Cooling towers

92,561 views 38 slides Dec 25, 2011
Slide 1
Slide 1 of 38
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38

About This Presentation

No description available for this slideshow.


Slide Content

1
Training Session on Energy Training Session on Energy
EquipmentEquipment

Cooling TowersCooling Towers
Presentation from the
“Energy Efficiency Guide for Industry in Asia”
www.energyefficiencyasia.org
©© UNEP 2006 UNEP 2006
Electrical Equipment/
Cooling Towers

2

©© UNEP 2006 UNEP 2006
Training Agenda: Cooling TowersTraining Agenda: Cooling Towers
Introduction
Types of cooling towers
Assessment of cooling towers
Energy efficiency opportunities
Electrical Equipment/
Cooling Towers

3

©© UNEP 2006 UNEP 2006
IntroductionIntroduction
Main Features of Cooling TowersElectrical Equipment/
Cooling Towers
(Pacific Northwest National Library, 2001)

4

©© UNEP 2006 UNEP 2006
IntroductionIntroduction
•Frame and casing: support exterior
enclosures
•Fill: facilitate heat transfer by
maximizing water / air contact
•Splash fill
•Film fill
•Cold water basin: receives water at
bottom of tower
Components of a cooling tower
Electrical Equipment/
Cooling Towers

5

©© UNEP 2006 UNEP 2006
IntroductionIntroduction
•Drift eliminators: capture droplets in
air stream
•Air inlet: entry point of air
•Louvers: equalize air flow into the fill
and retain water within tower
•Nozzles: spray water to wet the fill
•Fans: deliver air flow in the tower
Components of a cooling tower
Electrical Equipment/
Cooling Towers

6

©© UNEP 2006 UNEP 2006
Training Agenda: Cooling TowersTraining Agenda: Cooling Towers
Introduction
Types of cooling towers
Assessment of cooling towers
Energy efficiency opportunities
Electrical Equipment/
Cooling Towers

7

©© UNEP 2006 UNEP 2006
Types of Cooling TowersTypes of Cooling Towers
•Hot air moves through tower
•Fresh cool air is drawn into the
tower from bottom
•No fan required
•Concrete tower <200 m
•Used for large heat duties
Natural Draft Cooling TowersElectrical Equipment/
Cooling Towers

8

©© UNEP 2006 UNEP 2006
Types of Cooling TowersTypes of Cooling Towers
Natural Draft Cooling Towers
Electrical Equipment/
Cooling Towers
(Gulf Coast Chemical Commercial Inc.)
Cross flow
•Air drawn across
falling water
•Fill located
outside tower
Counter flow
•Air drawn up
through falling
water
•Fill located
inside tower

9

©© UNEP 2006 UNEP 2006
Types of Cooling TowersTypes of Cooling Towers
•Large fans to force air through
circulated water
•Water falls over fill surfaces:
maximum heat transfer
•Cooling rates depend on many
parameters
•Large range of capacities
•Can be grouped, e.g. 8-cell tower
Mechanical Draft Cooling Towers
Electrical Equipment/
Cooling Towers

10

©© UNEP 2006 UNEP 2006
Types of Cooling TowersTypes of Cooling Towers
Three types
•Forced draft
•Induced draft cross flow
•Induced draft counter flow
Mechanical Draft Cooling Towers
Electrical Equipment/
Cooling Towers

11

©© UNEP 2006 UNEP 2006
Types of Cooling TowersTypes of Cooling Towers
•Air blown through tower
by centrifugal fan at air
inlet
•Advantages: suited for
high air resistance & fans
are relatively quiet
•Disadvantages:
recirculation due to high
air-entry and low air-exit
velocities
Forced Draft Cooling TowersElectrical Equipment/
Cooling Towers
(GEO4VA)

12

©© UNEP 2006 UNEP 2006
Types of Cooling TowersTypes of Cooling Towers
•Two types
• Cross flow
• Counter flow
•Advantage: less recirculation than forced
draft towers
•Disadvantage: fans and motor drive
mechanism require weather-proofinh
Induced Draft Cooling TowersElectrical Equipment/
Cooling Towers

