•Despiteitssimplisticnature,crystalfieldtheory(CFT)
hasprovedremarkablyusefulforexplainingthe
propertiesofperiod4(1
st
rowd-block)transitionmetal
complexes.
•Thetheoryassumesthatthetransitionmetalionisfree
andgaseous,thattheligandsbehavelikepointcharges,
andthattherearenointeractionsbetweenmetald
orbitalsandligandorbitals.
•The theory also depends on the probability model of the
d orbitals, that there are two d orbitals whose lobes are
oriented along the Cartesian axes (axial) d
x
2
-y
2
and d
z
2
(following figure)
Period 4 (1
st
row d-block)
andthreedorbitalswhoselobesareorientedbetweenthe
Cartesianaxes(interaxial)d
xy
,d
xz
,andd
yz
(following
figure).
Figure: Representations
of the shapes of the 3d
x
2
-y
2
and 3d
z
2
orbitals.
Figure: Representations of the shapes of the 3d
xy
, 3d
xz
, and
3d
yz
orbitals.
The energy gap is
referred to as Δ
0
(10 Dq),
the crystal field splitting
energy.
d-orbitals (d
x
2
-y
2
and d
z
2
) pointing directly
at axis are affected most by electrostatic
interaction
d-orbitals (d
xy
, d
yx
and d
xz
) not pointing
directly at axis are least affected
(stabilized) by electrostatic interaction
Ligandsapproach metal
Inter-axial, t
2g
Axial, e
g
Why we consider ligand as a point charge in crystal
field theory?
•CFTassumesthatthemetalatomandtheligandsare
linkedbyelectrostaticforcesofattraction.
•Thusligandsareconsideredasnegativechargeswhereas
forneutralligandsthemostelectronegativeatompoints
towardstheatom.
GroupingofFived-Orbitals
into
t
2g
ande
g
setsofOrbitals
•Onthebasisoforientationofthelobesofthefived-orbitalswith
respecttocoordinatesthesehavebeengroupedintofollowingtwo
sets.
e
g
setsoforbitals(d
z
2
andd
x
2
–y
2
orbitals)
•Thissetconsistsoftwoorbitalswhichhavetheirlobesalongthe
axesandarecalledaxialorbitals.
•Theseared
z
2
andd
x
2
–y
2
orbitals.
•Thistheorycallstheseorbitalse
g
orbitalsinwhicherefersto
doublydegenerateset.
t
2g
setsoforbitals(d
xy
,d
yz
andd
zx
orbitals)
•Thissetincludethreeorbitalswhoselobesliebetweentheaxes
andarecallednon-axialorbitals.
•Theseared
xy
,d
yz
andd
zx
orbitals.
•Thistheorycallstheseorbitalst
2g
orbitalsinwhichtrefersto
triplydegenerateset.
Figure. The spatial orientations of the set of five d orbitals for
a transition metal.
Explanation
•Incaseoffreemetalionallthefived-orbitalsaredegeneratei.e.,these
havethesameenergy.
•Nowletusconsideranoctahedralcomplex[ML
6
]
n+
inwhichcentral
metalcation,M
n+
isplacedatthecentreofoctahedronandis
surroundedbysixligandswhichresideatthecornersofthe
octahedronasshowninthefigure.
Figure:Position of
central metal cation,
M
n+
and six ligands in
an octahedral complex
[ML
6
]
n+
•Thethreeaxes,viz.x-,y-,andz-axeswhich
pointalongthecornershavealsobeenshown.
•Nowsupposeboththeligandsoneachofthe
threeaxesareallowedtoapproachtowardsthe
metalcation,M
n+
fromboththeendsofthe
axes.
•Inthisprocesstheelectronsind-orbitalsofthe
metalcationarerepelledbynegativepoint
chargeorbythenegativeendofthedipoleof
theligands.
•Thisrepulsionwillraisetheenergyofallthefived-orbitals.
•Ifalltheligandsapproachingthecentralcationareatanequal
distancefromeachofthed-orbitals(i.e.,theligandfieldis
sphericallysymmetrical),theenergyofeachoffived-orbitalwill
raisebythesameamount,i.e.,allthed-orbitalswillstillremain
degenerate,althoughtheywillhavenowhigherenergythanbefore.
•Thisisonlyahypotheticalsituation.
•Sincethelobesofthetwoe
g
orbitalsliedirectlyinthepathofthe
approachingligands,theelectronsintheseorbitalsexperiencegreater
forceofrepulsionthanthoseinthreet
2g
orbitalswhoselobesare
directedinspacebetweenthepathoftheapproachingligands.
•So,energyofe
g
orbitalsisincreasedwhilethatoft
2g
isdecreased.
•Remember:Greatertherepulsion,greateristheincreaseinenergy.
•Thuswefindthatundertheinfluenceofapproachingligands,the
fived-orbitalswhichwereoriginallydegenerateinthefreemetallic
cationarenowsplit(orresolved)intotwolevelsviz.,t
2g
levelwhich
istriplydegenerateandisoflowerenergyande
g
levelwhichis
doublydegenerateandisofhigherenergy.
Figure. Splitting of the d orbitals in a crystal field of
octahedral symmetry.
Five degenerate d-orbitals
on the central metal cation
which are free from any
ligandfield
Hypothetical
degenerate d-orbitalsat
a higher energy level
Splitting of d-orbitals
under the influence of
six ligandsin octahedral
complex
----------------------
No splitting state
+0.6Δ
o
= +6Dq = (3/5) Δ
o
-0.4Δ
o
= -4Dq = (2/5) Δ
o
•Asshowninfollowingfigure,anoctahedralcomplex
canbeconsideredasametalionsurroundedbysix
ligandsthatarelocatedontheaxes.
