofX
iszero.
•b
1istheestimatedchangeinthemeanvalueofYasa
resultofaone-unitincreaseinX.

Example
•Arealestateagentwishestoexaminethe
relationshipbetweenthesellingpriceofahome
anditssize(measuredinsquarefeet)
•Arandomsampleof10housesisselected
•Dependentvariable(Y)=housepricein$1000s
•Independentvariable(X)=squarefeet

Data

0
50
100
150
200
250
300
350
400
450
0 500 1000 1500 2000 2500 3000
House Price ($1000s)
Square Feet Scatter Plot
House price model: Scatter Plot

0
50
100
150
200
250
300
350
400
450
0 50010001500200025003000
Square Feet
House Price ($1000s) Graphical Representation
House price model: Scatter Plot and Prediction Linefeet) (square 0.10977 98.24833 price house 
Slope
= 0.10977
Intercept
= 98.248

Simple Linear Regression
Example: Interpretation
b
0istheestimatedmeanvalueofYwhenthevalueofXiszero
(ifX=0isintherangeofobservedXvalues)
Becauseahousecannothaveasquarefootageof0,b
0hasno
practicalapplication.
b
1estimatesthechangeinthemeanvalueofYasaresultofa
one-unitincreaseinX.
Here,b
1=0.10977tellsusthatthemeanvalueofahouse
increasesby.10977($1000)=$109.77,onaverage,foreach
additionalonesquarefootofsize.feet) (square 0.10977 98.24833 price house 

317.85
0)0.1098(200 98.25
(sq.ft.) 0.1098 98.25 price house


 Predict the price for a house
with 2000 square feet:
The predicted price for a house with 2000
square feet is 317.85($1,000s) = $317,850
Simple Linear Regression Example:
Making Predictions

THANK YOU