CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2

ValentinosNeophytou 65,958 views 83 slides Sep 01, 2014
Slide 1
Slide 1 of 83
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83

About This Presentation


This document presents an example of analysis design of slab using ETABS. This example examines a simple single story building, which is regular in plan and elevation. It is examining and compares the calculated ultimate moment from CSI ETABS & SAFE with hand calculation. Moment coefficients we...


Slide Content

CSI ETABS & SAFE MANUAL


Part‐III: Model Analysis & Design of Slabs

According to Eurocode 2






AUTHOR: VALENTINOS NEOPHYTOU BEng (Hons), MSc



REVISION 2: August, 2014

2
ABOUT THIS DOCUMENT

This document presents an example of analysis design of slab using ETABS.
This example examines a simple single story building, which is regular in plan
and elevation. It is examining and compares the calculated ultimate moment
from CSI ETABS & SAFE with hand calculation. Moment coefficients were
used to calculate the ultimate moment. However it is good practice that such
hand analysis methods are used to verify the output of more sophisticated
methods.
Also, this document contains simple procedure (step-by-step) of how to
design solid slab according to Eurocode 2.The process of designing elements
will not be revolutionised as a result of using Eurocode 2.
Due to time constraints and knowledge, I may not be able to address the
whole issues.
Please send me your suggestions for improvement. Anyone interested to
share his/her knowledge or willing to contribute either totally a new section
about ETABS or within this section is encouraged.



For further details:

My LinkedIn Profile:
http://www.linkedin.com/profile/view?id=125833097&trk=hb_tab_pro_top

Email: [email protected]


Slideshare Account:http://www.slideshare.net/ValentinosNeophytou

3
TABLE OF CONTENTS


1. SLAB MODELING .................................................................................... 4
2. THEORETICAL CALCULATION OF ULTIMATE MOMENTS ......... 5
3. DESIGN OF SLAB ACCORDING TO EUROCODE 2 ........................... 7
4. WORKED EXAMPLE : ANALYSIS AND DESIGN OF RC SLAB
USING CSI ETABS AND SAFE .............................................................. 11
5. ANALYSIS RESULTS ............................................................................. 17
6. DESIGN THE SLAB FOR FLEXURAL USING MOMENT CAPACITY
VALUES .................................................................................................... 19
ANNEX A - EXAMPLE OF HOW TO DETERMINE THE DESIGN BENDING
MOMENT USING MOMENT COEFFICIENT S...……………………. 22

ANNEX B - EXAMPLE OF HOW TO DETERMINE THE MOMENT CAPACITY
OF RC SLAB………………………………………………………..……. 28

ANNEX C - EXAMPLE OF DESIGN SLAB PANEL WITH TWO
DISCONTINUOUS EDGES…………..…..………………………..……. 32

ANNEX D - EXAMPLE OF DESIGN SLAB PANEL WITH ONE
DISCONTINUOUS EDGES………………………………………..……. 48

ANNEX E - EXAMPLE OF DESIGN INTERIOR PANEL SLAB..…………..……. 65

4
1. SLAB MODELING

1.1 ASSUMPTIONS

In preparing this document a number of assumptions have been made to avoid over
complication; the assumptions and their implications are as follows.

a) Element type : SHELL

b) Meshing (Sizing of element) : Size= min{Lmax/10 or l000mm}

c) Element shape : Ratio= Lmax/Lmin = 1 ≤ ratio ≤ 2

d) Acceptable error : 20%


1.2 INITIAL STEP BEFORE RUN THE ANALYSIS


a) Sketch out by hand the expected results before carrying out the analysis.

b) Calculate by hand the total applied loads and compare these with the sum of
the reactions from the model results.

5
2. THEORETICAL CALCULATION OF ULTIMATE MOMENTS

















































Maximum moments of two-way slabs
If ly/lx<2: Design as a Two-way slab
If lx/ly> 2: Deisgn as a One-way slab

Note: lx is the longer span
ly is the shorter span


Msx= asxnlx
2
in
direction of span lx
n: is the ultimate load m
2

Msy= asynlx
2
in
direction of span ly
n: is the ultimate load m
2


Bending moment coefficient for simply supported slab

ly/lx 1.0 1.1 1.2 1.3 1.4 1.5 1.75 2.0
asx 0.062 0.074 0.084 0.093 0.099 0.104 0.113 0.118
asy 0.062 0.061 0.059 0.055 0.051 0.046 0.037 0.029

Maximum moment of Simply supported (pinned) two-way slab
Maximum moment of Restrained supported (fixed) two-way slab

Msx= asxnlx
2
in
direction of span lx
n: is the ultimate load m
2

Msy= asynlx
2
in
direction of span ly
n: is the ultimate load m
2


Bending moment coefficient for two way rectangular slab supported by beams
(Manual of EC2 ,Table 5.3)


Type of panel and moment
considered
Short span coefficient for value of Ly/Lx Long-span coefficients for all
values of Ly/Lx 1.0 1.25 1.5 1.75 2.0
Interior panels
Negative moment at continuous edge 0.031 0.044 0.053 0.059 0.063 0.032
Positive moment at midspan 0.024 0.034 0.040 0.044 0.048 0.024
One short edge discontinuous
Negative moment at continuous edge 0.039 0.050 0.058 0.063 0.067 0.037
Positive moment at midspan 0.029 0.038 0.043 0.047 0.050 0.028
One long edge discontinuous
Negative moment at continuous edge 0.039 0.059 0.073 0.083 0.089 0.037
Positive moment at midspan 0.030 0.045 0.055 0.062 0.067 0.028
Two adjacent edges discontinuous
Negative moment at continuous edge 0.047 0.066 0.078 0.087 0.093 0.045
Positive moment at midspan 0.036 0.049 0.059 0.065 0.070 0.034

6


















L: is the effective span










































Maximum moments of one-way slabs
If ly/lx<2: Design as a Two-way slab
If lx/ly> 2: Deisgn as a One-way slab

Note: lxis the longer span
lyis the shorter span



MEd= 0.086FL
F: is the total ultimate
load =1.35Gk+1.5Qk
L: is the effective span
Note: Allowance has been made in the coefficients in
Table 5.2 for 20% redistribution of moments.

Maximum moment of Simply supported (pinned)
one-way slab
(Manual of EC2, Table 5.2)

Maximum moment of continuous supported one-
way slab
(Manual of EC2 ,Table 5.2)

Uniformly distributed loads
End support condition Moment
End support support MEd =-0.040FL
End span MEd =0.075FL
Penultimate support MEd= -0.086FL
Interior spans MEd =0.063FL
Interior supports MEd =-0.063FL
F: total design ultimate load on span
L: is the effective span
Note: Allowance has been made in the coefficients in
Table 5.2 for 20% redistribution of moments.

7
3. DESIGN OF SLAB ACCORDING TO EUROCODE 2






























&#3627408467;
&#3627408486;&#3627408465;=
&#3627408467;
&#3627408486;&#3627408472;
&#3627409150;
&#3627408480;

Determine design yield strength of reinforcement

FLEXURAL DESIGN
(EN1992-1-1,cl. 6.1)
??????=
??????
??????&#3627408465;
&#3627408463;&#3627408465;
2
&#3627408467;
&#3627408464;&#3627408472;

??????

=0.6&#3627409151;−0.18&#3627409151;
2
−0.21
Determine K from:

K<K

(no compression reinforcement required)


Obtain lever arm z:&#3627408487;=
&#3627408465;
2
1+ 1−3.53?????? ≤0.95&#3627408465;


K>K

(then compression reinforcement required –
not recommended for typical slab)

Obtain lever arm z:&#3627408487;=
&#3627408465;
2
1+ 1−3.53??????

≤0.95&#3627408465;

δ=1.0 for no redistribution
δ=0.85 for 15% redistribution
δ=0.7 for 30% redistribution

??????
&#3627408480;.&#3627408479;&#3627408466;&#3627408478;=
??????
??????&#3627408465;
&#3627408467;
&#3627408486;&#3627408465;&#3627408487;


??????
&#3627408480;&#3627408485;.&#3627408479;&#3627408466;&#3627408478;=
??????
??????&#3627408465;,&#3627408480;&#3627408485;
&#3627408467;
&#3627408486;&#3627408465;&#3627408487;

??????
&#3627408480;&#3627408486;.&#3627408479;&#3627408466;&#3627408478;=
??????
??????&#3627408465;,&#3627408480;&#3627408486;
&#3627408467;
&#3627408486;&#3627408465;&#3627408487;


Area of steel reinforcement required:
One way solid slab Two way solid slab

For slabs, provide group of bars with area As.prov per meter width

Spacing of bars (mm)

75 100 125 150 175 200 225 250 275 300
Bar
Diameter
(mm)
8 670 503 402 335 287 251 223 201 183 168
10 1047 785 628 524 449 393 349 314 286 262
12 1508 1131 905 754 646 565 503 452 411 377
16 2681 2011 1608 1340 1149 1005 894 804 731 670
20 4189 3142 2513 2094 1795 1571 1396 1257 1142 1047
25 6545 4909 3927 3272 2805 2454 2182 1963 1785 1636
32 10723 8042 6434 5362 4596 4021 3574 3217 2925 2681
For beams, provide group of bars with area As. prov

Number of bars

1 2 3 4 5 6 7 8 9 10
Bar
Diameter
(mm)
8 50 101 151 201 251 302 352 402 452 503
10 79 157 236 314 393 471 550 628 707 785
12 113 226 339 452 565 679 792 905 1018 1131
16 201 402 603 804 1005 1206 1407 1608 1810 2011
20 314 628 942 1257 1571 1885 2199 2513 2827 3142
25 491 982 1473 1963 2454 2945 3436 3927 4418 4909
32 804 1608 2413 3217 4021 4825 5630 6434 7238 8042

??????
&#3627408480;,&#3627408474;??????&#3627408475;=
0.26&#3627408467;
&#3627408464;&#3627408481;&#3627408474;&#3627408463;&#3627408465;
&#3627408467;
&#3627408486;&#3627408472;
≥0.0013&#3627408463;&#3627408465; ≤ ??????
&#3627408480;,&#3627408477;&#3627408479;&#3627408476;&#3627408483; ≤??????
&#3627408480;,&#3627408474;&#3627408462;&#3627408485;=0.04??????
&#3627408464;
Check of the amount of reinforcement provided above the “minimum/maximum amount of
reinforcement “limit
(CYS NA EN1992-1-1, cl. NA 2.49(1)(3))

8





















































SHEAR FORCE DESIGN
(EN1992-1-1,cl 6.2)



MEd= 0.4F
F: is the total ultimate
load =1.35Gk+1.5Qk

Maximum moment of Simply supported (pinned)
one-way slab
(Manual of EC2, Table 5.2)

Maximum shear force of continuous supported
one-way slab
(Manual of EC2 ,Table 5.2)

Uniformly distributed loads
End support condition Moment
End support support MEd =0.046F
Penultimate support MEd= 0.6F
Interior supports MEd =0.5F
F: total design ultimate load on span



Determine design shear stress, vEd
vEd=VEd/b·d

Reinforcement ratio, ρ1 (EN1992-1-1, cl 6.2.2(1))
ρ1=As/b·d


&#3627408472;=1+
200
&#3627408465;
≤2,0with &#3627408465; in mm
??????
??????&#3627408465;.&#3627408464;=
0.18
&#3627409150;
&#3627408464;
&#3627408472; 100??????
1&#3627408467;
&#3627408464;&#3627408472;

1
3+&#3627408472;
1??????
&#3627408464;&#3627408477; &#3627408463;&#3627408465;
??????
??????&#3627408465;.&#3627408464;.&#3627408474;??????&#3627408475;= 0.0035 &#3627408467;
&#3627408464;&#3627408472;&#3627408472;
1.5
+&#3627408472;
1??????
&#3627408464;&#3627408477; &#3627408463;&#3627408465;
Design shear resistance