Figure. An octahedral complex with the six ligands lying
on the x, y, and z axes.
•Whensixligandssurroundthemetalion,thedegeneracy
ofthedorbitalsisremovedbecausethreeoftheorbitals,
thed
xy
,d
yz
,andd
xz
orbitals,aredirectedbetweenthe
axeswhiletheothers,thed
x
2
-y
2
andthed
z
2
,aredirected
alongtheaxespointingattheligands.
•Therefore,thereisgreaterrepulsionbetweenthe
electronsinorbitalsontheligandsandthed
x
2
-y
2
andd
z
2
orbitalsthanthereistowardthed
xy
,d
yz
,andd
xz
orbitals.
•Becauseoftheelectrostaticfieldgeneratedbythe
ligands,allofthedorbitalsareraisedinenergy,buttwo
ofthemareraisedmorethantheotherthree.
•Asaresult,thedorbitalshaveenergiesthatcanbe
representedasshowninfollowingfigure.
Figure. Splitting of the d orbitals in a crystal field of
octahedral symmetry.
Five degenerate d-orbitals
on the central metal cation
which are free from any
ligandfield
Hypothetical
degenerate d-orbitalsat
a higher energy level
Splitting of d-orbitals
under the influence of
six ligandsin octahedral
complex
----------------------
No splitting state
+0.6Δ
o
= +6Dq = (3/5) Δ
o
-0.4Δ
o
= -4Dq = (2/5) Δ
o
•Thetwoorbitalsofhigherenergyaredesignatedasthee
g
orbitals,
andthethreeorbitalsoflowerenergymakeupthet
2g
orbitals.
•Thesedesignationswillbedescribedingreaterdetaillater,butthe
“g”subscriptreferstobeingsymmetricalwithrespecttoacenter
ofsymmetrythatispresentinastructurethathasO
h
symmetry.
•The"t"referstoatriplydegeneratesetoforbitals,whereas"e"
referstoasetthatisdoublydegenerate.
•Theenergyseparatingthetwogroupsoforbitalsiscalledthe
crystalorligandfieldsplitting,Δ
o
.
•Splittingoftheenergiesofthedorbitalsasindicatedinabove
figureoccursinsuchawaythattheoverallenergyremains
unchangedandthe“centerofenergy(Barycentre)”ismaintained.
" t " → Triply degenerate set of orbitals
" e " → Doubly degenerate of orbitals
•Thee
g
orbitalsareraised1.5timesasmuchasthet
2g
orbitalsare
loweredfromthecenterofenergy.
•Althoughthesplittingofthedorbitalsinanoctahedralfieldis
representedasΔ
o
,itisalsosometimesdesignatedas10Dq,whereDq
isanenergyunitforaparticularcomplex.
(1Δ
o
=10Dq)
•Thetwoorbitalsmakingupthee
g
pairareraisedby3/5Δ
o
(+0.6Δ
o
or
+6Dq)whilethet
2g
orbitalsareloweredby2/5Δ
o
(-0.4Δ
o
or-4Dq)
relativetothecenterofenergy.
•IntermsofDqunits,thee
g
orbitalsareraisedby6Dq
whilethethreet
2g
orbitalsare
4Dqlowerthanthecenterof
energy.
Crystal field splitting of d-orbitals
in octahedral complex.
3/5 Δ
o
2/5 Δ
o
Crystal field theory (CFT) splitting diagram
Example of influence of ligand electronic properties on d orbital
splitting. This shows the comparison of low-spin versushigh-
spin electrons.
First-row transition metals = 3d or 4d
d
2
sp
3
= Diamagnetic = Low-spin = Covalent complex (3d) = Inner
orbital complex
sp
3
d
2
= Paramagnetic = High-spin = Ionic complex (4d) = Outer orbital
complex
Explanation
•Thecobaltatominthegroundstatehastheouterelectron
configuration:
•The2+and3+ionshavethefollowingouterelectron
configuration:
and
Weakligand→F
-
•Withweakligands,suchasF
-
,bothions(Co
2+
and
Co
3+
)formoctahedralcomplexesinwhichtheligand
electronsareaccommodatedinsp
3
d
2
hybridorbitals.
•Inotherwords,thepartiallyfilledinnerd-orbitals
arenotused.
•Thistypeofcomplexisknownasanouterd-orbital
complex.
Strongligand→
-
CN
•Withstrongligands,suchas
-
CNions,spin-pairingof
theinnerd-electrons,occursandbothions(Co
2+
and
Co
3+
)formoctahedralcomplexesinwhichtheligand
electronsareaccommodatedind
2
sp
3
hybrids.
•Inotherwordsthepartiallyfilledd-orbitalsareused,
andthistypeofcomplexisknownasaninnerd-orbital
complex.
Energetics
Electrostatic between metal ion and donor atom (ligand)
•Step i: Separate metal and ligandhigh energy
•Step ii: Coordinated metal -ligandstabilized
•Step iii:Destabilization due to ligand-d electron
repulsion
•Step iv: Splitting
due to octahedral
field.
•Now,d
xz
andd
yz
behavethesameasd
xy
inanoctahedralfield,and
d
z
2
behavesthesameasd
x
2
-y
2
.
•Thismeansthatthed-orbitalsdivideintotwogroups,onelower
energythantheother,asshowninthefollowingdiagram.
•Thed
xy
,d
xz
,andd
yz
orbitalsarecollectivelycalledthet
2g
orbitals,
whereasthed
z
2
andd
x
2
-y
2
orbitalsarecalledthee
g
orbitals.
•Theoctahedralsplittingenergyistheenergydifferencebetweenthe
t
2g
ande
g
orbitals.
