Design against fluctuating load

SurajKumarChand1 855 views 70 slides Jul 26, 2021
Slide 1
Slide 1 of 70
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70

About This Presentation

Stress concentration factor, Notch sensitivity, Endurance limit, etc


Slide Content

DESIGN AGAINST FLUCTUATING LOAD

Stress Concentration: Causes and Remedies
•Stressconcentrationisdefinedasthelocalizationof
highstressesduetoirregularitiespresentinthe
componentandabruptchangesincross-sectionof
thecomponent.
•Irregularitiesmaybeoil-holes,grooves,keyways,
splines,screwthreadsandshoulders.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•Toconsidertheeffectofstressconcentrationandfindout
localizedstress,afactorknownasstressconcentration
factorisused,denotedby??????
�
??????
�=
HighestValueofactualstressneardiscontinuity
Nominalstressobtainedbyelementary
equationsforminimumc/s
Or ??????
�=
????????????��
??????0
=
????????????��
??????0
;
where??????
���,??????
���arelocalizedstressesand??????
0,??????
0arestresses
determinedbyelementaryequationsatthediscontinuities.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Causes of stress concentration
1.Variationinpropertiesofmaterials:itisduetointernal
cracks,flaws,cavitiesinwelds,airholesinsteelcomponents,
non-metallicorforeigninclusions.Thesevariationsactas
discontinuitiesandcausestressconcentration.
2.Loadapplication:inapplicationsasmeshingteethingears,
ballsandracesinballbearings,railandthewheel,crane
hookandthechain,aconcentratedloadisappliedovera
verysmallarearesultinginstressconcentration.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

3.Abruptchangesinsection:Stepsareprovidedontheshaftin
ordertomountgears,sprockets,pulleysandballbearingsleadsto
changeinc/sandcausesstressconcentration.
4.Discontinuitiesinthecomponent:featuresofmachine
componentsasoilholes,oilgrooves,keyways,splines,screw
threads,resultindiscontinuitiesinc/s,andcausesstress
concentrationinvicinityofthem.
5.MachiningScratches:Machiningscratches,stampmark,
inspectionmarkaresurfaceirregularitieswhichcausestress
concentration.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Charts for Stress concentration Factor
Fig.: Rectangular plate with
transverse hole
in tension or compression
Fig.: Flat plate with
shoulder fillet
in tension or compression
Fig.: Round shaft with
shoulder fillet in tension
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Fig.: Round shaft with
shoulder fillet in torsion
Fig.: Round shaft with
shoulder fillet in bending
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•Itisimpossibletocompletelyeliminatetheeffectofstress
concentration,itcanonlybereducedtosomeextent.
•Itisachievedbyprovidingspecificgeometryshapetothe
component.
•Inordertoknowwhathappensattheabruptchangesofc/s
oratdiscontinuity,understandingthe‘flowanalogy’isuseful.
Thereisasimilaritybetweenvelocitydistributioninfluidflow
inachannelandstressdistributioninanaxiallyloadedplate.
Remedies for reduction of stress concentration
S K Chand (Assistant Professor)
Government Engineering College, Raipur

S K Chand (Assistant Professor)
Government Engineering College, Raipur

1)AdditionalNotchesandholesintensionmember:Severityofstress
concentrationisreducedbyuseofmultiplenotches,drillingadditional
holes,removalofundesiredmaterial.Methodofremovalofundesired
materialiscalledprincipleofminimizationofmaterial.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

2)FilletRadius,UndercuttingandNotchforMemberinBending:A
transmissionshafthasshouldersforballbearings,gearsorpulleystobe
mounted.Theshouldersgenerateschangeinc/sresultinginstress
concentration.thestressconcentrationinsuchcasesisreducedbythree
waysas,
S K Chand (Assistant Professor)
Government Engineering College, Raipur

3)Drillingadditionalholesforshaft:Inthistwosymmetrical
holesaredrilledonthesidesofthekeyway,whichpressthe
flowlinesandminimizetheirbendinginthevicinityof
keyway.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

4)ReductionofStressconcentrationinthreadedmembers:Fora
threadedcomponenttheforceflowlineisbentasitpassesfrom
shankportiontothreadedportion,whichresultsinstress
concentrationintransitionplane.
–Asmallundercutbetweentheshankandthethreadedportion
reducesthebendingofforceflowlineandstressconcentration.
–Ideallywhenshankdia.=coredia.Thereisnostress
concentration.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

S K Chand (Assistant Professor)
Government Engineering College, Raipur

Fluctuating Stresses
•Theexternalforcesactingonthem/ccomponentare
generallyassumedtobestatic.
•Inmanyengineeringapplications,thecomponentsare
subjectedtoforceswhichvarywithrespecttotime.The
stressesinducedduetosuchforcesareknownasfluctuating
stresses.
•80%failuresofmechanicalcomponentsaredueto‘fatigue
failure’whichresultsfromfluctuatingstresses.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•Stresspatternisvariableandirregularinpracticalsituations
asincaseofvibrations.
•Simplemodelsofstress-timerelationshipareusedforthe
purposeofdesignanalysis.
•Popularlysinecurveisusedforstress-timerelationship.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Mathematical Models for Cyclic Stresses
There are basically three types of mathematical
models to demonstrate cyclic stresses viz.
1. Fluctuating or alternating stresses
2. Repeated Stresses
3. Reversed Stresses
S K Chand (Assistant Professor)
Government Engineering College, Raipur