13

©© UNEP 2006 UNEP 2006
Types of Cooling TowersTypes of Cooling Towers
•Hot water enters at the top
•Air enters at bottom and exits at top
•Uses forced and induced draft fans
Induced Draft Counter Flow CT
Electrical Equipment/
Cooling Towers
(GEO4VA)

14

©© UNEP 2006 UNEP 2006
Types of Cooling TowersTypes of Cooling Towers
•Water enters top and passes over fill
•Air enters on one side or opposite sides
•Induced draft fan draws air across fill
Induced Draft Cross Flow CT
Electrical Equipment/
Cooling Towers
(GEO4VA)

15

©© UNEP 2006 UNEP 2006
Training Agenda: Cooling TowersTraining Agenda: Cooling Towers
Introduction
Types of cooling towers
Assessment of cooling towers
Energy efficiency opportunities
Electrical Equipment/
Cooling Towers

16

©© UNEP 2006 UNEP 2006
Assessment of Cooling TowersAssessment of Cooling Towers
Measured ParametersElectrical Equipment/
Cooling Towers
•Wet bulb temperature of air
•Dry bulb temperature of air
•Cooling tower inlet water temperature
•Cooling tower outlet water temperature
•Exhaust air temperature
•Electrical readings of pump and fan
motors
•Water flow rate
•Air flow rate

17

©© UNEP 2006 UNEP 2006
Performance ParametersElectrical Equipment/
Cooling Towers
1.Range
2.Approach
3.Effectiveness
4.Cooling capacity
5.Evaporation loss
6.Cycles of concentration
7.Blow down losses
8.Liquid / Gas ratio
Assessment of Cooling TowersAssessment of Cooling Towers

18

©© UNEP 2006 UNEP 2006
1. Range
Electrical Equipment/
Cooling Towers
Difference between
cooling water inlet and
outlet temperature:
Range (°C) = CW inlet
temp – CW outlet temp
High range = good
performance
Range
Approach
Hot Water Temperature (In)
Cold Water Temperature (Out)
Wet Bulb Temperature (Ambient)
(In) to the Tower
(Out) from the
Tower
Assessment of Cooling TowersAssessment of Cooling Towers

19

©© UNEP 2006 UNEP 2006
2. Approach
Electrical Equipment/
Cooling Towers
Difference between
cooling tower outlet cold
water temperature and
ambient wet bulb
temperature:
Approach (°C) =
CW outlet temp – Wet
bulb temp
Low approach = good
performance
Range
Approach
Hot Water Temperature (In)
Cold Water Temperature
(Out)
Wet Bulb Temperature
(Ambient)
(In) to the Tower
(Out) from the
Tower
Assessment of Cooling TowersAssessment of Cooling Towers

20

©© UNEP 2006 UNEP 2006
3. Effectiveness
Electrical Equipment/
Cooling Towers
Effectiveness in %
= Range / (Range +
Approach)
= 100 x (CW temp – CW
out temp) / (CW in
temp – Wet bulb temp)
High effectiveness =
good performance
Range
Approach
Hot Water Temperature (In)
Cold Water Temperature
(Out)
Wet Bulb Temperature
(Ambient)
(In) to the Tower
(Out) from the
Tower
Assessment of Cooling TowersAssessment of Cooling Towers

21

©© UNEP 2006 UNEP 2006
4. Cooling CapacityElectrical Equipment/
Cooling Towers
Heat rejected in kCal/hr
or tons of refrigeration
(TR)
= mass flow rate of water
X specific heat X
temperature difference
High cooling capacity =
good performance
Range
Approach
Hot Water Temperature (In)
Cold Water Temperature
(Out)
Wet Bulb Temperature
(Ambient)
(In) to the Tower
(Out) from the
Tower
Assessment of Cooling TowersAssessment of Cooling Towers