•Inanoctahedralfield,thet
2g
orbitalsarestabilizedby2/5Δ
o
,and
thee
g
orbitalsaredestabilizedby3/5Δ
o
.
Absorptionspectrumof[Ti(H
2
O)
6
]
3+
•Theeffectofcrystalfieldsplittingiseasilyseenbystudyingthe
absorptionspectrumof[Ti(H
2
O)
6
]
3+
becausetheTi
3+
ionhasasingle
electroninthe3dorbitals.
•Intheoctahedralfieldproducedbythesixwatermolecules,the3d
orbitalsaresplitinenergyasshowninthefollowingfigure.
•Theonlytransitionpossibleispromotionoftheelectronfromanorbital
inthet
2g
settooneinthee
g
set.
Crystal field splitting of d-orbitalsin
octahedral complex.
3/5 Δ
o
2/5 Δ
o
•Thistransitiongivesrisetoasingle
absorptionband,themaximumof
whichcorrespondsdirectlytothe
energyrepresentedasΔ
o
.
•Asexpected,thespectrumshowsa
single,broadbandthatiscenteredat
20,300cm
-1
,whichcorresponds
directlytoΔ
o
(followingfigure).
Figure.The electronic spectrum of
[Ti(H
2
O)
6
]
3+
in aqueous solution.
e
-
jumps to
higher level
Absorbed λ
Transmitted λ Incoming
λ
t
2g
t
2g
e
g
e
g
Light of
510nm
λ
max
= 20,300 cm
-1
↓
Whentheionabsorbslight,
electronscanmovefromthe
lowert
2g
,energyleveltothe
highere
g
level.
Thedifferenceinenergy
betweenthelevels(Δ)
determinesthewavelengths
oflightabsorbed.
Thevisiblecolorisgivenby
thecombinationofthe
wavelengthstransmitted.
Ground state
Excited state
•Theresultisalow-spincomplexinwhichtherearetwo
unpairedelectrons.
•IfΔ
o
issmallerthanthepairingenergy,thefourthelectron
will
beinoneofthee
g
orbitals,whichresultsinahigh-
spincomplexhavingfourunpairedelectrons.
•Thesecasesareillustratedinfollowingfigure.
Figure.Crystalfield
splittingenergycompared
totheelectronpairing
energy.
> = Greater than
< = Less than
Meanpairingenergy(P)
“Mean pairing energy (P) is the energy which is
required to pair two electrons against electron-electron
repulsion in the same orbital.”
Representationandunit
•Pisgenerallyexpressedincm
-1
.
Characteristics
•Pisthepairingenergyforoneelectronpair.
•Pairingenergydependsontheprincipalenergylevel(n)
ofd-electrons.
Calculationoftotalpairingenergyofd
x
ion
•Ifmisthetotalnumberofpairedelectronsint
2g
ande
g
orbitalsind
x
ionandPisthepairingenergyforone
electron,then
•Totalpairingenergyformelectronpairs=mPcm
-1
.
Example
•Calculatethetotalpairingenergyofd
7
ioninhighspin
aswellasinlowspinoctahedralcomplexes.
Solution
•Weknowthattheconfigurationofdioninhighspin
stateist
2g
5
e
g
2
whichshowsthatm=2+0=2.
•Totalpairingenergyfor2pairedelectrons=2xP=2P
•Theconfigurationofd
7
ioninlowspinstateist
2g
6
e
g
1
whichgivesm=3+0=3.
•Totalpairingenergyfor3pairedelectrons=3xP=3P
No field
Maximum number
of unpaired electrons
Free Mn
2+
ion
t
2g
t
2g
e
g
e
g
[Mn(H
2
O)
6
]
2+
[Mn(CN)
6
]
4-
Weak-field ligand
High-spin complex
P > Δ
0
Strong-field ligand
Low-spin complex
P < Δ
0
small large
large
[Cr(H
2
O)
6
]
2+
[Cr(CN)
6
]
4-
t
2g
t
2g
e
g
e
g
small
P > Δ
0
P < Δ
0
> = Greater than
< = Less than
[Δ
0
< P]
[Δ
0
< P]
[Δ
0
> P]
[Δ
0
> P]
Weak-field ligand
Strong-field ligand
•Thepossibleelectronicconfigurationsforoctahedrald
n
(d
1
tod
10
,n=1–10)transition-metalcomplexes[M(H
2
O)
6
]
n+
.
•Onlythed
4
throughd
7
caseshavebothhigh-spinandlow-
spinconfigurations.
P > Δ
0
[Δ
0
< P]
P < Δ
0
[Δ
0
> P]
The various electronic configurations for low spin
octahedral complexes
The various electronic configurations for high spin
octahedral complexes
Factors for the magnitude of the ligand field
splitting
•Ofcourse,wehavenotyetfullyaddressedthefactorsthat
areresponsibleforthemagnitudeoftheligandfield
splitting.
•Thesplittingofthedorbitalsbytheligandsdependson:
–Thenatureofthemetalionandtheligands
–Theextentofbackdonation
–πbondingtotheligands
Assignment
Q:Writenoteon:
a)Theeffectofligandsandsplitting
energyonorbitaloccupancy?
Chemical and theoretical background
A reminder about symmetry labels
•Thetwosetsofdorbitalsinanoctahedralfieldare
labellede
g
andt
2g
(followingfigure).
Figure.Splitting of the d orbitals in an octahedral crystal field, with
the energy changes measured with respect to the barycentre.
Figure.Crystal field splitting diagrams for octahedral (left-hand side)
and tetrahedral (right-hand side) fields. The splittingsare referred to a
common barycentre.
Figure.The changes in the energies of the electrons occupying the
d orbitals of an M
n+
ion when the latter is in an octahedral crystal
field. The energy changes are shown in terms of the orbital energies.