Alternative value of design shear resistance, VRd.c (Concrete centre) (ΜΡa)
ρI =
As/(bd)
Effective depth, d (mm)
≤200 225 250 275 300 350 400 450 500 600 750
0.25% 0.54 0.52 0.50 0.48 0.47 0.45 0.43 0.41 0.40 0.38 0.36
0.50% 0.59 0.57 0.56 0.55 0.54 0.52 0.51 0.49 0.48 0.47 0.45
0.75% 0.68 0.66 0.64 0.63 0.62 0.59 0.58 0.56 0.55 0.53 0.51
1.00% 0.75 0.72 0.71 0.69 0.68 0.65 0.64 0.62 0.61 0.59 0.57
1.25% 0.80 0.78 0.76 0.74 0.73 0.71 0.69 0.67 0.66 0.63 0.61
1.50% 0.85 0.83 0.81 0.79 0.78 0.75 0.73 0.71 0.70 0.67 0.65
1.75% 0.90 0.87 0.85 0.83 0.82 0.79 0.77 0.75 0.73 0.71 0.68
≥2.00% 0.94 0.91 0.89 0.87 0.85 0.82 0.80 0.78 0.77 0.74 0.71
k 2.000 1.943 1.894 1.853 1.816 1.756 1.707 1.667 1.632 1.577 1.516
Table derived from: vRd.c=0.12k(100ρIfck)
1/3
≥0.035k
1.5
fck
0.5

where k=1+(200/d)
0.5
≤0.02

If VRdc≥VEd≥VRdc.min, Concrete strut is adequate in resisting shear
stress

Shear reinforcement is not required in slabs

9





















































DESIGN FOR CRACKING
(EN1992-1-1,cl.7.3)

Asmin<As.prov


??????
&#3627408480;.&#3627408474;??????&#3627408475;=
&#3627408472;&#3627408472;
&#3627408464;&#3627408467;
&#3627408464;&#3627408481;,&#3627408466;&#3627408467;&#3627408467;??????
&#3627408464;&#3627408481;
??????
&#3627408480;

Minimum area of reinforcement steel
within tensile zone
(EN1992-1-1,Eq. 7.1)


Chart to calculate unmodified steel stress σsu
(Concrete Centre - www.concretecentre.com)

Crack widths have an influence on the durability of the RC member. Maximum crack width
sizes can be determined from the table below (knowing σs, bar diameter, and spacing).
Maximum bar diameter and maximum spacing to limit crack widths
(EN1992-1-1,table7.2N&7.3N)

σs
(N/mm
2
)
Maximum bar diameter and spacing for
maximum crack width of:
0.2mm 0.3mm 0.4mm
160 25 200 32 300 40 300
200 16 150 25 250 32 300
240 12 100 16 200 20 250
280 8 50 12 150 16 200
300 6 - 10 100 12 150
Note. The table demonstrates that cracks widths can be reduced if;
 σs is reduced
 Bar diameter is reduced. This mean that spacing is reduced if As.provis to be the
same.
 Spacing is reduced

kc=0.4 for bending k=1 for web
width < 300mm or k=0.65for web >
800mm fct,eff= fctm = tensile strength after 28
days Act=Area of concrete in tension=b (h-
(2.5(d-z))) σs=max stress in steel
immediately after crack initiation
??????
&#3627408480;=??????
&#3627408480;&#3627408482;
??????&#3627408480;.&#3627408479;&#3627408466;&#3627408478;
??????&#3627408480;.&#3627408477;&#3627408479;&#3627408476;&#3627408483;
1
&#3627409151;
or ??????
&#3627408480;=0.62
??????&#3627408480;.&#3627408479;&#3627408466;&#3627408478;
??????&#3627408480;.&#3627408477;&#3627408479;&#3627408476;&#3627408483;
&#3627408467;
&#3627408486;&#3627408472;

10





















































DESIGN FOR DEFLECTION
(EN1992-1-1,cl.7.4)

Simplified Calculation approach
&#3627408473;
&#3627408465;
=?????? 11+1.5 &#3627408467;
&#3627408464;&#3627408472;
??????
0
??????
+3.2 &#3627408467;
&#3627408464;&#3627408472;
??????
0
??????
−1
1.5
??????&#3627408467;??????≤??????
0
&#3627408473;
&#3627408465;
=?????? 11+1.5 &#3627408467;
&#3627408464;&#3627408472;
??????
0
??????−??????

+
1
12
&#3627408467;
&#3627408464;&#3627408472;
??????
,
??????
0
??????&#3627408467;??????>??????
0
Span/effective depth ratio
(EN1992-1-1, Eq. 7.16a and 7.16b)

The effect of cracking complicacies the deflection calculations of the RC member under
service load. To avoid such complicate calculations, a limit placed upon the span/effective
depth ration.
Note: The span-to-depth ratios should ensure that deflection is limited to span/250





Structural system modification factor
(CY NA EN1992-1-1,NA. table 7.4N)

The values of K may be reduced to account for long span as follow:
 In beams and slabs where the span>7.0m, multiply by leff/7
Type of member K
Cantilever 0.4
Flat slab 1.2
Simply supported 1.0
Continuous end
span
1.3
Continuous interior
span
1.5

??????
0=0.001 &#3627408467;
&#3627408464;&#3627408472;
Reference reinforcement
ratio
(EN1992-1-1,cl. 7.4.2(2))


??????=
??????
&#3627408480;.&#3627408479;&#3627408466;&#3627408478;
&#3627408463;&#3627408465;

Tension reinforcement ratio
(EN1992-1-1,cl. 7.4.2(2))

11

4. WORKED EXAMPLE : ANALYSIS AND DESIGN OF RC SLAB USING
CSI ETABS AND SAFE


4.1 DIMENSIONS:

Depth of slab, h: h=170mm
Length in longitudinal direction, Ly: Ly=5m
Length in transverse direction, Lx: Lx=5m
Number of slab panels: N=3x3

4.2 LOADS:

Dead load:
Self weight, gk.s: gk.s=4.25kN/m
2

Extra dead load, gk.e: gk.e=2.00kN/m
2

Total dead load, Gk: Gk=6.25kN/m
2

Live load:
Live load, qk: gk=2.00kN/m
2

Total live load, Qk: Qk=2.00kN/m
2


4.3 LOAD COMBINATION :

Total load on slab: 1.35Gk+1.5Qk=

ULS: 1.35*6.25+1.5*2.00=11.4kN/m
2

Total load on slab: 1.35Gk+1.5Qk=

SLS: 1.00*6.25+1.00*2.00=8.25kN/m
2

12
4.4 LAYOUT OF MODEL :


Figure 1: Layout of the model

13

4.5 PROCEDURE FOR EXPORTING ETABS MODEL TO SAFE

A very useful and powerful way to start a model in SAFE is to import the model
from ETABS. Floor slabs or basemats that have been modeled in ETABS can be
exported from ETABS.

From that form, the appropriate floor load option can be selected, along with the
desired load cases. After the model has been exported as an .f2k text file, the same
file can then be imported into SAFE using the File menu > Import command.
Using the export and import steps will complete the transfer of the slab geometry,
section properties, and loading for the selected load cases. The design strips need
to be added to the imported model since design strips are not defined as part of the
ETABS model.

ETABS: File > Export > Storey as SAFE
Text File commands saves the specified story level as a SAFE.f2k text input file.
You can later import this file/model into SAFE.


Figure 2: Load to Export to SAFE

Notes:

Model must be analyzed and locked to export.

The export floor loads only option is for individual floor plate design.

The export floor loads and loads from above is used to design foundation.

The export floor loads plus Column and Wall Distortions is necessary only when
displacement compatibility could govern and needs to be checked floor slab
design.(Effects punching shear and flexural reinforcement design).

14

Figure 3: Load cases selection


Figure 4: Load combination selection

15
4.6 DRAW DESIGN STRIPS

Use the Draw menu > Draw Design Strips command to add design strips to the
model. Design strips are drawn as lines, but have a width associated with them.
Design strips are typically drawn over support locations (e.g., columns), with a
width equal to the distance between midspan in the transverse direction.

Design strips determine how reinforcing will be calculated and positioned in the
slab. Forces are integrated across the design strips and used to calculate the
required reinforcing.

Typically design strips are positioned in two principal directions: Layer A and
Layer B.

Select the Auto option. The added design strips will automatically adjust their
width to align with adjacent strips.


Figure 5: Design strip for x direction

16

Figure 6: Design strip for y direction


Figure 7: Model after drawing design strip

17
5. ANALYSIS RESULTS



Figure 8: Maximum hogging and Sagging moment at Short span direction Lx



Figure 9: Maximum Shear Force at Short span direction Lx

18

Figure 10: Maximum hogging and Sagging moment at Long span direction
Ly


Figure 11: Maximum Shear Force at Short span direction Ly

19
6. DESIGN THE SLAB FOR FLEXURAL USING MOMENT CAPACIT Y
VALUES

SAFE: Display > Show slab forces/stresses

20

Figure 12: Bending moment for M11 (Mx – direction) contours displayed

The figure above indicates that the proposed bending reinforcements are adequate to
resist the design moment (hogging & sagging moments).

21

Figure13: Bending moment for M22 (My – direction) contours displayed

The figure above indicates that the proposed bending reinforcements are adequate to
resist the design moment (hogging & sagging moments).

22













ANNEX A - EXAMPLE OF HOW TO DETERMINE THE DESIGN
BENDING MOMENT USING MOMENT COEFFICIENT S

CALUCLATIION
SHEET
BEAM FLEXURAL AND SHEAR
CAPACITY CHECK
Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
BENDING MOMENT COEFFICIENTS FOR TWO-WAY SPANNING RECTANGULAR SLABS
(Table 5.3, Manual to EC2 - IStrucTE)
GEOMETRICAL DATA:
Shorter effective span of panel (clear span): l
x
5000mm
Longer effective span of panel: l
y
5000mm
Type of panel and moment considered:Slab_type:= "Interior panel"
Slab_type:= "One short edge discontinuous"
Slab_type:= "One long edge discontinuous"
Slab_type:= "Two adjacent edges discontinuous"
Slab_type "Two adjacent edges discontinuous"
Ratio of Ly/Lx: Ratio
l
y
l
x
1
LOADINGS:
Characteistic permanent action: G
k
6.25kN m
2

Characteistic variable action: Q
k
2kN m
2

PARTIAL FACTOR FOR LOADS:
Permanent action (dead load) - Ultimate limit state (ULS): γ
Gk.ULS
1.35
Variable action (live load) - Ultimate limit state (ULS): γ
Qk.ULS
1.50
Permanent action (dead load) - Ultimate limit state (SLS): γ
Gk.SLS
1.00
Variable action (live load) - Ultimate limit state (SLS): γ
Qk.SLS
1.00
DESIGN LOADS:
Ultimate design load (ULS):F
Ed.ULS
γ
Gk.ULS
G
k
 γ
Qk.ULS
Q
k
 11.438 kN m
2

Ultimate design load (SLS):F
Ed.SLS
γ
Gk.SLS
G
k
 γ
Qk.SLS
Q
k
 8.25 kN m
2

MOMENT COEFFICIENT:
Short span - Bending moment coefficient for negative moment (hogging moment) at
continuous edge
SEISMIC ASSESSMENT OF
EXISTING RC BUILDING
Page 23 of 27

CALUCLATIION
SHEET
BEAM FLEXURAL AND SHEAR
CAPACITY CHECK
Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
β
sx.support
0.031
l
x
l
y
1.0 Slab_type "Interior panel"=if
0.044 1.0
l
y
l
x
 1.25 Slab_type "Interior panel"=if
0.053 1.25
l
y
l
x
 1.50 Slab_type "Interior panel"=if
0.059 1.5
l
y
l
x
 1.75 Slab_type "Interior panel"=if
0.063 1.75
l
y
l
x
 2.00 Slab_type "Interior panel"=if
0.039
l
x
l
y
1.0 Slab_type "One short edge discontinuous"=if
0.050 1.0
l
y
l
x
 1.25 Slab_type "One short edge discontinuous"=if
0.058 1.25
l
y
l
x
 1.50 Slab_type "One short edge discontinuous"=if
0.063 1.5
l
y
l
x
 1.75 Slab_type "One short edge discontinuous"=if
0.067 1.75
l
y
l
x
 2.00 Slab_type "One short edge discontinuous"=if
0.039
l
x
l
y
1.0 Slab_type "One long edge discontinuous"=if
0.059 1.0
l
y
l
x
 1.25 Slab_type "One long edge discontinuous"=if
0.073 1.25
l
y
l
x
 1.50 Slab_type "One long edge discontinuous"=if
0.082 1.5
l
y
l
x
 1.75 Slab_type "One long edge discontinuous"=if
0.089 1.75
l
y
l
x
 2.00 Slab_type "One long edge discontinuous"=if
0.047
l
x
l
y
1.0 Slab_type "Two adjacent edges discontinuous"=if
0.066 1.0
l
y
l
x
 1.25 Slab_type "Two adjacent edges discontinuous"=if
l