1. Fluctuating or alternating stresses:
a)Thesestressesvariesinasinusoidalmannerwithrespecttotime.
b)Ithassomemeanvalueandamplitudevalue.
c)ItfluctuatesbetweentwolimitsMaximumandMinimum.
d)Thestresscanbetensileorcompressiveorpartlytensileorpartly
compressive.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

2. Repeated Stresses: (??????
�??????�=0)
a)Variesinasinusoidalmannerwithrespecttotime,butthe
variationisfromzerotosomemaximumvalue.
b)Minimumstressiszerointhis,andhencetheamplitude
stressandmeanstressareequal.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

3. Reversed Stress: (??????
�=0)
a)Itvariesinsinusoidalmannerwithrespecttotime,butithas
zeromeanstress.
b)Inthishalfportionofthecycleconsistsoftensileandthe
remaininghalfconsistsofcompressivestress.
c)Inthisthereiscompletereversalfromtensionto
compressionbetweenthesetwohalvesandsomeanstress
iszero.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Referring to figure above,
??????
���=��????????????���������
??????
�??????�=�??????�??????���������
??????
�=����������
??????
�=����������??????����
We have
??????
�=
??????
���+??????
�??????�
2
??????
�=
??????
���−??????
�??????�
2
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Fatigue Failures
“Fatigue failure is defined as the time delayed fracture under cyclic loading”.
1.Underfluctuatingstresses,thefailureofmaterialoccursatalower
magnitudeofultimateorsometimesyieldstrength.
2.Resistanceofmaterialtostressmagnitudesdecreaseswiththeincrease
innumberofcycles,andthisisthemaincharacteristicoffatiguefailure.
e.g.bendingandunbendingofwire,Componentssuchastransmissionshafts,
connectingrods,gears,vehiclesuspensionspringsandballbearingarecommonly
subjectedtofatiguefailures.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

3.Phenomenonoffatiguefailurebeginswithacrackatsomepointinthe
material.Thiscrackgenerallyoccursatdiscontinuityregionsaskeyways,
oil-holes,screwthreads,Scratchesonsurface,stampmark,inspection
markwhichrepresentirregularityregions.Defectsinmaterialsasblow
holesetc.
4.Suchregionsaresubjectedtocrack,whichspreadsduetofluctuating
stressesuntilthecross-sectionofthecomponentissoreducedthatthe
remainingportionissubjectedtosuddenfracture.
5.Therearetwodistinctareasoffatiguefailureasregionindicatingslow
growthofcrackwithfinefibrousappearanceandregionofsudden
fracturewithacoarsegranularappearance.
6.Fatiguefailureissuddenandtotal.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Designprocessiscomplexasitinvolvesfactors
suchasnumberofcycles,meanstress,stress
amplitude,stressconcentration,residual
stressescorrosionandcreep.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Endurance Limit
•Fatigueorendurancelimitofamaterialisdefinedas
maximumamplitudeofcompletelyreversedstressthatthe
standardspecimencansustainforanunlimitednumberof
cycleswithoutfatiguefailure.
•10
6
cyclesisconsideredassufficientnumberofcyclesto
definetheendurancelimitasthetestcannotbeconducted
forinfinitenumberofcycles
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•Thetermfatiguelifeiscommonlyusedwithendurance
limit.
•Fatiguelifeisdefinedasthenumberofstresscycles
thatastandardspecimencancompleteduringthetest
beforetheappearanceoffirstfatiguecrack.
•Inlaboratory,theendurancelimitisdeterminedby
meansofarotatingbeammachinedevelopedbyR.R.
Moore.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

S-N Curves
Arotatingbeamm/cdiagramisshowninfigurebelow.Specimen
actsasrotatingbeamsubjectedtobendingmoment.Henceitis
subjectedtocompletelyreversedstresscycle.
1.Thestressamplitudescanbevariedbychangingthebending
momentbyadditionorremovalofweights.
2.Withtheaidofelectricmotorthespecimenisrotated.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Fig.: Rotating beam fatigue testing machine
S K Chand (Assistant Professor)
Government Engineering College, Raipur

3.Usingarevolutioncounter,thenumberofrevolutionsbeforethe
appearanceoffirstfatiguecrackarerecorded.
4.Ineachtest,tworeadingsarenotedviz.Stressamplitude(�
�)and
numberofcycles(�).
5.Thesereadingsareusedtoastwoco-ordinatesforplottinga
pointonS-Ndiagram.
6.Thispointiscalledfailurepoint.
7.TheresultsofsuchtestsareplottedusingS-Ncurves.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Fig.: S-N curve for steel
S K Chand (Assistant Professor)
Government Engineering College, Raipur