Energy difference between the two sets of d-orbitals
•Theenergydifferencebetweenthetwosetsofdorbitals
intheoctahedralfieldisgiventhesymbol∆
oct
.
•Thesumoftheorbitalenergiesequalsthedegenerate
energy(sometimescalledthebarycenter).
•Thus,theenergyofthetwohigher-energyorbitals(d
x
2
-
y
2
andd
z
2
)is+3/5∆
oct
(+0.6∆
oct
),andtheenergyofthe
threelower-energyorbitals(d
xy
,d
xz
,andd
yz
)is-2/5∆
oct
(-0.4∆
oct
)belowthemean.
(+0.6∆
oct
)
(-0.4∆
oct
)
(1∆
oct
)
Crystal field stabilization energy:
high-and low-spin octahedral complexes
•Wenowconsidertheeffectsofdifferentnumbersofelectrons
occupyingthedorbitalsinanoctahedralcrystalfield,the
electronswillallfitintothelower-energyset.
•Thisnetenergydecreaseisknownasthecrystalfield
stabilizationenergy(CFSE).
•Forad
1
system,thegroundstatecorrespondstothe
configurationt
2g
1
.
Figure. The d-orbital filling for the d
1
, d
2
, and d
3
configurations.
•Withrespecttothebarycentre,thereisastabilization
energyof-0.4∆
oct
;thisistheso-calledcrystalfield
stabilizationenergy,CFSE.
Figure.Splitting of the d orbitals in an octahedral crystal field,
with the energy changes measured with respect to the barycentre.
•Forad
2
ion,thegroundstateconfigurationist
2g
2
andthe
CFSE=-0.8∆
oct
;
ad
3
ion(t
2g
3
)hasaCFSE=-1.2∆
oct
.
•Forad
4
ion,twoarrangementsareavailable:
–Thefourelectronsmayoccupythet
2g
setwiththe
configurationt
2g
4
,or
–Maysinglyoccupyfourdorbitals,t
2g
3
e
g
1
,
dependingon
whichsituationismoreenergeticallyfavorable.
•Iftheoctahedralcrystalfieldsplitting,∆
oct
,issmallerthan
thepairingenergy,thenthefourthelectronwilloccupythe
higherorbital.
•Ifthepairingenergyislessthanthecrystalfieldsplitting,
thenitisenergeticallypreferredforthefourthelectronto
occupythelowerorbital.
•Thetwosituationsareshowninfollowingfigure.
•Theresulthavingthegreaternumberofunpaired
electronsiscalledthehigh-spin(orweakfield)situation,
andthathavingthelessernumberofunpairedelectrons
iscalledthelow-spin(orstrongfield)situation.
•Configurationt
2g
4
correspondstoalow-spin
arrangement,andt
2g
3
e
g
1
toahigh-spincase.
Low-spin
High-spin
Figure. The two possible spin situations for the d
4
configuration.
d
4
•Thepreferredconfigurationisthatwiththelowerenergy
anddependsonwhetheritisenergeticallypreferableto
pairthefourthelectronorpromoteittothee
g
level.
•Twotermscontributetotheelectron-pairingenergy,P,
whichistheenergyrequiredtotransformtwoelectrons
withparallelspinindifferentdegenerateorbitalsinto
spin-pairedelectronsinthesameorbital:
–Thelossintheexchangeenergywhichoccursupon
pairingtheelectrons
–Thecoulombicrepulsionbetweenthespin-paired
electrons
•Foragivend
n
configuration,theCFSEisthedifference
inenergybetweenthedelectronsinanoctahedralcrystal
fieldandthedelectronsinasphericalcrystalfield
(followingfigure).
Figure.The changes in the energies of the electrons occupying the
d orbitals of an M
n+
ion when the latter is in an octahedral crystal
field. The energy changes are shown in terms of the orbital energies.
•Ongoingtothehigh-spind
6
configurationinthe
octahedralfield(t
2g
4
e
g
2
),nochangeoccurstothenumber
ofspin-pairedelectronsandtheCFSEisgivenby
followingequation.
•Foralow-spind
6
configuration(t
2g
6
e
g
0
)thesixelectrons
inthet
2g
orbitalsgiverisetoa-2.4∆
oct
term(6x-0.4=-
2.4∆
oct
).
•Addedtothisisapairingenergytermof2Pwhich
accountsforthespinpairingassociatedwiththetwo
pairsofelectronsinexcessoftheoneinthehigh-spin
configuration.
•FollowingtablelistsvaluesoftheCFSEforalld
n
configurationsinanoctahedralcrystalfield.
Important
↓ ↓
Table.Octahedral crystal field stabilization energies (CFSE) for d
n
configurations;
pairing energy, P, terms are included where appropriate. High-and low-spin
octahedral complexes are shown only where the distinction is appropriate.
Table.The d electron configurations and corresponding
number of unpaired electrons for an octahedral
stereochemistry
•Followinginequalitiesshowtherequirementsforhigh-
orlow-spinconfigurations.
•Firstinequalityholdswhenthecrystalfieldisweak,
whereassecondexpressionistrueforastrongcrystal
field.
•Followingfiguresummarizesthepreferencesforlow-
andhigh-spind
5
octahedralcomplexes.
Assignment
Q:WhatisthevalueofCFSEforhigh-andlow-spin
octahedralcomplexesincaseofd
4
tod
7
system.Also
calculatethenumberofunpairedelectronsind
9
systemby
consideringCu
2+
ion.