SEISMIC ASSESSMENT OF
EXISTING RC BUILDING
Page 24 of 27

CALUCLATIION
SHEET
BEAM FLEXURAL AND SHEAR
CAPACITY CHECK
Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
0.078 1.25
l
y
l
x
 1.50 Slab_type "Two adjacent edges discontinuous"=if
0.087 1.5
l
y
l
x
 1.75 Slab_type "Two adjacent edges discontinuous"=if
0.093 1.75
l
y
l
x
 2.00 Slab_type "Two adjacent edges discontinuous"=if
Short span - Bending moment coefficient for positive moment (sagging moment) at
continuous edge
β
sx.midspan
0.024
l
x
l
y
1.0 Slab_type "Interior panel"=if
0.034 1.0
l
y
l
x
 1.25 Slab_type "Interior panel"=if
0.040 1.25
l
y
l
x
 1.50 Slab_type "Interior panel"=if
0.044 1.5
l
y
l
x
 1.75 Slab_type "Interior panel"=if
0.048 1.75
l
y
l
x
 2.00 Slab_type "Interior panel"=if
0.029
l
x
l
y
1.0 Slab_type "One short edge discontinuous"=if
0.038 1.0
l
y
l
x
 1.25 Slab_type "One short edge discontinuous"=if
0.043 1.25
l
y
l
x
 1.50 Slab_type "One short edge discontinuous"=if
0.047 1.5
l
y
l
x
 1.75 Slab_type "One short edge discontinuous"=if
0.050 1.75
l
y
l
x
 2.00 Slab_type "One short edge discontinuous"=if
0.030
l
x
l
y
1.0 Slab_type "One long edge discontinuous"=if
0.045 1.0
l
y
l
x
 1.25 Slab_type "One long edge discontinuous"=if
0.055 1.25
l
y
l
x
 1.50 Slab_type "One long edge discontinuous"=if
l

SEISMIC ASSESSMENT OF
EXISTING RC BUILDING
Page 25 of 27

CALUCLATIION
SHEET
BEAM FLEXURAL AND SHEAR
CAPACITY CHECK
Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
0.062 1.5
l
y
l
x
 1.75 Slab_type "One long edge discontinuous"=if
0.067 1.75
l
y
l
x
 2.00 Slab_type "One long edge discontinuous"=if
0.036
l
x
l
y
1.0 Slab_type "Two adjacent edges discontinuous"=if
0.049 1.0
l
y
l
x
 1.25 Slab_type "Two adjacent edges discontinuous"=if
0.059 1.25
l
y
l
x
 1.50 Slab_type "Two adjacent edges discontinuous"=if
0.065 1.5
l
y
l
x
 1.75 Slab_type "Two adjacent edges discontinuous"=if
0.070 1.75
l
y
l
x
 2.00 Slab_type "Two adjacent edges discontinuous"=if
Long span - Bending moment coefficient for negative moment (hogging moment) at
continuous edge
β
sy.support
0.032 Slab_type "Interior panel"=if
0.037 Slab_type "One short edge discontinuous"=if
0.037 Slab_type "One long edge discontinuous"=if
0.045 Slab_type "Two adjacent edges discontinuous"=if

Long span - Bending moment coefficient for positive moment (sagging moment) at
continuous edge
β
sy.midspan
0.024 Slab_type "Interior panel"=if
0.028 Slab_type "One short edge discontinuous"=if
0.028 Slab_type "One long edge discontinuous"=if
0.034 Slab_type "Two adjacent edges discontinuous"=if

Summary of moment coefficient:
Short span - Moment coefficient - support:β
sx.support
0.047
Short span - Moment coefficient - midspan:β
sx.midspan
0.036
Long span - Moment coefficient - support:β
sy.support
0.045
Long span - Moment coefficient - midspan:β
sy.midspan
0.034
SEISMIC ASSESSMENT OF
EXISTING RC BUILDING
Page 26 of 27

CALUCLATIION
SHEET
BEAM FLEXURAL AND SHEAR
CAPACITY CHECK
Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
BENDING MOMENT RESULTS:
Note: Bending moment per unit width.
Short span - Bending moment at support:M
Ed.sx.sup
β
sx.support
F
Ed.ULS
 l
x
2
 13.439 kN
Short span - Bending moment at midspan:M
Ed.sx.mid
β
sx.midspan
F
Ed.ULS
 l
x
2
 10.294 k
N
Long span - Bending moment at support:M
Ed.sy.sup
β
sy.support
F
Ed.ULS
 l
x
2
 12.867 kN
Long span - Bending moment at midspan:M
Ed.sy.mid
β
sy.midspan
F
Ed.ULS
 l
x
2
 9.722 kN
SEISMIC ASSESSMENT OF
EXISTING RC BUILDING
Page 27 of 27

28













ANNEX B - EXAMPLE OF HOW TO DETE RMINE THE MOMENT
CAPACITY OF RC SLAB

CALUCLATIION
SHEET
BEAM FLEXURAL CAPACITY
CHECK
Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
REINFORCED CONCRETE SOLID SLAB DESIGN TO EUROCODE 2
Note: The following colour key is a guide to using the full calculation page.
INPUT DTATA
COMPUTED OUTPUT
DATA TO BE CHECKED
STANDARD DATA
Figure 1: Analysis of rectangular section - stress strain
ASSUMPTIONS:
GEOMETRICAL DATA:
Concrete cover:
c
nom
25mm
Breadth of the section (assumed 1m strip): b1m
Depth of the section: h 170mm
Longitudinal diameter (tension zone - bottom): d
t
10mm
Longitudinal diameter (compression zone - top): d
c
12mm
Spacing of steel reinforcement: s
p
200mm
Area of steel reinforcement provided: A
s.prov.t
π
d
t
2
4
m
s
p
 392.699 mm
2

Area of steel reinforcement provided: A
s.prov.c
π
d
c
2
4
m
s
p
 565.487 mm
2

Effective depth of the section. d: dhc
nom

d
t
2
 140 mm
Effective depth of the section. d
2
:
d
2
c
nom
d
c
2
 31 mm
MATERIAL PROPERTIES:
Mean characteristic compressive
SLAB DESIGN TO EUROCODE 2 Page 29 of 31

CALUCLATIION
SHEET
BEAM FLEXURAL CAPACITY
CHECK
Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
cylinder strength of concrete
(Laboratory results):
f
ck
30N mm
2

Characteristic yield strength of
steel reinforcement:
f
yk
500N mm
2

PARTIAL SAFETY FACTOR (CYS NA EN1992-1-1,Table 2.1):
Partial factor for reinforcement
steel (NA CYS EN 1992-1-1:2004, Table 2.1)):
γ
s
1.15
Partial factor for concrete
(NA CYS EN 1992-1-1:2004, Table 2.1)):
γ
c
1.5
DESIGN STRENGTHS OF MATERIAL(EN1992-1-1,cl.3.1.6):
Design yield strength of reinforcement
(EN1992-1-1,Fig.3.8):
f
yd
f
yk
γ
s
434.783 N mm
2

Coefficient value for compressive strength
(NA CYS EN 1992-1-1:2004, cl. NA 2.8):
α
cc
1
Design value of concrete compressive strength
(EN 1992-1-1:2004, Equation 3.15):
f
cd
α
cc
f
ck

γ
c
20 N mm
2

RECTANGULAR STRESS BLOCK FACTORS:
λ 0.8 f
ck
50MPaif
0.8
f
ck
50MPa
400MPa







f
ck
50MPaif
0.8
Factor, λ
(EN1992-1-1,Eq.3.19&3.20)
η 1.0 f
ck
50MPaif
1.0
f
ck
50MPa
200MPa







f
ck
50MPaif
1
Factor, η
(EN1992-1-1,Eq.3.21&3.22)
BENDING MOMENT CAPACITY (AT MIDSPAN) FOR A SINGLY REINFORCED SECTION
Figure 2: Detail of reinforcement slab at midspan
For equilibrium, the ultimate design moment, must be balanced by the moment of resistance
of the section (figure 1):
F
c
F
st
F
st
F
st
f
yd
A
s.prov.t
 170.739 kN
F
c
f
cd
bλx kN x
Therefore depth of stress block is:
SLAB DESIGN TO EUROCODE 2 Page 30 of 31

CALUCLATIION
SHEET
BEAM FLEXURAL CAPACITY
CHECK
Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
s
f
yd
A
s.prov.t

f
cd
b
8.537 mm
x
s
λ
10.671 mm
To ensure rotation of the plastic hinge with sufficient yielding of the tension steel and also to
allow for other factors such as the strain hardening of the steel, EC2 limit the depth of neutral
axis to:
Check if x 0.45d "PASS" "FAIL"( ) "PASS" 
zd
s
2
 135.732 mm
Moment capacity: M
Rd
f
yd
A
s.prov.t
 z23.175 kN m
BENDING CAPACITY (AT SUPPORTS) OF SECTION WITH COMPRESSION
REINFORCEMENT AT ULTIMATE LIMIT STATE
Figure 3: Detail of reinforcement slab at support
For equilibrium, the ultimate design moment, must be balanced by the moment of resistance
of the section (figure 1):
F
st
F
c
F
sc
F
c
F
sc
f
yd
A
s.prov.c
 245.864 kN
F
st
f
yd
A
s.prov.t
 170.739 kN
F
c
f
cd
bλx
Therefore depth of stress block is:
s
f
yd
A
s.prov.c
A
s.prov.t

f
cd
b
3.756 mm
x
s
λ
10.671 mm
Checkif x 0.45d "PASS" "FAIL"( ) "PASS" 
To ensure rotation of the plastic hinge with sufficient yielding of the tension steel and also to
allow for other factors such as the strain hardening of the steel, EC2 limit the depth of neutral
axis to:
Moment capacity:
M
Rd.
f
cd
bsd
s
2







 f
yd
A
s.prov.c
 dd
2
  37.176 kN m
SLAB DESIGN TO EUROCODE 2 Page 31 of 31

32













ANNEX C - EXAMPLE OF DESIGN SLAB PANEL WITH TWO
DISCONTINUOUS EDGES

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
REINFORCED CONCRETE SOLID SLAB DESIGN TO EUROCODE 2
Note: The following colour key is a guide to using the full calculation page.
INPUT DTATA
ASSUMPTIONS: 1. Fire resistance 1hour (REI 60).
2. Exposure class of concrete XC1.
3. No redistribution of bending moment made.
COMPUTED OUTPUT
DATA TO BE CHECKED
STANDARD DATA
GEOMETRICAL DATA:
Structural_system:= "Simply supported"
"End span of continuous slab"
"Interior span"
"Flat slab"
"Cantilever"
Structural system:
Structural_system "End span of continous slab"
Depth of slab: h 170mm
Strip width: b 1000mm
Shorter effective span of panel (clear span): l
x
5000mm
Longer effective span of panel: l
y
5000mm
Type of slab:
Type_slab "Two way slab"
l
y
l
x
2.0if
"One way slab"
l
y
l
x
2.0if
"Two way slab"
ANALYSIS & LOADING RESULTS:
TWO DISCONTINOUS EDGE Page 33 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Figure 1: Bending moment diagram for x - direction
Figure 2: Bending moment diagram for y - direction
TWO DISCONTINOUS EDGE Page 34 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Figure 3: Shear force diagram for x - direction
TWO DISCONTINOUS EDGE Page 35 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Figure 4: Shear force diagram for y - direction
Loads:
Characteistic permanent action: G
k
6.25kN m
2

Characteistic variable action: Q
k
2kN m
2

Quasi-permanent value of variable action: ψ
2
0.3
Short span:
Design bending moment at short span - continuous support: M
x.1
21.14kN m
Design bending moment at short span - middle: M
x.m
12.35kN m
Design shear force at short span - continous support: V
x.1
21kN
Design shear force at short span - discontinous support: V
x.2
13kN
Long span:
Design bending moment at long span - continous support: M
y.1
10.52kN m
Design bending moment at long span - middle: M
y.m
11.86kN m
Design shear force at long span - continous support: V
y.1
18kN
TWO DISCONTINOUS EDGE Page 36 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Design shear force at long span - discontinous support: V
y.2
13kN
STEEL REINFORCEMENT PROPERTIES:
Bars diameter for short/long span-midspan: ϕ
y.p
10mm
Characteristic yield strength of
steel reinforcement:
f
yk
500N mm
2

CONCRETE PROPERTIES:
Characteristic compressive cylinder
strength of concrete:
f
ck
30N mm
2

Mean value of compressive sylinder
strength
(EN 1992-1-1:2004, table 3.1):
f
ctm
0.3
f
ck
MPa






0.667









MPa 2.9 N mm
2

PARTIAL SAFETY FACTORS:
Partial factor for reinforcement
steel (NA CYS EN 1992-1-1:2004, Table 2.1)):
γ
s
1.15
Partial factor for concrete
(NA CYS EN 1992-1-1:2004, Table 2.1)):
γ
c
1.5
DESIGN STRENGTHS OF MATERIAL(EN1992-1-1,cl.3.1.6):
Design yield strength of reinforcement
(EN1992-1-1,Fig.3.8):
f
yd
f
yk
γ
s
434.783 N mm
2