22

©© UNEP 2006 UNEP 2006
5. Evaporation LossElectrical Equipment/
Cooling Towers
Water quantity (m3/hr)
evaporated for cooling duty
= theoretically, 1.8 m3 for
every 10,000,000 kCal heat
rejected
= 0.00085 x 1.8 x circulation
rate (m3/hr) x (T1-T2)
T1-T2 = Temp. difference
between inlet and outlet water
Range
Approach
Hot Water Temperature
(In)
Cold Water Temperature
(Out)
Wet Bulb Temperature
(Ambient)
(In) to the Tower
(Out) from the
Tower
Assessment of Cooling TowersAssessment of Cooling Towers

23

©© UNEP 2006 UNEP 2006
6. Cycles of concentration (C.O.C.)Electrical Equipment/
Cooling Towers
Ratio of dissolved solids in circulating water to
the dissolved solids in make up water
Depend on cycles of concentration and
the evaporation losses
Blow Down =
Evaporation Loss / (C.O.C. – 1)
7. Cycles of concentration (C.O.C.)
Assessment of Cooling TowersAssessment of Cooling Towers

24

©© UNEP 2006 UNEP 2006
8. Liquid Gas (L/G) Ratio
Electrical Equipment/
Cooling Towers
Ratio between water and air mass flow rates
Heat removed from the water must be equal to
the heat absorbed by the surrounding air
L(T1 – T2) = G(h2 – h1)
L/G = (h2 – h1) / (T1 – T2)
T1 = hot water temp (oC)
T2 = cold water temp (oC)
Enthalpy of air water vapor mixture at inlet wet bulb temp (h1)
and outlet wet bulb temp (h2)
Assessment of Cooling TowersAssessment of Cooling Towers

25

©© UNEP 2006 UNEP 2006
Training Agenda: Cooling TowersTraining Agenda: Cooling Towers
Introduction
Types of cooling towers
Assessment of cooling towers
Energy efficiency opportunities
Electrical Equipment/
Cooling Towers

26

©© UNEP 2006 UNEP 2006
Energy Efficiency OpportunitiesEnergy Efficiency Opportunities
Electrical Equipment/
Cooling Towers
1.Selecting a cooling tower
2.Fills
3.Pumps and water distribution
4.Fans and motors

27

©© UNEP 2006 UNEP 2006
Energy Efficiency OpportunitiesEnergy Efficiency Opportunities
1. Selecting a cooling towerElectrical Equipment/
Cooling Towers
Capacity
•Heat dissipation (kCal/hour)
•Circulated flow rate (m3/hr)
•Other factors

28

©© UNEP 2006 UNEP 2006
Energy Efficiency OpportunitiesEnergy Efficiency Opportunities
Electrical Equipment/
Cooling Towers
Range
• Range determined by process, not by system
Approach
• Closer to the wet bulb temperature
• = Bigger size cooling tower
• = More expensive
1. Selecting a cooling tower

29

©© UNEP 2006 UNEP 2006
Energy Efficiency OpportunitiesEnergy Efficiency Opportunities
Electrical Equipment/
Cooling Towers
Heat Load
•Determined by process
•Required cooling is controlled by
the desired operating temperature
•High heat load = large size and cost
of cooling tower
1. Selecting a cooling tower

30

©© UNEP 2006 UNEP 2006
Energy Efficiency OpportunitiesEnergy Efficiency Opportunities
Electrical Equipment/
Cooling Towers
Wet bulb temperature – considerations:
•Water is cooled to temp higher than wet bulb
temp
•Conditions at tower site
•Not to exceed 5% of design wet bulb temp
•Is wet bulb temp specified as ambient (preferred)
or inlet
•Can tower deal with increased wet bulb temp
•Cold water to exchange heat
1. Selecting a cooling tower

31

©© UNEP 2006 UNEP 2006
Energy Efficiency OpportunitiesEnergy Efficiency Opportunities
Electrical Equipment/
Cooling Towers
Relationship range, flow and heat load
•Range increases with increased
• Amount circulated water (flow)
• Heat load
•Causes of range increase
• Inlet water temperature increases
• Exit water temperature decreases
•Consequence = larger tower
1. Selecting a cooling tower