> = Greater than
< = Less than
Figure.The occupation of the 3d orbitals in weak and strong field Fe
3+
(d
5
) complexes. Splitting of five d-orbitalsin presence of strong(er) and
weak(er) ligandsin an octahecralcomplex. (a) Five d orbitalsin the free
metal ion (b) Splitting of d-orbitalsin presence of weak(er) ligands(c)
Splitting of d-orbitalsin presence of strong(er) ligands.
xyyzzxx
2
x
2
-y
2
x
2
x
2
-y
2
xyyzzx
xyyzzx
x
2
x
2
-y
2Small
↓
Large
↓
(a)
(b) (c)
High spin
Low spin
Splitting of d orbital energies in fields of other
symmetry
Thetetrahedralcrystalfield
•Althoughtheeffectonthed-orbitalsproducedbyafield
ofoctahedralsymmetryhasbeendescribed,wemust
rememberthatnotallcomplexesareoctahedraloreven
havesixligandsbondedtothemetalion.
•Forexample,manycomplexeshavetetrahedral
symmetry,soweneedtodeterminetheeffectofa
tetrahedralfieldonthed-orbitals.
•Followingfigureshowsatetrahedralcomplexthatis
circumscribed(دودحم انرک)inacubewherealternative
cornersarevacant.
•Alsoshownarelobesofthed
z
2
orbitalandtwolobes
(thoselyingalongthex-axis)ofthed
x
2
-y
2
orbital.
Figure. A tetrahedral complex
shown with the coordinate
system. Two lobes of the d
z
2
orbital are shown along the z-axis
and two lobes of the d
x
2
-y
2
orbital
are shown along the y-axis.
Figure. Tetrahedral
arrangement of four ligands
(L) around the metal ion
(M
n+
) in tetrahedral complex
ion, [ML
4
]
n+
.
•Notethatinthiscasenoneofthed-orbitalswillpointdirectlyatthe
ligands.
•However,theorbitalsthathavelobeslyingalongtheaxes(d
x
2
-y
2
and
d
z
2
)aredirectedtowardapointthatismidwayalongadiagonalofa
faceofthecube.
•Thatpointliesat(2
½
/2)lfromeachoftheligands.
•Theorbitalsthathavelobesprojectingbetweentheaxes(d
xy
,d
yz
,
andd
xz
)aredirectedtowardthemidpointofanedgethatisonlyl/2
fromsitesoccupiedbyligands.
•Theresultisthatthed
xy
,d
yz
,andd
xz
orbitalsarehigherinenergy
thanarethed
x
2
-y
2
andd
z
2
orbitalsbecauseofthedifferenceinhow
closetheyaretotheligands.
•Inotherwords,thesplittingpatternproducedbyanoctahedralfield
isinvertedinatetrahedralfield.
•Themagnitudeofthesplittinginatetrahedralfieldisdesignatedas
Δ
t
,andtheenergyrelationshipsfortheorbitalsareshownin
followingfigure.
Summary
•Thedistanceofd
x
2
-y
2
andd
z
2
fromligands=(2.5/2)l
•Thedistanceofd
xy
,d
yz
,andd
xz
fromligands=(l/2)
•Itsmeanthelobesd
x
2
-y
2
andd
z
2
areawayfromligandssohaveless
energywhilethelobesd
xy
,d
yz
,andd
xz
arecomparativelycloseto
ligandssohavegreaterenergy.
•Duetothisfacttheorbitalsareinvertedascomparedtooctahedral
geometry.
d
x
2
-y
2
and d
z
2
orbitals→ less in energy
d
xy
, d
yz
and d
xz
orbitals→ higher in energy
Differences between the splitting in octahedral and tetrahedral
fields
•Thereareseveraldifferencesbetweenthesplittinginoctahedraland
tetrahedralfields.
1.Notonlyarethetwosetsoforbitalsinvertedinenergy,butalsothe
splittinginthetetrahedralfieldismuchsmallerthanthatproduced
byanoctahedralfield.
Figure. The orbital splitting pattern in a tetrahedral field that is
produced by four ligands.
2.First,thereareonlyfourligandsproducingthefieldrather
thanthesixligandspresentintheoctahedralcomplex.
3.Second,noneofthed-orbitalspointdirectlyattheligands
inthetetrahedralfield.
•Inanoctahedralcomplex,twooftheorbitalspointdirectly
towardtheligandsandthreepointbetweenthem.
•Asaresult,thereisamaximumenergysplittingeffecton
thed-orbitalsinanoctahedralfield.
•Infact,itcanbeshownthatifidenticalligandsarepresent
inthecomplexesandthemetal-to-liganddistancesare
identical,Δ
t
=(4/9)Δ
o
[Δ
t
=0.45Δ
o
].
•Theresultisthattherearenolow-spintetrahedral
complexesbecausethesplittingofthed-orbitalsisnot
largeenoughtoforceelectronpairing.
4.Third,becausethereareonlyfourligandssurroundingthe
metalioninatetrahedralfield,theenergyofallofthed
orbitalsisraisedlessthantheyareinanoctahedralcomplex.
•Thesubscripts"g"donotappearonthesubsetsoforbitals
becausethereisnocenterofsymmetryinatetrahedral
structure.
Formationoftetragonalfield
•Elongation:Supposewestartwithanoctahedralcomplex
andplacetheligandslyingonthez-axisfartherawayfrom
themetalion.
•Asaresult,thed
z
2
orbitalwillexperiencelessrepulsion,and
itsenergywilldecrease.
•However,notonlydothefived-orbitalsobeya“centerof
energy"rulefortheset,butalsoeachsubsethasacenterof
energythatwouldcorrespondtosphericalsymmetryforthat
subset
.
g is used in O
h
symmetry
mean in octahedral structure
•Conservationofenergy:Therefore,ifthed
z
2
orbitalis
reducedinenergy,thed
x
2
-y
2
orbitalmustincreasein
energytocorrespondtoanoverallenergychangeofzero
forthee
g
subset.