Coefficient value for compressive strength
(NA CYS EN 1992-1-1:2004, cl. NA 2.8):
α
cc
1
Design value of concrete compressive strength
(EN 1992-1-1:2004, Equation 3.15):
f
cd
α
cc
f
ck

γ
c
20 N mm
2

CONCRETE COVER TO REINFORCEMENT:
Allowance in design for deviation
(Assuming no measurement of cover)
(EN1992-1-1,cl.4.4.1.3(3):
Δc
dev
10mm
Minimum cover due to bond
(Diameter of bar)
(EN1992-1-1,Table 4.2):
c
min.b
ϕ
y.p
10 mm
Minimum cover due to environmental
condition (Condition :XC1)
("How to design to Eurocode 2",Table 8):
c
min.dur
15mm
Minimum concrete cover
(EN1992-1-1,Eq.4.2):
c
min
max c
min.b
c
min.dur
 10mm  15 mm
Nominal cover
(EN1992-1-1,Eq.4.1):
c
nom
c
min
Δc
dev
 25 mm
TWO DISCONTINOUS EDGE Page 37 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
FIRE DESIGN CHECK:
Minimum slab thickness
(EN1992-1-2,Table 5.8):
h
s.min
80mm
Fire_resistance if h h
s.min
 "OK" "NOT OK"  "OK"
Axis distance to top and bottom
reinforcement, a
(EN1992-1-2,Table 5.8):
a
min
20mm
Minimum distance to top and bottom
reinforcement:
a
prov
c
nom
ϕ
y.p
2
 30 mm
Fire_resistanceif a
prov
a
min
 "OK" "NOT OK" "OK"
REINFORCEMENT DESIGN AT MID-SPAN IN SHORT SPAN DIRECTION:
Actual bar size: ϕ
x.m
10mm
Actual bar spacing: s
x.m
200mm
Area of reinforcement provided: A
sx.m
π
ϕ
x.m
2
4
m
s
x.m
 392.699 mm
2

d
x.m
hc
nom

ϕ
x.m
2
 140 mm
Values for K
lim
(Assumed no redistribution):
K
M
x.m
bd
x.m
2
 f
ck

0.021 K
lim
0.22
Compression if K K
lim
 "NOT REQUIRED" "REQUIRED"  "NOT REQUIRED"
Level arm:
z min
d
x.m
2
1 1 3.53 K






0.95d
x.m







133 mm
Area of reinforcement required for
bending:
A
sx.p.m
M
x.m
f
yd
z
213.571 mm
2

Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
x.m
 0.0013 bd
x.m







211.102m
Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
x.m
 5.6 10
3
 mm
2

Check_steel_1 if A
sx.p.m
A
sx.m
 A
s.min
A
sx.m
 A
s.max
 "OK" "NOT OK"  "OK"
Ratio_1
max A
s.min
A
sx.p.m


A
sx.m0.544
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sx.p.m
A
sx.m
1












 141.617 N mm
2

TWO DISCONTINOUS EDGE Page 38 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
300 mm
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
  300 mm
Spacing_1 if s
x.m
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_1
s
x.m
s
max
0.667
REINFORCEMENT DESIGN AT CONTINUOUS SUPPORT IN SHORT SPAN DIRECTION:
Actual bar size: ϕ
x.1
12mm
Actual bar spacing: s
x.1
200mm
Area of reinforcement provided: A
sx.1
π
ϕ
x.1
2
4
m
s
x.1
 565.487 mm
2

d
x.1
hc
nom

ϕ
x.1
2
 139 mm
Values for K
lim
(Assumed no redistribution):
K
M
x.1
bd
x.1
2
 f
ck

0.036 K
lim
0.22
Compressionif K K
lim
 "NOT REQUIRED" "REQUIRED" "NOT REQUIRED"
Level arm:
zmin
d
x.1
2
1 1 3.53 K






0.95d
x.1







132.05 mm
Area of reinforcement required for
bending:
A
sx.n.1
M
x.1
f
yd
z
368.209 mm
2

Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
x.1
 0.0013 bd
x.1







209.594 mm
Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
x.1
 5.56 10
3
 mm
2

TWO DISCONTINOUS EDGE Page 39 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Check_steel_2 if A
sx.n.1
A
sx.1
 A
s.min
A
sx.1
 A
s.max
 "OK" "NOT OK" "OK"
Ratio_2
max A
s.min
A
sx.n.1


A
sx.10.651
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sx.n.1
A
sx.1
1












 169.552 N mm
2

Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
275 mm
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
 275 mm
Spacing_2 if s
x.1
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_2
s
x.1
s
max
0.727
REINFORCEMENT DESIGN AT MID-SPAN IN LONG SPAN DIRECTION:
Actual bar size: ϕ
y.m
10mm
Actual bar spacing: s
y.m
200mm
Area of reinforcement provided: A
sy.m
π
ϕ
y.m
2
4
m
s
y.m
 392.699 mm
2

d
y.m
hc
nom

ϕ
y.m
2
 140 mm
Values for K
lim
(Assumed no redistribution):
K
M
y.m
bd
y.m
2
 f
ck

0.02 K
lim
0.22
Compressionif K K
lim
 "NOT REQUIRED" "REQUIRED" "NOT REQUIRED"
TWO DISCONTINOUS EDGE Page 40 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Level arm:
zmin
d
y.m
2
1 1 3.53 K






0.95d
y.m







133 mm
Area of reinforcement required for
bending:
A
sy.p.m
M
y.m
f
yd
z
205.098 mm
2

Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
y.m
 0.0013 bd
y.m







211.102 mm
Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
y.m
 5.6 10
3
 mm
2

Check_steel_3 if A
sy.p.m
A
sy.m
 A
s.min
A
sy.m
 A
s.max
 "OK" "NOT OK"  "OK"
Ratio_3
max A
s.min
A
sy.p.m


A
sy.m0.538
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sy.p.m
A
sy.m
1












 135.998 N mm
2

Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
0.3 m
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
 300 mm
Spacing_3 if s
y.m
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_3
s
y.m
s
max
0.667
REINFORCEMENT DESIGN AT CONTINUOUS SUPPORT IN LONG SPAN DIRECTION:
Actual bar size: ϕ
y.1
10mm
Actual bar spacing: s
y.1
200mm
Area of reinforcement provided: A
sy.1
π
ϕ
y.1
2
4
m
s
y.1
 392.699 mm
2

TWO DISCONTINOUS EDGE Page 41 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IKd
y.1
hc
nom

ϕ
y.1
2
 140 mm
Values for K
lim
(Assumed no redistribution):
K
M
y.1
bd
y.1
2
 f
ck

0.018 K
lim
0.22
Compressionif K K
lim
 "NOT REQUIRED" "REQUIRED" "NOT REQUIRED"
Level arm:
zmin
d
y.1
2
1 1 3.53 K






0.95d
y.1







133 mm
Area of reinforcement required for
bending:
A
sy.n.1
M
y.1
f
yd
z
181.925 mm
2

Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
y.1
 0.0013 bd
y.1







211.102 mm
Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
y.1
 5.6 10
3
 mm
2

Check_steel_4 if A
sy.n.1
A
sy.1
 A
s.min
A
sy.1
 A
s.max
 "OK" "NOT OK"  "OK"
Ratio_4
max A
s.min
A
sy.n.1


A
sy.10.538
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sy.n.1
A
sy.1
1












 120.632 N mm
2

Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
300 mm
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
 300 mm
Spacing_4 if s
x.1
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_4
s
y.m
s
max
0.667
TWO DISCONTINOUS EDGE Page 42 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
SHEAR CAPACITY CHECK AT SHORT SPAN CONTINUOUS SUPPORT:
Effective depth factor
(EN1992-1-1,cl.6.2.2):
k min 2.0 1
200mm
d
x.1






0.5









2
Reinforcement ratio: ρ
1
min 0.02
A
sx.1
bd
x.1








4.068 10
3

Minimum shear resistance
(EN1992-1-1,Eq.6.3N &6.2b):
V
Rd.c.min
0.035 k
f
ck
MPa






0.5









bd
x.1









Nmm
2
 53.293 kN
Shear resistance
(EN1992-1-1,
Eq.6.2a):
V
Rd.c.x.1
max V
Rd.c.min
0.18MPa
γ
c






k100ρ
1

f
ck
MPa













0.333
 bd
x.1









76.743k
Shear_1 if V
x.1
V
Rd.c.x.1
 "NO SHEAR REQUIRED" "SHEAR REQUIRED" 
Shear_1 "NO SHEAR REQUIRED"
Ratio1
V
x.1
V
Rd.c.x.1
0.274
SHEAR CAPACITY CHECK AT SHORT SPAN DISCONTINUOUS SUPPORT:
Flexural reinforcement at
discontinuous support
EN1992-1-1,cl.9.3.1.2(2):
A
s.req
A
sx.m
0.25 98.175 mm
2

Actual bar size: ϕ
x.2
8mm
Bar spacing: s
x.2
s
x.m
200 mm
Area of reinforcement provided: A
sx.2
π
ϕ
x.2
2
4
m
s
x.2
 251.327 mm
2

Effective depth:
d
x.2
hc
nom

ϕ
x.2
2
 141 mm
Effective depth factor
(EN1992-1-1,cl.6.2.2):
kmin 2.0 1
200mm
d
x.2






0.5









2
Reinforcement ratio: ρ
1
min 0.02
A
sx.2
bd
x.2








1.782 10
3

Minimum shear resistance
(EN1992-1-1,Eq.6.3N &6.2b):
V
Rd.c.min
0.035 k
f
ck
MPa






0.5









bd
x.2









Nmm
2
 54.06 kN
Shear resistance
(EN1992-1-1,
Eq.6.2a):
V
Rd.c.x.2
max V
Rd.c.min
0.18MPa
γ
c






k100ρ
1

f
ck
MPa













0.333
 bd
x.2









59.143k
Shear_2 if V
x.2
V
Rd.c.x.2
 "NO SHEAR REQUIRED" "SHEAR REQUIRED" 
Shear_2 "NO SHEAR REQUIRED"
TWO DISCONTINOUS EDGE Page 43 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IKRatio2
V
x.2
V
Rd.c.x.2
0.22
SHEAR CAPACITY CHECK AT LONG SPAN CONTINUOUS SUPPORT:
Effective depth factor
(EN1992-1-1,cl.6.2.2):
kmin 2.0 1
200mm
d
y.1






0.5









2
Reinforcement ratio: ρ
1
min 0.02
A
sy.1
bd
y.1








2.805 10
3

Minimum shear resistance
(EN1992-1-1,Eq.6.3N &6.2b):
V
Rd.c.min
0.035 k
f
ck
MPa






0.5









bd
y.1









Nmm
2
 53.677 kN
Shear resistance
(EN1992-1-1,
Eq.6.2a):
V
Rd.c.y.1
max V
Rd.c.min
0.18MPa
γ
c






k100ρ
1

f
ck
MPa













0.333
 bd
y.1









68.294 kN
Shear_3 if V
y.1
V
Rd.c.y.1
 "NO SHEAR REQUIRED" "SHEAR REQUIRED" 
Shear_3 "NO SHEAR REQUIRED"
Ratio3
V
y.1
V
Rd.c.y.1
0.264
SHEAR CAPACITY CHECK AT LONG SPAN DISCONTINUOUS SUPPORT:
Flexural reinforcement at
discontinuous support
EN1992-1-1,cl.9.3.1.2(2):
A
s.req
A
sy.m
0.25 98.175 mm
2

Actual bar size: ϕ
y.2
8mm
Bar spacing: s
y.2
s
y.m
200 mm
Area of reinforcement provided: A
sy.2
π
ϕ
y.2
2
4
m
s
y.2
 251.327 mm
2

Effective depth:
d
y.2
hc
nom

ϕ
y.2
2
 141 mm
Effective depth factor
(EN1992-1-1,cl.6.2.2):
kmin 2.0 1
200mm
d
y.2






