References [ 1 ] Rami Alazrai , Motaz Abuhijleh , Mostafa Z. Ali, Mohammad I. Daoud , A deep llearning approach for decoding visually imagined digits and letters using time–frequency–spatial representation of EEG signals, Expert Systems with Applications, Volume 203, 2022, 117417, ISSN 0957-4174, 10.1016/j.eswa.2022.117417 . [2] Zhao Y, Chen Y, Cheng K, Huang W. Artificial intelligence based multimodal language decoding from brain activity: A review. Brain Res Bull. 2023 Sep;201:110713. doi : 10.1016/j.brainresbull.2023.110713. Epub 2023 Jul 23. PMID: 37487829. [3] K . Wahengbam , K. L. Devi and A. D. Singh, "Fortifying Brain Signals for Robust Interpretation," in IEEE Transactions on Network Science and Engineering, vol. 10, no. 2, pp. 742-753, 1 March-April 2023, doi : 10.1109/TNSE.2022.3222362 . [4] Tiwari , S., Goel , S. & Bhardwaj , A. EEG Signals to Digit Classification Using Deep Learning-Based One-Dimensional Convolutional Neural Network. Arab J Sci Eng 48 , 9675–9691 ( 2023), doi : 10.1007/s13369-022-07313-3. [5] Ullah S, Halim Z. Imagined character recognition through EEG signals using deep convolutional neural network. Med Biol Eng Comput . 2021 May;59(5): 1167-1183, doi : 10.1007/s11517-021-02368-0. Epub 2021 May 4. PMID: 33945075 . [6] Mishra , Alankrit , Nikhil Raj and Garima Bajwa . “EEG-based Image Feature Extraction for Visual Classification using Deep Learning.” 2022 International Conference on Intelligent Data Science Technologies and Applications (IDSTA) (2022): 181-188 . [7] Zhao Y, Chen Y, Cheng K, Huang W. Artificial intelligence based multimodal language decoding from brain activity: A review. Brain Res Bull. 2023 Sep;201:110713. doi : 10.1016/j.brainresbull.2023.110713. Epub 2023 Jul 23. PMID: 37487829.