•Thed
xz
andd
yz
orbitalshaveaz-componenttotheir
direction.
•Theyprojectbetweentheaxesinsuchawaythatmoving
ligandsonthez-axisfartherfromthemetalionreduces
repulsionoftheseorbitals.
•Asaresult,thed
xz
andd
yz
orbitalshavelowerenergy,
whichmeansthatthed
xy
orbitalhashigherenergyinorder
topreservethecenterofenergy(2)forthet
2g
orbitals.
•Theresultisasetofd-orbitalsthatarearrangedasshown
infollowingfigure.
•Withthemetal-to-ligandbondlengthsbeinggreaterinthez-
direction,thefieldisnowknownasatetragonalfieldwith
z-elongation.
•Compression:Iftheligandsonthez-axisareforcedcloser
tothemetaliontoproduceatetragonalfieldwithz-
compression,thetwosetsoforbitalsshownaboveare
inverted.
•Followingfigureshowsthed-orbitalsinthistypeoffield.
Figure. The arrangement of the d
orbitalsaccording to energy in a
field with elongation by moving the
ligandson the z-axis farther from
the metal ion in an octahedral
complex.
Figure. The arrangement of d
orbitalsin a field with
compression of the ligands
along the z-axis.
Figure.Crystal field splitting diagrams for octahedral (left-hand
side) and tetrahedral (right-hand side) fields. The splittingsare
referred to a common barycentre.
•Followingfigurecomparescrystalfieldsplittingforoctahedral
andtetrahedralfields;remember,thesubscriptginthesymmetry
labelsisnotneededinthetetrahedralcase.
•Since∆
tet
issignificantlysmallerthan∆
oct
,tetrahedral
complexesarehigh-spin.
•Also,sincesmalleramountsofenergyareneededforant
2
←
etransition(tetrahedral)thanforane
g
←t
2g
transition
(octahedral),correspondingoctahedralandtetrahedral
complexesoftenhavedifferentcolours.
Chemical and theoretical background
Notation for electronic transitions
•Forelectronictransitionscausedbytheabsorptionand
emissionofenergy,thefollowingnotationisused:
–Emission:(highenergylevel)→(lowenergylevel)
–Absorption:(highenergylevel)←(lowenergylevel)
•Forexample,todenoteanelectronictransitionfromtheetot
2
levelinatetrahedralcomplex,thenotationshouldbet
2
←e.
Tetrahedralcomplexes→onlyhigh-spin
•Iffourligandsarenowremovedfromthealternative
cornersofthecube,theremainingfourligandsforma
tetrahedralarrangementaroundthecentralatom.
•Thoughtheenergylevelsremainsimilar,thecrystalfield
splittingisreducedtohalf,sothat
(10D
q
)
tet
= 1/2 (10D
q
)cubic ≈ 4/9(10D
q
)
oct
Figure. A cubic and
tetrahedral arrangement of
four ligands(L) around the
metal ion (M
n+
) in tetrahedral
complex ion, [ML
4
]
n+
.
Assignment
Q: Explain Δ
t
= (4/9)Δ
o
Formation of square planar complex from octahedral
complex
•Asquareplanararrangementofligandscanbeformallyderived
fromanoctahedralarraybyremovaloftwo trans-ligands
(followingfigure).
Figure.A square planar complex can be derived from an
octahedral complex by the removal of two ligands, e.g. those on
the z-axis; the intermediate stage is a Jahn–Teller distorted
(elongated) octahedral complex.
•Ifweremovetheligandslyingalongthez-axis,thenthe
d
z
2
orbitalisgreatlystabilized;theenergiesofthed
yz
and
d
xz
orbitalsarealsolowered,althoughtoasmaller
extent.
•Theresultantorderingofthemetald-orbitalsisshownat
theleft-handsideoffollowingfigure.
Assignment
Q: What will be the splitting of d-orbitalsabout the barycentrein
trigonalbipyramidal?
Figure.Crystal field splitting diagrams for some common fields referred
to a common barycentre; splittingsare given with respect to ∆
oct
.
Barycentre
Thesquareplanarcrystalfield
[Crystal field splitting of d-orbitalsin tetragonal
(elongated distorted octahedral) and square planar
complexes]
•Beforeconsideringthesplittingofd-orbitalsofthecentral
metalcationinthesecomplexes,weshouldunderstandhow
tetragonallydistortedoctahedralandsquareplanar
geometriesareobtainedfromregularoctahedralgeometry.
a)Regularoctahedralgeometry
•Consideraregular(symmetrical)octahedralcomplex,
[M(L
b
)
4
(L
a
)
2
]inwhichMisthecentralmetalliccation,L
a
aretwotrans-ligands(i.e.,L
a
aretheligandslyingalong
thez-axis)andL
b
arethebasalequotorialligandslyingin
xyplane.
•Inthiscomplexallthesixbonddistances(fourM-L
b
and
twoM-L
a
distances)areequal[followingfigure(a)].
Figure.To get tetragonal and square planar geometries from octahedral
geometry.
b)Elongateddistortedoctahedral(tetragonal)shape
•NowiftwoL
a
ligandsaremovedslightlylongerfromthe
centralmetalcation,MsothateachofthetwoM-L
a
distancesbecomesslightlylongerthaneachofthefourco-
planarM-L
b
distances,thesymmetricalshapeof
octahedralcomplexgetsdistortedandbecomesdistorted
octahedralshape[abovefigure(b)].
•Inthisshape,sincethetwotrans-ligandhaveelongated,
thedistortedoctahedralshapeisalsocalledelongated
distortedoctahedralshape.