0.5









2
Reinforcement ratio: ρ
1
min 0.02
A
sy.2
bd
y.2








1.782 10
3

Minimum shear resistance
(EN1992-1-1,Eq.6.3N &6.2b):
V
Rd.c.min
0.035 k
f
ck
MPa






0.5









bd
y.2









Nmm
2
 54.06 kN
Shear resistance
(EN1992-1-1,
Eq.6.2a):
V
Rd.c.y.2
max V
Rd.c.min
0.18MPa
γ
c






k100ρ
1

f
ck
MPa













0.333
 bd
y.2









59.143 kN
TWO DISCONTINOUS EDGE Page 44 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Shear_4 if V
y.2
V
Rd.c.y.2
 "NO SHEAR REQUIRED" "SHEAR REQUIRED"
Shear_4 "NO SHEAR REQUIRED"
Ratio4
V
y.2
V
Rd.c.y.2
0.22
BASIC SPAN-TO-DEPTH DEFLECTION RATIO CHECK:
Reference reinforcement ratio: ρ
o
0.001
f
ck
MPa






0.5
 5.477 10
3

Required compression reinforcement
(at mid-span - short span):
ρ
c
0
Required tension reinforcement
(at mid-span - short span):
ρ
t
max 0.0035
A
sx.m
bd
x.m








3.5 10
3

Structural system factor
(EN1992-1-1,Table 7.4N):
K
δ
1.0 Structural_system "Simply supported"=if
1.3 Structural_system "End span of continous slab"=if
1.5 Structural_system "Interior span"=if
1.2 Structural_system "Flat slab"=if
0.4 Structural_system "Cantilever"=if
1.3
Basic limit span-to-depth ratio
(EN1992-1-1,Eq.7.16a&7.16b):
Lim
x.bas
K
δ
11 1.5
f
ck
MPa






0.5

ρ
o
ρ
t
 3.2
f
ck
MPa






0.5

ρ
o
ρ
t
1






1.5


















ρ
t
ρ
o
if
K
δ
11 1.5
f
ck
MPa






0.5

ρ
o
ρ
t
ρ
c


1
12
f
ck
MPa






0.5

ρ
c
ρ
o


















ρ
t
ρ
o
if
40.689
Actual span to effective depth ratio:Ratio
act
l
x
d
x.m
35.714
Deflection if Ratio
act
Lim
x.bas
 "OK" "NOT OK"  "OK"
Ratio
Ratio
act
Lim
x.bas
0.878
CALCULATION SUMMARY RESULTS:
Short span - Bending capacity: PASS/FAIL: Ratio:
Check bending capacity at midspan: Check_steel_1 "OK" Ratio_1 0.544
Spacing at midspan reinforcement: Spacing_1 "OK" Ratio_s_1 0.667
Check bending capacity at support 1: Check_steel_2 "OK" Ratio_2 0.651
Spacing at support 1 reinforcement: Spacing_2 "OK" Ratio_s_2 0.727
TWO DISCONTINOUS EDGE Page 45 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Long span - Bending capacity: PASS/FAIL: Ratio:
Check bending capacity at midspan: Check_steel_3 "OK" Ratio_3 0.538
Spacing at midspan reinforcement: Spacing_3 "OK" Ratio_s_3 0.667
Check bending capacity at support 1: Check_steel_4 "OK" Ratio_4 0.538
Spacing at support 1 reinforcement: Spacing_4 "OK" Ratio_s_4 0.667
Short span - Shear capacity: PASS/FAIL: Ratio:
Check shear capacity at support 1:Shear_1 "NO SHEAR REQUIRED" Ratio1 0.274
Check shear capacity at support 2:Shear_2 "NO SHEAR REQUIRED" Ratio2 0.22
Long span - Shear capacity: PASS/FAIL: Ratio:
Check shear capacity at support 1:Shear_3 "NO SHEAR REQUIRED" Ratio3 0.264
Check shear capacity at support 2:Shear_4 "NO SHEAR REQUIRED" Ratio4 0.22
Deflection: PASS/FAIL: Ratio:
Check deflection of panel: Deflection "OK" Ratio 0.878
RENFORCEMENT SUMMARY:
Short span:
Midspan in short span direction: ϕ
x.m
10 mm s
x.m
200 mm
at C/C
Continuous support 1 in short span direction: ϕ
x.1
12 mm s
x.1
200 mm
at C/C
Discontinuous support 2 in short span direction:ϕ
x.2
8mm s
x.2
200 mm
at C/C
Long span:
Midspan in short span direction: ϕ
y.m
10 mm s
y.m
200 mm
at C/C
Continuous support 1 in long span direction: ϕ
y.1
10 mm s
y.1
200 mm
at C/C
Discontinuous support 2 in long span direction:ϕ
y.2
8mm s
y.2
200 mm
at C/C
TWO DISCONTINOUS EDGE Page 46 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
ϕ
y.2
8mm s
y.2
200 mm
ϕ
x.2
8mm s
x.2
200 mm
ϕ
x.1
12 mm s
x.1
200 mm
ϕ
x.m
10 mm s
x.m
200 mm
ϕ
y.m
10 mm s
y.m
200 mm
ϕ
y.1
10 mm s
y.1
200 mm
TWO DISCONTINOUS EDGE Page 47 of 48

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
mm
2
TWO DISCONTINOUS EDGE Page 48 of 48

48













ANNEX D - EXAMPLE OF DESIGN SLAB PANEL WITH ONE
DISCONTINUOUS EDGES

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
REINFORCED CONCRETE SOLID SLAB DESIGN TO EUROCODE 2
Note: The following colour key is a guide to using the full calculation page.
INPUT DTATA
ASSUMPTIONS: 1. Fire resistance 1hour (REI 60).
2. Exposure class of concrete XC1.
3. No redistribution of bending moment made.
COMPUTED OUTPUT
DATA TO BE CHECKED
STANDARD DATA
GEOMETRICAL DATA:
Structural_system:= "Simply supported"
"End span of continuous slab"
"Interior span"
"Flat slab"
"Cantilever"
Structural system:
Structural_system "End span of continous slab"
Depth of slab: h 170mm
Strip width: b 1000mm
Shorter effective span of panel (clear span): l
x
5000mm
Longer effective span of panel: l
y
5000mm
Type of slab:
Type_slab "Two way slab"
l
y
l
x
2.0if
"One way slab"
l
y
l
x
2.0if
"Two way slab"
ANALYSIS & LOADING RESULTS:
ONE DISCONTINUOUS EDGE Page 49 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Figure 1: Bending moment diagram for x - direction
Figure 2: Bending moment diagram for y - direction
ONE DISCONTINUOUS EDGE Page 50 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Figure 3: Shear force diagram for x - direction
ONE DISCONTINUOUS EDGE Page 51 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Figure 4: Shear force diagram for y - direction
Loads:
Characteistic permanent action: G
k
6.25kN m
2

Characteistic variable action: Q
k
2kN m
2

Quasi-permanent value of variable action: ψ
2
0.3
Short span:
Design bending moment at short span - continuous support: M
x.1
21kN m
Design bending moment at short span - middle: M
x.m
7kN m
Design bending moment at short span - continuous support: M
x.2
21kN m
Design shear force at short span - continous support: V
x.1
22kN
Design shear force at short span - continous support: V
x.2
18kN
Long span:
Design bending moment at long span - continous support: M
y.1
20kN m
Design bending moment at long span - middle: M
y.m
12kN m
ONE DISCONTINUOUS EDGE Page 52 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Design shear force at long span - continous support: V
y.1
21kN
Design shear force at long span - discontinous support: V
y.2
13kN
STEEL REINFORCEMENT PROPERTIES:
Bars diameter for short/long span-midspan: ϕ
y.p
10mm
Characteristic yield strength of
steel reinforcement:
f
yk
500N mm
2

CONCRETE PROPERTIES:
Characteristic compressive cylinder
strength of concrete:
f
ck
30N mm
2

Mean value of compressive sylinder
strength
(EN 1992-1-1:2004, table 3.1):
f
ctm
0.3
f
ck
MPa






0.667









MPa 2.9 N mm
2

PARTIAL SAFETY FACTORS:
Partial factor for reinforcement
steel (NA CYS EN 1992-1-1:2004, Table 2.1)):
γ
s
1.15
Partial factor for concrete
(NA CYS EN 1992-1-1:2004, Table 2.1)):
γ
c
1.5
DESIGN STRENGTHS OF MATERIAL(EN1992-1-1,cl.3.1.6):
Design yield strength of reinforcement
(EN1992-1-1,Fig.3.8):
f
yd
f
yk
γ
s
434.783 N mm
2

Coefficient value for compressive strength
(NA CYS EN 1992-1-1:2004, cl. NA 2.8):
α
cc
1
Design value of concrete compressive strength
(EN 1992-1-1:2004, Equation 3.15):
f
cd
α
cc
f
ck

γ
c
20 N mm
2

CONCRETE COVER TO REINFORCEMENT:
Allowance in design for deviation
(Assuming no measurement of cover)
(EN1992-1-1,cl.4.4.1.3(3):
Δc
dev
10mm
Minimum cover due to bond
(Diameter of bar)
(EN1992-1-1,Table 4.2):
c
min.b
ϕ
y.p
10 mm
Minimum cover due to environmental
condition (Condition :XC1)
("How to design to Eurocode 2",Table 8):
c
min.dur
15mm
Minimum concrete cover
(EN1992-1-1,Eq.4.2):
c
min
max c
min.b
c
min.dur
 10mm  15 mm
ONE DISCONTINUOUS EDGE Page 53 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Nominal cover
(EN1992-1-1,Eq.4.1):
c
nom
c
min
Δc
dev
 25 mm
FIRE DESIGN CHECK:
Minimum slab thickness
(EN1992-1-2,Table 5.8):
h
s.min
80mm
Fire_resistance if h h
s.min
 "OK" "NOT OK"  "OK"
Axis distance to top and bottom
reinforcement, a
(EN1992-1-2,Table 5.8):
a
min
20mm
Minimum distance to top and bottom
reinforcement:
a
prov
c
nom
ϕ
y.p
2
 30 mm
Fire_resistanceif a
prov
a
min
 "OK" "NOT OK" "OK"
REINFORCEMENT DESIGN AT MID-SPAN IN SHORT SPAN DIRECTION:
Actual bar size: ϕ
x.m
10mm
Actual bar spacing: s
x.m
200mm
Area of reinforcement provided: A
sx.m
π
ϕ
x.m
2
4
m
s
x.m
 392.699 mm
2

d
x.m
hc
nom

ϕ
x.m
2
 140 mm
Values for K
lim
(Assumed no redistribution):
K
M
x.m
bd
x.m
2
 f
ck

0.012 K
lim
0.22
Compression if K K
lim
 "NOT REQUIRED" "REQUIRED"  "NOT REQUIRED"
Level arm:
z min
d
x.m
2
1 1 3.53 K






0.95d
x.m







133 mm
Area of reinforcement required for
bending:
A
sx.p.m
M
x.m
f
yd
z
121.053 mm
2

Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
x.m
 0.0013 bd
x.m







211.102 mm
Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
x.m
 5.6 10
3
 mm
2

Check_steel_1 if A
sx.p.m
A
sx.m
 A
s.min
A
sx.m
 A
s.max
 "OK" "NOT OK"  "OK"
Ratio_1
max A
s.min
A
sx.p.m


A
sx.m0.538
ONE DISCONTINUOUS EDGE Page 54 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sx.p.m
A
sx.m
1












 80.269 N mm
2

Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
300 mm
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
  300 mm
Spacing_1 if s
x.m
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_1
s
x.m
s
max
0.667
REINFORCEMENT DESIGN AT CONTINUOUS SUPPORT 1 IN SHORT SPAN DIRECTION:
Actual bar size: ϕ
x.1
12mm
Actual bar spacing: s
x.1
200mm
Area of reinforcement provided: A
sx.1
π
ϕ
x.1
2
4
m
s
x.1
 565.487 mm
2

d
x.1
hc
nom

ϕ
x.1
2
 139 mm
Values for K
lim
(Assumed no redistribution):
K
M
x.1
bd
x.1
2
 f
ck

0.036 K
lim
0.22
Compressionif K K
lim
 "NOT REQUIRED" "REQUIRED" "NOT REQUIRED"
Level arm:
zmin
d
x.1
2
1 1 3.53 K






0.95d
x.1







132.05 mm
Area of reinforcement required for
bending:
A
sx.n.1
M
x.1
f
yd
z
365.771 mm
2

ONE DISCONTINUOUS EDGE Page 55 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
x.1
 0.0013 bd
x.1







209.594 mm
Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
x.1
 5.56 10
3
 mm
2

Check_steel_2 if A
sx.n.1
A
sx.1
 A
s.min
A
sx.1
 A
s.max
 "OK" "NOT OK"  "OK"
Ratio_2
max A
s.min
A
sx.n.1


