control systems 7llllllllllllllllllllllll.pdf

kamelsaleh8 7 views 7 slides Oct 26, 2025
Slide 1
Slide 1 of 7
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7

About This Presentation

lllll


Slide Content

Control 2 - P. Zanchetta -University of Nottingham, UK
D/Aconverterdelay
D/A
u(t)u*(t)
T
u*(t)
u(t)
t
T/2

Control 2 - P. Zanchetta -University of Nottingham, UK
Methodsfordesigningdigitalcontrollers
Emulation(
s
>15
n
)
GetplantTFG(s)
Design the controller in s-
domainusingrootlocus
Discretize the controller to get
G
c
(z)using orz-transf.
Implementdifferenceeq.inp
Discretedesign(4
n
<
s
<15
n
)
GetplantTFG(s)
Discretize the plant TF to get
G(z)using orz-transf.
Design the controller in the z
domainusingz-planerootlocus
Implementdifferenceeq.inp
1Tz
1z2
s



1Tz
1z2
s


Control 2 - P. Zanchetta -University of Nottingham, UK
z-Transform
 




0k
k
z)k(f)z(F)k(f
f(t)
0 T 2T 3T 4T t
f(k)
0 T 2T 3T 4T t
T
  )z(Fz)1k(fZ
1


Control 2 - P. Zanchetta -University of Nottingham, UK
ztransformsofCommonsignals
f(k)
0 T 2T 3T 4T t
T
f(k)
0 T 2T 3T 4T t
T
1
Unit step function Ramp function

Control 2 - P. Zanchetta -University of Nottingham, UK
ztransformsofCommonsignals
f(k)
0 T 2T 3T 4T t
T
1
Exponential function
f(t)=exp(-t)
T
e

T2
e


Control 2 - P. Zanchetta -University of Nottingham, UK
ztransformsofCommonsignals
f(k)
0 T 2T 3T 4T t
T
Damped sinusoid
f(t)=exp(-t)sint

Control 2 - P. Zanchetta -University of Nottingham, UK
Basicdigitalcontrolsystem
Tags