deep learning evaluation and its advantages.ppt

Srisaikudavalli 22 views 18 slides May 30, 2024
Slide 1
Slide 1 of 18
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18

About This Presentation

deep learning


Slide Content

1
DEEP LEARNING

CONTENTS
I.Introduction
II.History
III.Principle
IV.Technology
V.Working
VI.RealTimeApplications
VII.FutureScope
VIII.Advantages
IX.Conclusion
2

INTRODUCTION
WhatisDeepLearning?
Deeplearningisabranchof
machinelearningthatuses
data,loadsandloadsofdata,to
teachcomputershowtodo
thingsonlyhumanswere
capableofbefore.
Forexample,howdomachines
solvetheproblemsof
perception?

HISTORY
4
1958:Frank Rosenblatt
creates the perceptron, an
algorithm for pattern
recognition.
1989:Scientists were able to
create algorithms that used deep
neural networks.
2000's:The term “deep
learning” begins to gain
popularity after a paper by
Geoffrey Hinton.
2012:Artificial pattern-
recognition algorithms achieve
human-level performance on
certain tasks.

PRINCIPLE
Deeplearningisbasedontheconceptofartificialneural
networks,orcomputationalsystemsthatmimicthewaythe
humanbrainfunctions.

TECHNOLOGY
Deeplearningisafast-growingfield,andnewarchitectures,
variantsappeareveryfewweeks.We'llseediscussthemajor
three:
1.ConvolutionNeuralNetwork(CNN)
CNNsexploitspatially-local
correlationbyenforcingalocal
connectivitypatternbetween
neuronsofadjacentlayers.

TECHNOLOGY
2.RecurrentNeuralNetwork(RNN)
RNNsarecalledrecurrentbecausetheyperformthesametask
foreveryelementofasequence,withtheoutputbeing
dependedonthepreviouscomputations.OrRNNshavea
“memory”whichcapturesinformationaboutwhathasbeen
calculatedsofar.

TECHNOLOGY
3.Long-ShortTermMemory
LSTMcanlearn"VeryDeepLearning"tasksthatrequire
memoriesofeventsthathappenedthousandsorevenmillionsof
discretetimestepsago.LSTMworksevenwhentherearelong
delays,anditcanhandlesignalsthathaveamixoflowandhigh
frequencycomponents.
8

WORKING
Considerthefollowinghandwrittensequence:
Mostpeopleeffortlesslyrecognizethosedigitsas504192.That
easeisdeceptive.
Thedifficultyofvisualpatternrecognitionbecomesapparentif
youattempttowriteacomputerprogramtorecognizedigitslike
thoseabove.
9

WORKING

WORKING
Theideaofneuralnetworkis
todevelopasystemwhichcan
learnfromtheselargetraining
examples.
Eachneuronassignsa
weightingtoitsinput—how
correctorincorrectitisrelative
tothetaskbeingperformed.
Thefinaloutputisthen
determinedbythetotalof
thoseweightings
A training
Sample
A very basic approach:
Binary Classifier

REAL TIME APPLICATIONS
AutomaticColorizationofBlackandWhiteImages
AutomaticallyAddingSoundsToSilentMovies
AutomaticHandwritingGeneration

REAL TIME APPLICATIONS
AutomaticTextGeneration
AutomaticImageCaptionGeneration
AutomaticGamePlaying

FUTURE SCOPE
1.DeepLearningwillspeedsearchforextraterrestriallife.
RobERt,shortforRoboticExoplanetRecognitionforExoplanets
thatarebeyondoursolarsystem.

FUTURE SCOPE
2.ForAstronauts,NextStepsonJourneytoSpaceWillBe
Virtual
3.DroughtsandDeepLearning:MeasuringWaterWhereIt’s
Scarce

ADVANTAGES
1.Itdoesfeatureextraction,noneedforengineeringfeatures
2.Movingtowardsrawfeatures
3.Betteroptimization
4.Anewlevelofnoiserobustness
5.Multi-taskandtransferlearning
6.BetterArchitectures

CONCLUSION
ThelowmaturityofDeepLearningandits
applicationssuchaslargedeepneural
networksachievethebestresultsonspeech
recognition,visualobjectrecognitionand
severallanguagerelatedtaskfieldwarrants
extensivefutureresearch.Nevertheless,the
possibilitiesofdeeplearninginfutureare
infiniterangingfromdriverlesscars,torobots
exploringtheuniverseandtowhatnotifthe
upcomingarchitecturesarecreativeenough.

18
THE
END….
Tags