32

©© UNEP 2006 UNEP 2006
Energy Efficiency OpportunitiesEnergy Efficiency Opportunities
Electrical Equipment/
Cooling TowersRelationship Approach and Wet bulb
temperature
•If approach stays the same (e.g. 4.45 oC)
•Higher wet bulb temperature (26.67 oC)
= more heat picked up (15.5 kCal/kg air)
= smaller tower needed
•Lower wet bulb temperature (21.11 oC)
= less heat picked up (12.1 kCal/kg air)
= larger tower needed
1. Selecting a cooling tower

33

©© UNEP 2006 UNEP 2006
Energy Efficiency OpportunitiesEnergy Efficiency Opportunities
Electrical Equipment/
Cooling Towers
•Hot water distributed over fill media
and cools down through evaporation
•Fill media impacts electricity use
•Efficiently designed fill media reduces pumping
costs
•Fill media influences heat exchange: surface
area, duration of contact, turbulence
2. Fill media

34

©© UNEP 2006 UNEP 2006
Energy Efficiency OpportunitiesEnergy Efficiency Opportunities
Electrical Equipment/
Cooling Towers
Comparing 3 fill media: film fill more
efficient
LowMuch LowHighQuantity of Air Required
6 – 9 m5 – 8 m9 – 12 mPumping Head
Requirement
1.5 – 1.8 m1.2 – 1.5 m5 – 10 mFill Height Required
85 - 100 m
2
/m
3
150 m
2
/m
3
30 – 45
m
2
/m
3
Effective Heat Exchange
Area
1.4 – 1.81.5 – 2.0 1.1 – 1.5Possible L/G Ratio
Low Clog
Film Fill
Film FillSplash Fill
2. Fill media
(BEE India, 2004; Ramarao; and Shivaraman)

35

©© UNEP 2006 UNEP 2006
Energy Efficiency OpportunitiesEnergy Efficiency Opportunities
3. Pumps and water distribution
Electrical Equipment/
Cooling Towers•Pumps: see pumps session
•Optimize cooling water treatment
•Increase cycles of concentration (COC) by
cooling water treatment helps reduce make
up water
•Indirect electricity savings
•Install drift eliminators
•Reduce drift loss from 0.02% to only 0.003 –
0.001%

36

©© UNEP 2006 UNEP 2006
Energy Efficiency OpportunitiesEnergy Efficiency Opportunities
4. Cooling Tower FansElectrical Equipment/
Cooling Towers
•Fans must overcome system
resistance, pressure loss: impacts
electricity use
•Fan efficiency depends on blade
profile
•Replace metallic fans with FBR blades
(20-30% savings)
•Use blades with aerodynamic profile (85-92%
fan efficiency)

37
Training Session on Energy Training Session on Energy
EquipmentEquipment

Cooling TowersCooling Towers
THANK YOUTHANK YOU
FOR YOU ATTENTIONFOR YOU ATTENTION
©© UNEP 2006 UNEP 2006
Electrical Equipment/
Cooling Towers

38

© UNEP 2006© UNEP 2006
Disclaimer and ReferencesDisclaimer and References
Electrical Equipment/
Cooling Towers
•This PowerPoint training session was prepared as part of
the project “Greenhouse Gas Emission Reduction from
Industry in Asia and the Pacific” (GERIAP). While
reasonable efforts have been made to ensure that the
contents of this publication are factually correct and
properly referenced, UNEP does not accept responsibility
for the accuracy or completeness of the contents, and shall
not be liable for any loss or damage that may be occasioned
directly or indirectly through the use of, or reliance on, the
contents of this publication. © UNEP, 2006.
•The GERIAP project was funded by the Swedish
International Development Cooperation Agency (Sida)
•Full references are included in the textbook chapter that is
available on www.energyefficiencyasia.org
Tags