A
sx.10.647
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sx.n.1
A
sx.1
1












 168.429 N mm
2

Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
275 mm
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
 275 mm
Spacing_2 if s
x.1
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_2
s
x.1
s
max
0.727
REINFORCEMENT DESIGN AT CONTINUOUS SUPPORT 2 IN SHORT SPAN DIRECTION:
Actual bar size: ϕ
x.2
12mm
Actual bar spacing: s
x.2
200mm
Area of reinforcement provided: A
sx.2
π
ϕ
x.2
2
4
m
s
x.2
 565.487 mm
2

ONE DISCONTINUOUS EDGE Page 56 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IKd
x.2
hc
nom

ϕ
x.2
2
 139 mm
Values for K
lim
(Assumed no redistribution):
K
M
x.2
bd
x.2
2
 f
ck

0.036 K
lim
0.22
Compressionif K K
lim
 "NOT REQUIRED" "REQUIRED" "NOT REQUIRED"
Level arm:
zmin
d
x.2
2
1 1 3.53 K






0.95d
x.2







132.05 mm
Area of reinforcement required for
bending:
A
sx.n.2
M
x.2
f
yd
z
365.771 mm
2

Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
x.2
 0.0013 bd
x.2







209.594 mm
Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
x.2
 5.56 10
3
 mm
2

Check_steel_3 if A
sx.n.2
A
sx.2
 A
s.min
A
sx.2
 A
s.max
 "OK" "NOT OK"  "OK"
Ratio_3
max A
s.min
A
sx.n.2


A
sx.20.647
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sx.n.2
A
sx.2
1












 168.429 N mm
2

Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
275 mm
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
 275 mm
Spacing_3 if s
x.2
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_3
s
x.2
s
max
0.727
ONE DISCONTINUOUS EDGE Page 57 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
REINFORCEMENT DESIGN AT MID-SPAN IN LONG SPAN DIRECTION:
Actual bar size: ϕ
y.m
10mm
Actual bar spacing: s
y.m
200mm
Area of reinforcement provided: A
sy.m
π
ϕ
y.m
2
4
m
s
y.m
 392.699 mm
2

d
y.m
hc
nom

ϕ
y.m
2
 140 mm
Values for K
lim
(Assumed no redistribution):
K
M
y.m
bd
y.m
2
 f
ck

0.02 K
lim
0.22
Compressionif K K
lim
 "NOT REQUIRED" "REQUIRED" "NOT REQUIRED"
Level arm:
zmin
d
y.m
2
1 1 3.53 K






0.95d
y.m







133 mm
Area of reinforcement required for
bending:
A
sy.p.m
M
y.m
f
yd
z
207.519 mm
2

Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
y.m
 0.0013 bd
y.m







211.102 mm
Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
y.m
 5.6 10
3
 mm
2

Check_steel_4 if A
sy.p.m
A
sy.m
 A
s.min
A
sy.m
 A
s.max
 "OK" "NOT OK"  "OK"
Ratio_4
max A
s.min
A
sy.p.m


A
sy.m0.538
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sy.p.m
A
sy.m
1












 137.603 N mm
2

Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
0.3 m
ONE DISCONTINUOUS EDGE Page 58 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
 300 mm
Spacing_4 if s
y.m
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_4
s
y.m
s
max
0.667
REINFORCEMENT DESIGN AT CONTINUOUS SUPPORT IN LONG SPAN DIRECTION:
Actual bar size: ϕ
y.1
12mm
Actual bar spacing: s
y.1
200mm
Area of reinforcement provided: A
sy.1
π
ϕ
y.1
2
4
m
s
y.1
 565.487 mm
2

d
y.1
hc
nom

ϕ
y.1
2
 139 mm
Values for K
lim
(Assumed no redistribution):
K
M
y.1
bd
y.1
2
 f
ck

0.035 K
lim
0.22
Compressionif K K
lim
 "NOT REQUIRED" "REQUIRED" "NOT REQUIRED"
Level arm:
zmin
d
y.1
2
1 1 3.53 K






0.95d
y.1







132.05 mm
Area of reinforcement required for
bending:
A
sy.n.1
M
y.1
f
yd
z
348.353 mm
2

Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
y.1
 0.0013 bd
y.1







209.594 mm
Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
y.1
 5.56 10
3
 mm
2

Check_steel_5 if A
sy.n.1
A
sy.1
 A
s.min
A
sy.1
 A
s.max
 "OK" "NOT OK"  "OK"
Ratio_5
max A
s.min
A
sy.n.1


A
sy.10.616
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sy.n.1
A
sy.1
1












 160.409 N mm
2

ONE DISCONTINUOUS EDGE Page 59 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
275 mm
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
 275 mm
Spacing_5 if s
y.1
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_5
s
y.1
s
max
0.727
SHEAR CAPACITY CHECK AT SHORT SPAN CONTINUOUS SUPPORT 1:
Effective depth factor
(EN1992-1-1,cl.6.2.2):
k min 2.0 1
200mm
d
x.1






0.5









2
Reinforcement ratio: ρ
1
min 0.02
A
sx.1
bd
x.1








4.068 10
3

Minimum shear resistance
(EN1992-1-1,Eq.6.3N &6.2b):
V
Rd.c.min
0.035 k
f
ck
MPa






0.5









bd
x.1









Nmm
2
 53.293 kN
Shear resistance
(EN1992-1-1,
Eq.6.2a):
V
Rd.c.x.1
max V
Rd.c.min
0.18MPa
γ
c






k100ρ
1

f
ck
MPa













0.333
 bd
x.1









76.743k
Shear_1 if V
x.1
V
Rd.c.x.1
 "NO SHEAR REQUIRED" "SHEAR REQUIRED" 
Shear_1 "NO SHEAR REQUIRED"
Ratio1
V
x.1
V
Rd.c.x.1
0.287
SHEAR CAPACITY CHECK AT SHORT SPAN CONTINUOUS SUPPORT 2:
Effective depth factor
(EN1992-1-1,cl.6.2.2):
kmin 2.0 1
200mm
d
x.2






0.5









2
ONE DISCONTINUOUS EDGE Page 60 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IKReinforcement ratio: ρ
1
min 0.02
A
sx.2
bd
x.2








4.068 10
3

Minimum shear resistance
(EN1992-1-1,Eq.6.3N &6.2b):
V
Rd.c.min
0.035 k
f
ck
MPa






0.5









bd
x.2









Nmm
2
 53.293 kN
Shear resistance
(EN1992-1-1,
Eq.6.2a):
V
Rd.c.x.2
max V
Rd.c.min
0.18MPa
γ
c






k100ρ
1

f
ck
MPa













0.333
 bd
x.2









76.743k
Shear_2 if V
x.2
V
Rd.c.x.2
 "NO SHEAR REQUIRED" "SHEAR REQUIRED" 
Shear_2 "NO SHEAR REQUIRED"
Ratio2
V
x.2
V
Rd.c.x.2
0.235
SHEAR CAPACITY CHECK AT LONG SPAN CONTINUOUS SUPPORT:
Effective depth factor
(EN1992-1-1,cl.6.2.2):
kmin 2.0 1
200mm
d
y.1






0.5









2
Reinforcement ratio: ρ
1
min 0.02
A
sy.1
bd
y.1








4.068 10
3

Minimum shear resistance
(EN1992-1-1,Eq.6.3N &6.2b):
V
Rd.c.min
0.035 k
f
ck
MPa






0.5









bd
y.1









Nmm
2
 53.293 kN
Shear resistance
(EN1992-1-1,
Eq.6.2a):
V
Rd.c.y.1
max V
Rd.c.min
0.18MPa
γ
c






k100ρ
1

f
ck
MPa













0.333
 bd
y.1









76.743 kN
Shear_3 if V
y.1
V
Rd.c.y.1
 "NO SHEAR REQUIRED" "SHEAR REQUIRED" 
Shear_3 "NO SHEAR REQUIRED"
Ratio3
V
y.1
V
Rd.c.y.1
0.274
SHEAR CAPACITY CHECK AT LONG SPAN DISCONTINUOUS SUPPORT:
Flexural reinforcement at
discontinuous support
EN1992-1-1,cl.9.3.1.2(2):
A
s.req
A
sy.m
0.25 98.175 mm
2

Actual bar size: ϕ
y.2
8mm
Bar spacing: s
y.2
s
y.m
200 mm
Area of reinforcement provided: A
sy.2
π
ϕ
y.2
2
4
m
s
y.2
 251.327 mm
2

Effective depth:
d
y.2
hc
nom

ϕ
y.2
2
 141 mm
ONE DISCONTINUOUS EDGE Page 61 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Effective depth factor
(EN1992-1-1,cl.6.2.2):
kmin 2.0 1
200mm
d
y.2






0.5









2
Reinforcement ratio: ρ
1
min 0.02
A
sy.2
bd
y.2








1.782 10
3

Minimum shear resistance
(EN1992-1-1,Eq.6.3N &6.2b):
V
Rd.c.min
0.035 k
f
ck
MPa






0.5









bd
y.2









Nmm
2
 54.06 kN
Shear resistance
(EN1992-1-1,
Eq.6.2a):
V
Rd.c.y.2
max V
Rd.c.min
0.18MPa
γ
c






k100ρ
1

f
ck
MPa













0.333
 bd
y.2









59.143 kN
Shear_4 if V
y.2
V
Rd.c.y.2
 "NO SHEAR REQUIRED" "SHEAR REQUIRED" 
Shear_4 "NO SHEAR REQUIRED"
Ratio4
V
y.2
V
Rd.c.y.2
0.22
BASIC SPAN-TO-DEPTH DEFLECTION RATIO CHECK:
Reference reinforcement ratio: ρ
o
0.001
f
ck
MPa






0.5
 5.477 10
3

Required compression reinforcement
(at mid-span - short span):
ρ
c
0
Required tension reinforcement
(at mid-span - short span):
ρ
t
max 0.0035
A
sx.m
bd
x.m








3.5 10
3

Structural system factor
(EN1992-1-1,Table 7.4N):
K
δ
1.0 Structural_system "Simply supported"=if
1.3 Structural_system "End span of continous slab"=if
1.5 Structural_system "Interior span"=if
1.2 Structural_system "Flat slab"=if
0.4 Structural_system "Cantilever"=if
1.3
Basic limit span-to-depth ratio
(EN1992-1-1,Eq.7.16a&7.16b):
Lim
x.bas
K
δ
11 1.5
f
ck
MPa






0.5

ρ
o
ρ
t
 3.2
f
ck
MPa






0.5

ρ
o
ρ
t
1






1.5


















ρ
t
ρ
o
if
K
δ
11 1.5
f
ck
MPa






0.5

ρ
o
ρ
t
ρ
c


1
12
f
ck
MPa






0.5

ρ
c
ρ
o


















ρ
t
ρ
o
if
40.689
Actual span to effective depth ratio:Ratio
act
l
x
d
x.m
35.714
Deflection if Ratio
act
Lim
x.bas
 "OK" "NOT OK"  "OK"
ONE DISCONTINUOUS EDGE Page 62 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IKRatio
Ratio
act
Lim
x.bas
0.878
CALCULATION SUMMARY RESULTS:
Short span - Bending capacity: PASS/FAIL: Ratio:
Check bending capacity at midspan: Check_steel_1 "OK" Ratio_1 0.538
Spacing at midspan reinforcement: Spacing_1 "OK" Ratio_s_1 0.667
Check bending capacity at support 1: Check_steel_2 "OK" Ratio_2 0.647
Spacing at support 1 reinforcement: Spacing_2 "OK" Ratio_s_2 0.727
Check bending capacity at support 2: Check_steel_3 "OK" Ratio_3 0.647
Spacing at support 2 reinforcement: Spacing_3 "OK" Ratio_s_3 0.727
Long span - Bending capacity: PASS/FAIL: Ratio:
Check bending capacity at midspan: Check_steel_4 "OK" Ratio_4 0.538
Spacing at midspan reinforcement: Spacing_4 "OK" Ratio_s_4 0.667
Check bending capacity at support 1: Check_steel_5 "OK" Ratio_5 0.616
Spacing at support 1 reinforcement: Spacing_5 "OK" Ratio_s_5 0.727
Short span - Shear capacity: PASS/FAIL: Ratio:
Check shear capacity at support 1:Shear_1 "NO SHEAR REQUIRED" Ratio1 0.287
Check shear capacity at support 2:Shear_2 "NO SHEAR REQUIRED" Ratio2 0.235
Long span - Shear capacity: PASS/FAIL: Ratio:
Check shear capacity at support 1:Shear_3 "NO SHEAR REQUIRED" Ratio3 0.274
Check shear capacity at support 2:Shear_4 "NO SHEAR REQUIRED" Ratio4 0.22
Deflection: PASS/FAIL: Ratio:
Check deflection of panel: Deflection "OK" Ratio 0.878
RENFORCEMENT SUMMARY:
Short span:
Midspan in short span direction: ϕ
x.m
10 mm s
x.m
200 mm
at C/C
Continuous support 1 in short span direction: ϕ
x.1
12 mm s
x.1
200 mm
at C/C
Discontinuous support 2 in short span direction:ϕ
x.2
12 mm s
x.2
200 mm
at C/C
Long span:
Midspan in short span direction: ϕ
y.m
10 mm s
y.m
200 mm
at C/C
ONE DISCONTINUOUS EDGE Page 63 of 64