•Obviouslytheelongationoftwotrans-ligandstakesplace
along+zand-zaxes.
•Elangateddistortedoctahedralgemoetryisalsocalled
tetragonallydistortedoctahedralshapeorsimply
tetragonalshape.
c)Squareplanargeometry
•NowifthetwoL
a
ligandsarecompletelyremovedaway
fromthez-axis,thetetragonallydistortedoctahedralshape
becomessquareplanarwhichisafour-coordinated
complex[abovefigure(c)].
Splittingofd-orbitalsfromregularoctahedralgeometry
tosquareplanargeometry
•Nowinordertoconsiderthesplittingofd-orbitalsin
elongateddistortedoctahedralandsquareplanar
complexes,westartwiththesplittingofd-orbitalsin
octahedralcomplexes.
•Wehavealreadyseenthatinoctahedralcomplexes,the
energyofd
xy
,d
yz
,andd
zx
orbitals(t
2g
orbitals)isdecreased
whilethatofd
z
2
andd
x
2
-y
2
orbitals(e
g
orbitals)isincreased
[followingfigure(b)].
•Nowinelongateddistortedoctahedralcomplex,sincethe
distanceofthetrans-ligands(L
a
ligands)isincreasedfrom
thecentralmetalionbyremovingthemawayalongthez-
axis,d-orbitalsalongthez-axis(i.e.,d
z
2
orbital),d-orbital
inyzplane(i.e.d
yz
orbital)andd-orbitalinzxplane(i.e.
d
zx
orbital)experiencelessrepulsionfromtheligandsthan
theydointheoctahedralcomplexwhilethed-orbitalsin
xyplane(i.e.,d
xy
andd
x
2
-y
2
orbitals)experiencemore
repulsionthantheydointheoctahedralcomplex.
•Consequentlytheenergyofd
z
2
,d
yz
andd
zx
orbitals
decreasewhilethatofd
x
2
-y
2
andd
xy
orbitalsincrease
[abovefigure(c)].
•Notethatd
yz
,andd
zx
orbitalsstillremaindegenerateas
theyareintheoctahedralcomplex.
Diamagneticpropertyofd
8
ionshavingsquareplanargeometry
•Theenergyleveldiagramforthed-orbitalsinasquareplanarfieldis
showninfollowingfigure.
•Itcanbeshownthattheenergyseparatingthed
xy
andd
x
2
-y
2
orbitalsis
exactlyΔ
o
,thesplittingbetweenthet
2g
ande
g
orbitalsinanoctahedral
field.
•d
8
ions such as Ni
2+
, Pd
2+
, and Pt
2+
form square planar complexes that are
diamagnetic.
•Fromtheorbitalenergydiagramshowninabovefigure,itiseasytosee
why(followingfigure).
Figure.Energiesofdorbitals
inasquareplanarfield
producedbyfourligands.
Figure. The d
8
-orbital energy diagram for the square planar
environment, as derived from the octahedral diagram.
Assignment
Q:Thed
8
complexes[Ni(CN)
4
]
2-
and[NiCl
4
]
2-
aresquareplanar
andtetrahedralrespectively.Willthesecomplexesbe
paramagneticordiamagnetic?
•Considerthesplittingdiagramsshowninfollowingfigures.
Figure.Crystal field splitting diagrams for octahedral (left-hand
side) and tetrahedral (right-hand side) fields. The splittingsare
referred to a common barycentre.
Figure. Crystal field splitting diagrams for some common fields
referred to a common barycentre; splittingsare given with respect
to ∆
oct
.
2.Theidentityofthemetal
•Thecrystalfieldsplitting,∆,isabout50percentgreaterforthe
secondtransitionseriescomparedtothefirst,whereasthethird
seriesisabout25percentgreaterthanthesecond.
•Thereisasmallincreaseinthecrystalfieldsplittingalongeach
series.
[Δ
o
(3d)<Δ
o
(4d)<Δ
o
(5d)]
Note:ThelargestΔ
o
sarefoundincomplexesofmetalionsfromthe
thirdrowofthetransitionmetalswithchargesofatleast+3and
ligandswithlocalizedlonepairsofelectrons.
3.Theoxidationstateofthemetal
•Generally,thehighertheoxidationstateofthemetal,thegreaterthe
crystalfieldsplitting.
Δ
o
for 2
nd
→ 50% greater then for first transition series
Δ
o
for 3
rd
→ 25% greater then for second transition series
•Thus,mostcobalt(II)complexesarehighspinasaresultofthe
smallcrystalfieldsplitting,whereasalmostallcobalt(III)
complexesarelowspinasaresultofthemuchlargersplittingby
the3+ion.
4.Principalquantumnumberofthemetal
•∆
0
increasesabout30%to50%from3d
n
to4d
n
andbythesame
amountagainfrom4d
n
to5d
n
complexes.
•Foraseriesofcomplexesofmetalsfromthesamegroupinthe
periodictablewiththesamechargeandthesameligands,the
magnitudeofΔ
o
increaseswithincreasingprincipalquantum
number:
Δ
o
(3d) < Δ
o
(4d) < Δ
o
(5d)
•Thedataforhexaamminecomplexesofthetrivalentgroup9metals
illustratethispoint:
Co(II) → H.S
Co(III) → L.S
(3d
6
)
(4d
6
)
(5d
6
)
•TheincreaseinΔ
o
withincreasingprincipalquantum
numberisduetothelargerradiusofvalenceorbitalsdowna
column.
•Inaddition,repulsiveligand–ligandinteractionsaremost
importantforsmallermetalions.
•Relativelyspeaking,thisresultsinshorterM–Ldistances
andstrongerdorbital–ligandinteractions.
