References Stekhoven, D. J., and Buhlmann, P. (2012). MissForest—nonparametric missing value imputation for mixed-type data. Sujjaviriyasup, T., and Pitiruek, K. (2013). Agricultural product forecasting using a machine learning approach. Tavares, O. C. H., Santos, L. A., Filho, D. F., Ferreira, L. M., Garcia, A. C., Castro, T. A. V. T., et al. (2021). Response surface modeling of humic acid stimulation of the rice(Oryza sativa L.) root system. Arch. Agron. Uddin, K., Matin, M. A., and Meyer, F. J. (2019). Operational flood mapping using multitemporal Sentinel-1 SAR images: A case study from Bangladesh. Remote Sensing. Van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P., and Hochman, Z. (2013). Yield gap analysis with local to global relevance—a review. Van Klompenburg, T., Kassahun, A., and Catal, C. (2020). Crop yield prediction using machine learning. Sharma, R., Kamble, S. S., Gunasekaran, A., Kumar, V., and Kumar, A. (2020). A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Shehadeh, A., Alshboul, O., Al Mamlook, R. E., and Hamedat, O. (2021). Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Automation Construction. Siddique, M. N. E. A., de Bruyn, L. A. L., Osanai, Y., and Guppy, C. N. (2022). Typology of rice-based cropping systems for improved soil carbon management. P., Altman, D. G., and Sauerbrei, W. (2016). Dichotomizing continuous predictors in multiple regression: a bad idea. Sagi, O., and Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdiscip. Reviews: Data Min. Knowledge Discovery. Sarker, M. A. R., Alam, K., and Gow, J. (2019). Performance of rain-fed Aman rice yield in Bangladesh in the presence of climate change. Renewable Agric. Food systems.