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:IK
Continuous support 1 in long span direction: ϕ
y.1
12 mm s
y.1
200 mm
at C/C
Discontinuous support 2 in long span direction:ϕ
y.2
8mm s
y.2
200 mm
at C/C
ϕ
y.2
8mm s
y.2
200 mm
ϕ
x.2
12 mm s
x.2
200 mm ϕ
x.1
12 mm s
x.1
200 mm
ϕ
x.m
10 mm s
x.m
200 mm
ϕ
y.m
10 mm s
y.m
200 mm
ϕ
y.1
12 mm s
y.1
200 mm
ONE DISCONTINUOUS EDGE Page 64 of 64

65













ANNEX E - EXAMPLE OF DESIGN INTERIOR PANEL SLAB

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
REINFORCED CONCRETE SOLID SLAB DESIGN TO EUROCODE 2
Note: The following colour key is a guide to using the full calculation page.
INPUT DTATA
ASSUMPTIONS: 1. Fire resistance 1hour (REI 60).
2. Exposure class of concrete XC1.
3. No redistribution of bending moment made.
COMPUTED OUTPUT
DATA TO BE CHECKED
STANDARD DATA
GEOMETRICAL DATA:
Structural_system:= "Simply supported"
"End span of continuous slab"
"Interior span"
"Flat slab"
"Cantilever"
Structural system:
Structural_system "Interior span"
Depth of slab: h 170mm
Strip width: b 1000mm
Shorter effective span of panel (clear span): l
x
5000mm
Longer effective span of panel: l
y
5000mm
Type of slab:
Type_slab "Two way slab"
l
y
l
x
2.0if
"One way slab"
l
y
l
x
2.0if
"Two way slab"
ANALYSIS & LOADING RESULTS:
INTERIOR PANEL Page 66 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
Figure 1: Bending moment diagram for x - direction
Figure 2: Bending moment diagram for y - direction
INTERIOR PANEL Page 67 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
Figure 3: Shear force diagram for x - direction
Figure 4: Shear force diagram for y - direction
INTERIOR PANEL Page 68 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
Loads:
Characteistic permanent action: G
k
6.25kN m
2

Characteistic variable action: Q
k
2kN m
2

Quasi-permanent value of variable action: ψ
2
0.3
Short span:
Design bending moment at short span - continuous support: M
x.1
21kN m
Design bending moment at short span - middle: M
x.m
6kN m
Design bending moment at short span - continuous support: M
x.2
21kN m
Design shear force at short span - continous support: V
x.1
21kN
Design shear force at short span - discontinous support: V
x.2
21kN
Long span:
Design bending moment at long span - continous support: M
y.1
21kN m
Design bending moment at long span - middle: M
y.m
6kN m
Design bending moment at long span - continous support: M
y.2
21kN m
Design shear force at long span - continous support: V
y.1
21kN
Design shear force at long span - discontinous support: V
y.2
21kN
STEEL REINFORCEMENT PROPERTIES:
Bars diameter for short/long span-midspan: ϕ
y.p
10mm
Characteristic yield strength of
steel reinforcement:
f
yk
500N mm
2

CONCRETE PROPERTIES:
Characteristic compressive cylinder
strength of concrete:
f
ck
30N mm
2

Mean value of compressive sylinder
strength
(EN 1992-1-1:2004, table 3.1):
f
ctm
0.3
f
ck
MPa






0.667









MPa 2.9 N mm
2

PARTIAL SAFETY FACTORS:
INTERIOR PANEL Page 69 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
Partial factor for reinforcement
steel (NA CYS EN 1992-1-1:2004, Table 2.1)):
γ
s
1.15
Partial factor for concrete
(NA CYS EN 1992-1-1:2004, Table 2.1)):
γ
c
1.5
DESIGN STRENGTHS OF MATERIAL(EN1992-1-1,cl.3.1.6):
Design yield strength of reinforcement
(EN1992-1-1,Fig.3.8):
f
yd
f
yk
γ
s
434.783 N mm
2

Coefficient value for compressive strength
(NA CYS EN 1992-1-1:2004, cl. NA 2.8):
α
cc
1
Design value of concrete compressive strength
(EN 1992-1-1:2004, Equation 3.15):
f
cd
α
cc
f
ck

γ
c
20 N mm
2

CONCRETE COVER TO REINFORCEMENT:
Allowance in design for deviation
(Assuming no measurement of cover)
(EN1992-1-1,cl.4.4.1.3(3):
Δc
dev
10mm
Minimum cover due to bond
(Diameter of bar)
(EN1992-1-1,Table 4.2):
c
min.b
ϕ
y.p
10 mm
Minimum cover due to environmental
condition (Condition :XC1)
("How to design to Eurocode 2",Table 8):
c
min.dur
15mm
Minimum concrete cover
(EN1992-1-1,Eq.4.2):
c
min
max c
min.b
c
min.dur
 10mm  15 mm
Nominal cover
(EN1992-1-1,Eq.4.1):
c
nom
c
min
Δc
dev
 25 mm
FIRE DESIGN CHECK:
Minimum slab thickness
(EN1992-1-2,Table 5.8):
h
s.min
80mm
Fire_resistance if h h
s.min
 "OK" "NOT OK"  "OK"
Axis distance to top and bottom
reinforcement, a
(EN1992-1-2,Table 5.8):
a
min
20mm
Minimum distance to top and bottom
reinforcement:
a
prov
c
nom
ϕ
y.p
2
 30 mm
Fire_resistanceif a
prov
a
min
 "OK" "NOT OK" "OK"
REINFORCEMENT DESIGN AT MID-SPAN IN SHORT SPAN DIRECTION:
Actual bar size: ϕ
x.m
10mm
INTERIOR PANEL Page 70 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
Actual bar spacing: s
x.m
200mm
Area of reinforcement provided: A
sx.m
π
ϕ
x.m
2
4
m
s
x.m
 392.699 mm
2

d
x.m
hc
nom

ϕ
x.m
2
 140 mm
Values for K
lim
(Assumed no redistribution):
K
M
x.m
bd
x.m
2
 f
ck

0.01 K
lim
0.22
Compression if K K
lim
 "NOT REQUIRED" "REQUIRED"  "NOT REQUIRED"
Level arm:
z min
d
x.m
2
1 1 3.53 K






0.95d
x.m







133 mm
Area of reinforcement required for
bending:
A
sx.p.m
M
x.m
f
yd
z
103.759 mm
2

Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
x.m
 0.0013 bd
x.m







211.102 mm
Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
x.m
 5.6 10
3
 mm
2

Check_steel_1 if A
sx.p.m
A
sx.m
 A
s.min
A
sx.m
 A
s.max
 "OK" "NOT OK"  "OK"
Ratio_1
max A
s.min
A
sx.p.m


A
sx.m0.538
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sx.p.m
A
sx.m
1












 68.802 N mm
2

Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
300 mm
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
  300 mm
INTERIOR PANEL Page 71 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
Spacing_1 if s
x.m
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_1
s
x.m
s
max
0.667
REINFORCEMENT DESIGN AT CONTINUOUS SUPPORT 1 IN SHORT SPAN DIRECTION:
Actual bar size: ϕ
x.1
12mm
Actual bar spacing: s
x.1
200mm
Area of reinforcement provided: A
sx.1
π
ϕ
x.1
2
4
m
s
x.1
 565.487 mm
2

d
x.1
hc
nom

ϕ
x.1
2
 139 mm
Values for K
lim
(Assumed no redistribution):
K
M
x.1
bd
x.1
2
 f
ck

0.036 K
lim
0.22
Compressionif K K
lim
 "NOT REQUIRED" "REQUIRED" "NOT REQUIRED"
Level arm:
zmin
d
x.1
2
1 1 3.53 K






0.95d
x.1







132.05 mm
Area of reinforcement required for
bending:
A
sx.n.1
M
x.1
f
yd
z
365.771 mm
2

Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
x.1
 0.0013 bd
x.1







209.594 mm
Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
x.1
 5.56 10
3
 mm
2

Check_steel_2 if A
sx.n.1
A
sx.1
 A
s.min
A
sx.1
 A
s.max
 "OK" "NOT OK"  "OK"
Ratio_2
max A
s.min
A
sx.n.1


A
sx.10.647
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sx.n.1
A
sx.1
1












 168.429 N mm
2

INTERIOR PANEL Page 72 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
275 mm
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
 275 mm
Spacing_2 if s
x.1
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_2
s
x.1
s
max
0.727
REINFORCEMENT DESIGN AT CONTINUOUS SUPPORT 2 IN SHORT SPAN DIRECTION:
Actual bar size: ϕ
x.2
12mm
Actual bar spacing: s
x.2
200mm
Area of reinforcement provided: A
sx.2
π
ϕ
x.2
2
4
m
s
x.2
 565.487 mm
2

d
x.2
hc
nom

ϕ
x.2
2
 139 mm
Values for K
lim
(Assumed no redistribution):
K
M
x.2
bd
x.2
2
 f
ck

0.036 K
lim
0.22
Compressionif K K
lim
 "NOT REQUIRED" "REQUIRED" "NOT REQUIRED"
Level arm:
zmin
d
x.2
2
1 1 3.53 K






0.95d
x.2







132.05 mm
Area of reinforcement required for
bending:
A
sx.n.2
M
x.2
f
yd
z
365.771 mm
2

Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
x.2
 0.0013 bd
x.2







209.594 mm
Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
x.2
 5.56 10
3
 mm
2

INTERIOR PANEL Page 73 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
Check_steel_3 if A
sx.n.2
A
sx.2
 A
s.min
A
sx.2
 A
s.max
 "OK" "NOT OK" "OK"
Ratio_3
max A
s.min
A
sx.n.2


A
sx.20.647
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sx.n.2
A
sx.2
1












 168.429 N mm
2

Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
275 mm
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
 275 mm
Spacing_3 if s
x.2
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_3
s
x.2
s
max
0.727
REINFORCEMENT DESIGN AT MID-SPAN IN LONG SPAN DIRECTION:
Actual bar size: ϕ
y.m
10mm
Actual bar spacing: s
y.m
200mm
Area of reinforcement provided: A
sy.m
π
ϕ
y.m
2
4
m
s
y.m
 392.699 mm
2

d
y.m
hc
nom

ϕ
y.m
2
 140 mm
Values for K
lim
(Assumed no redistribution):
K
M
y.m
bd
y.m
2
 f
ck

0.01 K
lim
0.22
Compressionif K K
lim
 "NOT REQUIRED" "REQUIRED" "NOT REQUIRED"
INTERIOR PANEL Page 74 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
Level arm:
zmin
d
y.m
2
1 1 3.53 K






0.95d
y.m







133 mm
Area of reinforcement required for
bending:
A
sy.p.m
M
y.m
f
yd
z
103.759 mm
2

Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
y.m
 0.0013 bd
y.m







211.102 mm
Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
y.m
 5.6 10
3
 mm
2

Check_steel_4 if A
sy.p.m
A
sy.m
 A
s.min
A
sy.m
 A
s.max
 "OK" "NOT OK"  "OK"
Ratio_4
max A
s.min
A
sy.p.m


A
sy.m0.538
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sy.p.m
A
sy.m
1












 68.802 N mm
2

Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
0.3 m
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
 300 mm
Spacing_4 if s
y.m
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_4
s
y.m
s
max
0.667
REINFORCEMENT DESIGN AT CONTINUOUS SUPPORT 1 IN LONG SPAN DIRECTION:
Actual bar size: ϕ
y.1
12mm
Actual bar spacing: s
y.1
200mm
Area of reinforcement provided: A
sy.1
π
ϕ
y.1
2
4
m
s
y.1
 565.487 mm
2

INTERIOR PANEL Page 75 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VNd
y.1
hc
nom

ϕ
y.1
2
 139 mm
Values for K
lim
(Assumed no redistribution):
K
M
y.1
bd
y.1
2
 f
ck

0.036 K
lim
0.22
Compressionif K K
lim
 "NOT REQUIRED" "REQUIRED" "NOT REQUIRED"
Level arm:
zmin
d
y.1
2
1 1 3.53 K






0.95d
y.1







132.05 mm
Area of reinforcement required for
bending:
A
sy.n.1
M
y.1
f
yd
z
365.771 mm
2

Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
y.1
 0.0013 bd
y.1







209.594 mm
Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
y.1
 5.56 10
3
 mm
2

Check_steel_5 if A
sy.n.1
A
sy.1
 A
s.min
A
sy.1
 A
s.max
 "OK" "NOT OK"  "OK"
Ratio_5
max A
s.min
A
sy.n.1


A
sy.10.647
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sy.n.1
A
sy.1
1












 168.429 N mm
2

Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
275 mm
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
 275 mm
Spacing_5 if s
x.1
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_5
s
y.1
s
max
0.727
INTERIOR PANEL Page 76 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
REINFORCEMENT DESIGN AT CONTINUOUS SUPPORT 2 IN LONG SPAN DIRECTION:
Actual bar size: ϕ
y.2
12mm
Actual bar spacing: s
y.2
200mm
Area of reinforcement provided: A
sy.2
π
ϕ
y.2
2
4
m
s
y.2
 565.487 mm
2

d
y.2
hc
nom

ϕ
y.2
2
 139 mm
Values for K
lim
(Assumed no redistribution):
K
M
y.2
bd
y.2
2
 f
ck

0.036 K
lim
0.22
Compressionif K K
lim
 "NOT REQUIRED" "REQUIRED" "NOT REQUIRED"
Level arm:
zmin
d
y.2
2
1 1 3.53 K






0.95d
y.2







132.05 mm
Area of reinforcement required for
bending:
A
sy.n.2
M
y.2
f
yd
z
365.771 mm
2

Minimum
reinforcement
(EN1992-1-1,Eq.9.1N)
:
A
s.min
max 0.26
f
ctm
f
yk
 bd
y.2
 0.0013 bd
y.2







209.594 mm
2

Maximum reinforcement
(EN1992-1-1,cl.9.2.1.1(3)):
A
s.max
0.04 bd
y.2
 5.56 10
3
 mm
2

Check_steel_6 if A
sy.n.2
A
sy.2
 A
s.min
A
sy.2
 A
s.max
 "OK" "NOT OK"  "OK"
Ratio_6
max A
s.min
A
sy.n.2


A
sy.20.647
Stress in the
reinforcement
(IStrucTE EC2 Manual)
σ
s
f
yk
γ
s






ψ
2
Q
k
 G
k

1.5 Q
k
 1.35 G
k







 min
A
sy.n.2
A
sy.2
1












 168.429 N mm
2

Maximum spacing (for w
k
=0.3mm)
(EN1992-1-1,Table 7.3N:
s
max
300mm σ
s
160MPaif
275mm 160MPa σ
s
 180MPaif
250mm 180MPa σ
s
 200MPaif
225mm 200MPa σ
s
 220MPaif
200mm 220MPa σ
s
 240MPaif
175mm 240MPa σ
s
 260MPaif
150mm 260MPa σ
s
 280MPaif
125mm 280MPa σ
s
 300MPaif
100mm 300MPa σ
s
 320MPaif
75mm 320MPa σ
s
 340MPaif
50mm 340MPa σ
s
 360MPaif
275 mm
INTERIOR PANEL Page 77 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
Maximum spacing of bars
(EN1992-1-1,cl.9.3.1.1(3):
s
max.
min 3 h400mm s
max
 275 mm
Spacing_6 if s
x.2
s
max.
 "OK" "NOT OK"  "OK"
Ratio_s_6
s
y.2
s
max
0.727
SHEAR CAPACITY CHECK AT SHORT SPAN CONTINUOUS SUPPORT 1:
Effective depth factor
(EN1992-1-1,cl.6.2.2):
k min 2.0 1
200mm
d
x.1






0.5









2
Reinforcement ratio: ρ
1
min 0.02
A
sx.1
bd
x.1








4.068 10
3

Minimum shear resistance
(EN1992-1-1,Eq.6.3N &6.2b):
V
Rd.c.min
0.035 k
f
ck
MPa






0.5









bd
x.1









Nmm
2
 53.293 kN
Shear resistance
(EN1992-1-1,
Eq.6.2a):
V
Rd.c.x.1
max V
Rd.c.min
0.18MPa
γ
c






k100ρ
1

f
ck
MPa













0.333
 bd
x.1









76.743k
Shear_1 if V
x.1
V
Rd.c.x.1
 "NO SHEAR REQUIRED" "SHEAR REQUIRED" 
Shear_1 "NO SHEAR REQUIRED"
Ratio1
V
x.1
V
Rd.c.x.1
0.274
SHEAR CAPACITY CHECK AT SHORT SPAN CONTINUOUS SUPPORT 2:
Effective depth factor
(EN1992-1-1,cl.6.2.2):
kmin 2.0 1
200mm
d
x.2






0.5









2
Reinforcement ratio: ρ
1
min 0.02
A
sx.2
bd
x.2








4.068 10
3

Minimum shear resistance
(EN1992-1-1,Eq.6.3N &6.2b):
V
Rd.c.min
0.035 k
f
ck
MPa






0.5









bd
x.2









Nmm
2
 53.293 kN
Shear resistance
(EN1992-1-1,
Eq.6.2a):
V
Rd.c.x.2
max V
Rd.c.min
0.18MPa
γ
c






k100ρ
1

f
ck
MPa













0.333
 bd
x.2









76.743k
Shear_2 if V
x.2
V
Rd.c.x.2
 "NO SHEAR REQUIRED" "SHEAR REQUIRED" 
Shear_2 "NO SHEAR REQUIRED"
Ratio2
V
x.2
V
Rd.c.x.2
0.274
SHEAR CAPACITY CHECK AT LONG SPAN CONTINUOUS SUPPORT 1:
INTERIOR PANEL Page 78 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
Effective depth factor
(EN1992-1-1,cl.6.2.2):
kmin 2.0 1
200mm
d
y.1






0.5









2
Reinforcement ratio: ρ
1
min 0.02
A
sy.1
bd
y.1








4.068 10
3

Minimum shear resistance
(EN1992-1-1,Eq.6.3N &6.2b):
V
Rd.c.min
0.035 k
f
ck
MPa






0.5









bd
y.1









Nmm
2
 53.293 kN
Shear resistance
(EN1992-1-1,
Eq.6.2a):
V
Rd.c.y.1
max V
Rd.c.min
0.18MPa
γ
c






k100ρ
1

f
ck
MPa













0.333
 bd
y.1









76.743 kN
Shear_3 if V
y.1
V
Rd.c.y.1
 "NO SHEAR REQUIRED" "SHEAR REQUIRED" 
Shear_3 "NO SHEAR REQUIRED"
Ratio3
V
y.1
V
Rd.c.y.1
0.274
SHEAR CAPACITY CHECK AT LONG SPAN CONTINUOUS SUPPORT 2:
Effective depth factor
(EN1992-1-1,cl.6.2.2):
kmin 2.0 1
200mm
d
y.2






0.5









2
Reinforcement ratio: ρ
1
min 0.02
A
sy.2
bd
y.2








4.068 10
3

Minimum shear resistance
(EN1992-1-1,Eq.6.3N &6.2b):
V
Rd.c.min
0.035 k
f
ck
MPa






0.5









bd
y.2









Nmm
2
 53.293 kN
Shear resistance
(EN1992-1-1,
Eq.6.2a):
V
Rd.c.y.2
max V
Rd.c.min
0.18MPa
γ
c






k100ρ
1

f
ck
MPa













0.333
 bd
y.2









76.743 kN
Shear_4 if V
y.2
V
Rd.c.y.2
 "NO SHEAR REQUIRED" "SHEAR REQUIRED" 
Shear_4 "NO SHEAR REQUIRED"
Ratio4
V
y.2
V
Rd.c.y.2
0.274
BASIC SPAN-TO-DEPTH DEFLECTION RATIO CHECK:
Reference reinforcement ratio: ρ
o
0.001
f
ck
MPa






0.5
 5.477 10
3

Required compression reinforcement
(at mid-span - short span):
ρ
c
0
Required tension reinforcement
(at mid-span - short span):
ρ
t
max 0.0035
A
sx.m
bd
x.m








3.5 10
3

INTERIOR PANEL Page 79 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
Structural system factor
(EN1992-1-1,Table 7.4N):
K
δ
1.0 Structural_system "Simply supported"=if
1.3 Structural_system "End span of continous slab"=if
1.5 Structural_system "Interior span"=if
1.2 Structural_system "Flat slab"=if
0.4 Structural_system "Cantilever"=if
1.5
Basic limit span-to-depth ratio
(EN1992-1-1,Eq.7.16a&7.16b):
Lim
x.bas
K
δ
11 1.5
f
ck
MPa






0.5

ρ
o
ρ
t
 3.2
f
ck
MPa






0.5

ρ
o
ρ
t
1






1.5


















ρ
t
ρ
o
if
K
δ
11 1.5
f
ck
MPa






0.5

ρ
o
ρ
t
ρ
c


1
12
f
ck
MPa






0.5

ρ
c
ρ
o


















ρ
t
ρ
o
if
46.949
Actual span to effective depth ratio:Ratio
act
l
x
d
x.m
35.714
Deflection if Ratio
act
Lim
x.bas
 "OK" "NOT OK"  "OK"
Ratio
Ratio
act
Lim
x.bas
0.761
CALCULATION SUMMARY RESULTS:
Short span - Bending capacity: PASS/FAIL: Ratio:
Check bending capacity at midspan: Check_steel_1 "OK" Ratio_1 0.538
Spacing at midspan reinforcement: Spacing_1 "OK" Ratio_s_1 0.667
Check bending capacity at support 1: Check_steel_2 "OK" Ratio_2 0.647
Spacing at support 1 reinforcement: Spacing_2 "OK" Ratio_s_2 0.727
Check bending capacity at support 2: Check_steel_3 "OK" Ratio_3 0.647
Spacing at support 2 reinforcement: Spacing_3 "OK" Ratio_s_3 0.727
Long span - Bending capacity: PASS/FAIL: Ratio:
Check bending capacity at midspan: Check_steel_4 "OK" Ratio_4 0.538
Spacing at midspan reinforcement: Spacing_4 "OK" Ratio_s_4 0.667
Check bending capacity at support 1: Check_steel_5 "OK" Ratio_5 0.647
Spacing at support 1 reinforcement: Spacing_5 "OK" Ratio_s_5 0.727
Check bending capacity at support 2: Check_steel_6 "OK" Ratio_6 0.647
Spacing at support 2 reinforcement: Spacing_6 "OK" Ratio_s_6 0.727
INTERIOR PANEL Page 80 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
Short span - Shear capacity: PASS/FAIL: Ratio:
Check shear capacity at support 1:Shear_1 "NO SHEAR REQUIRED" Ratio1 0.274
Check shear capacity at support 2:Shear_2 "NO SHEAR REQUIRED" Ratio2 0.274
Long span - Shear capacity: PASS/FAIL: Ratio:
Check shear capacity at support 1:Shear_3 "NO SHEAR REQUIRED" Ratio3 0.274
Check shear capacity at support 2:Shear_4 "NO SHEAR REQUIRED" Ratio4 0.274
Deflection: PASS/FAIL: Ratio:
Check deflection of panel: Deflection "OK" Ratio 0.761
RENFORCEMENT SUMMARY:
Short span:
Midspan in short span direction: ϕ
x.m
10 mm s
x.m
200 mm
at C/C
Continuous support 1 in short span direction: ϕ
x.1
12 mm s
x.1
200 mm
at C/C
Continuous support 2 in short span direction: ϕ
x.2
12 mm s
x.2
200 mm
at C/C
Long span:
Midspan in short span direction: ϕ
y.m
10 mm s
y.m
200 mm
at C/C
Continuous support 1 in long span direction: ϕ
y.1
12 mm s
y.1
200 mm
at C/C
Continuous support 2 in long span direction: ϕ
y.2
12 mm s
y.2
200 mm
at C/C
INTERIOR PANEL Page 81 of 82

CALUCLATIION
SHEET
REINFORCED CONCRETE
SOLID SLAB DESIGN TO
EUROCODE 2 Date:01/09/2014
Rev:B
Calculated by:VN
Checked by:VN
ϕ
y.2
12 mm s
y.2
200 mm
ϕ
x.2
12 mm s
x.2
200 mm ϕ
x.1
12 mm s
x.1
200 mm
ϕ
x.m
10 mm s
x.m
200 mm
ϕ
y.m
10 mm s
y.m
200 mm
ϕ
y.1
12 mm s
y.1
200 mm
INTERIOR PANEL Page 82 of 82