5.Thenumberoftheligands
•Thecrystalfieldsplittingisgreaterforalargernumberof
ligands.
•Forexample,∆
oct
,thesplittingforsixligandsinan
octahedralenvironment,ismuchgreaterthan∆
tet
,the
splittingforfourligandsinatetrahedralenvironment.
If ∆ → greater → large number of ligands
Six ligands→ ∆ should be large
Four ligands→ ∆ should be small
•TheincreaseinΔ
o
withincreasingprincipalquantum
numberisduetothelargerradiusofvalenceorbitalsdowna
column.
•Inaddition,repulsiveligand–ligandinteractionsaremost
importantforsmallermetalions.
•Relativelyspeaking,thisresultsinshorterM–Ldistances
andstrongerdorbital–ligandinteractions.
5.Thenumberoftheligands
•Thecrystalfieldsplittingisgreaterforalargernumberof
ligands.
•Forexample,∆
oct
,thesplittingforsixligandsinan
octahedralenvironment,ismuchgreaterthan∆
tet
,the
splittingforfourligandsinatetrahedralenvironment.
If ∆ → greater → large number of ligands
Six ligands→ ∆ should be large
Four ligands→ ∆ should be small
6.Thenatureoftheligands
•Experimentally,itisfoundthattheΔ
o
observedfora
seriesofcomplexesofthesamemetaliondepends
stronglyonthenatureoftheligands.
•Foraseriesofchemicallysimilarligands,themagnitude
ofΔ
o
decreasesasthesizeofthedonoratomincreases.
•Forexample,Δ
o
valuesforhalidecomplexesgenerally
decreaseintheorderF
−
>Cl
−
>Br
−
>I
−
becausesmaller,
morelocalizedcharges,suchasweseeforF
−
,interact
morestronglywiththed-orbitalsofthemetalion.
•Inaddition,asmallneutralligandwithahighlylocalized
lonepair,suchasNH
3
,resultsinsignificantlylargerΔ
o
valuesthanmightbeexpected.
•Becausethelonepairpointsdirectlyatthemetalion,the
electrondensityalongtheM–Laxisisgreaterthanfora
sphericalanionsuchasF
−
.
Table. Crystal field splitting energies for some octahedral (Δ
o
)* and
tetrahedral (Δ
t
) transition-metal complexes.
7.Colorsoftransition-metalcomplexes
•Thestrikingcolorsexhibitedby
transition-metalcomplexesarecaused
byexcitationofanelectronfroma
lower-energydorbitaltoahigher-energy
dorbital,whichiscalledad–dtransition
(followingfigure).
•Foraphotontoeffectsuchatransition,
itsenergymustbeequaltothedifference
inenergybetweenthetwodorbitals,
whichdependsonthemagnitudeofΔ
o
.
Figure.A d–d Transition. In a d–d transition, an electron in one
of the t
2g
orbitalsof an octahedral complex such as the
[Cr(H
2
O)
6
]
3+
ion absorbs a photon of light with energy equal to
Δ
o
, which causes the electron to move to an empty or singly
occupied e
g
orbital.
•Althoughthechemicalidentityofthesixligandsisthesamein
bothcases,theCr–Odistancesaredifferentbecausethe
compositionsofthehostlatticesaredifferent(Al
2
O
3
inrubies
andBe
3
Al
2
Si
6
O
18
inemeralds).
•Inruby,theCr–Odistancesarerelativelyshortbecauseofthe
constraintsofthehostlattice,whichincreasesthedorbital–
ligandinteractionsandmakesΔ
o
relativelylarge.
•Consequently,rubiesabsorbgreenlightandthetransmittedor
reflectedlightisred,whichgivesthegemitscharacteristiccolor.
Inemerald,theCr–Odistancesarelongerduetorelativelylarge
[Si
6
O
18
]
12−
silicaterings;thisresultsindecreaseddorbital–
ligandinteractionsandasmallerΔ
o
.
•Consequently,emeraldsabsorblightofalongerwavelength
(red),whichgivesthegemitscharacteristicgreencolor.
•Itisclearthattheenvironmentofthetransition-metalion,which
isdeterminedbythehostlattice,dramaticallyaffectsthe
spectroscopicpropertiesofametalion.
Gem-quality crystals of ruby and emerald.
The colors of both minerals are due to the presence of small amounts of Cr
3+
impurities in octahedral sites in an otherwise colorless metal oxide lattice.
Emerald (درمز)Ruby (توقاي)
Limitationsofcrystalfieldtheory
•Crystalfieldtheoryissurprisinglyusefulwhenoneconsidersits
simplicity.
•However,ithaslimitations.
•CFTconsidersonlythemetaliond-orbitalsandgivesno
considerationatalltoothermetalorbitalssuchass,p
x
,p
y
andp
z
orbitalsandligandπ-orbitals.
•Therefore,toexplainallthepropertiesofthecomplexes
dependentontheπ-ligandorbitalswillbeoutsidethescopeof
CFT.
•CFTdoesnotconsidertheformationofπ-bondingincomplexes.
•Althoughwecaninterpretthecontrastingmagneticpropertiesof
high-andlow-spinoctahedralcomplexesonthebasisofthe
positionsofweak-andstrong-fieldligandsinthespectrochemical
series,crystalfieldtheoryprovidesnoexplanationastowhy
particularligandsareplacedwheretheyareintheseries.
n = 1,µ = 1.73 B.M
n = 2, µ = 2.83 B.M
n = 3, µ = 3.87 B.M
n = 4,µ = 4.90 B.M
n = 5, µ = 5.92 B.M
•(Where B.M. = Bohr Magneton, it is unit of magnetic moment)
•Whether the given complex ion is LS.
•Whether the given complex ion is paramagnetic or diamagnetic.