8.S-Ncurveisthegraphicalrepresentationofstressamplitude(�
�)
versusthenumberofstresscycles(�)beforethefatiguefailure
onalog-loggraphpaper.
9.Eachtestonfatiguetestingm/cgivesonefailurepointontheS-N
diagram.
10.Thesepointsarescatteredinfigureandaveragecurveisdrawn
throughthem.
11.ItisalsocalledWohlerdiagramafterGermanEngineer,August
Wohlerwhopresentedthismethodin1870.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

NOTCH SENSITIVITY (�)
“Theextenttowhichthesensitivityofamaterialtofractureisincreasedby
thepresenceofasurfaceinhomogeneitysuchasanotch,asuddenchangein
section,acrack,orascratch”.
•Notchsensitivityfactor(�)isdefinedastheratioofincreaseof
actualstressovernominalstresstoincreaseoftheoreticalstress
overnominalstress.
•Mathematically,??????
0=Nominalstressobtainedbyelementary
equations.
??????
�×??????
0=??????�����������&??????
�×??????
0=�ℎ�����??????���������
S K Chand (Assistant Professor)
Government Engineering College, Raipur

• Increase of actual stress over nominal stress = (??????
�×??????
0−??????
0)
• Increase of theoretical stress over nominal stress = ??????
�×??????
0−??????
0
�=
(??????
�×??????0−??????0)
(??????�×??????0−??????0)
�=
(??????
�−1)
(??????�−1)
The above equation is rearranged as ;
??????
�=1+�(??????
�−1)----(A)
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Following are the observations are from above equation
•Whenthematerialhasnosensitivitytonotches
�=0& ??????
�=1
•Whenthematerialisfullysensitivetonotches
�=1& ??????
�=??????
�
•Themagnitudeof�variesfrom0to1.
•Incaseofdoubtdesignershoulduse�=1&??????
�=??????
�andthe
designwillbeonsafeside.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Fig.: Notch sensitivity charts (for reversed
bending and reversed axial stresses)
Fig.: Notch sensitivity charts (for
reversed torsional shear stresses)
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•Fatiguestressconcentrationfactor(??????
�);itisapplicableto
actualmaterialsanddependsuponthegrainsizeofthe
material.
•Theoreticalstressconcentrationfactor(??????
�);itisapplicableto
idealmaterialswhicharehomogenous,isotropicandelastic.
??????
�=
Endurancelimitofthenotchfreespecimen
Endurancelimitofthenotchedspecimen
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Endurance Limit-Approximate Estimation
Notationsusedregardingendurancelimitare(�
�

)and(�
�);
Where
�
�

=Endurancelimitstressofarotatingbeamspecimen
subjectedtoreversedbendingstress(MPa),
�
�=Endurancelimitstressofaparticularmechanical
componentsubjectedtoreversedbendingstress(MPa)
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Relationsbetweenendurancelimitandtheultimate
tensilestrengthofthematerial
�
�

=0.5�
��;ForSteels
�
�

=0.4�
��;ForCastIronandCastSteels
�
�

=0.4�
��;ForWroughtAluminiumalloys
�
�

=0.3�
��;ForCastAluminium
Alltheaboverelationshipsarebasedon50%reliability.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•Thereisdifferencebetween(�
�

)and(�
�)duetothefactthat
therearestandardspecificationsandworkingconditionsfor
rotatingbeamspecimen,whiletheactualcomponentshave
differentspecificationsandworkunderdifferentconditions.
•Differentmodifyingfactorsareusedtoaccountforthis
differenceandthesefactorsarecalledderatingfactors.
•Thederatingfactorsreducetheendurancelimitofthe
rotatingbeamspecimentosuittheactualcomponent.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Therelationshipbetween(�
�

)and(�
�)isgivenas
�
�=??????
�??????
�??????
�??????
��
�

Where,
??????
�= Surface finish factor
??????
�= Size factor
??????
�= Reliability factor
??????
�= Modifying factor to account for the stress
concentration.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•SurfaceFinishFactor:Surfacefinishfactortakesintoaccount
thepoorsurfacefinishandgeometricirregularitiesonthe
surfacewhichserveasstressraisersandcausestress
concentration.
•Italsoconsidersthereductioninendurancelimitduetothe
variationinsurfacefinishbetweenthespecimenandthe
actualcomponent.
•Followingfigureshowsthesurfacefinishfactorforsteel
components.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Fig.: Surface finish factor for steelsS K Chand (Assistant Professor)
Government Engineering College, Raipur

•ForsteelcomponentsNollandLipsondevisedanequationas
??????
�=�(�
��)
�
; [??????�??????
�>1,���??????
�=1]
•Values of �and �are given in table below
•For grey cast iron components ??????
�=1.
Surface Finish � �
Ground Machined 1.58 -0.085
Cold Drawn 4.51 -0.265
Hot Rolled 57.7 -0.718
Forged 272 -0.995
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•SizeFactor:Thesizefactortakesintoaccountthe
reductioninendurancelimitduetoincreaseinsize
ofthecomponent.
•Values of size factor are given in table below;
Diameter (d) mm ??????
�
d ⩽7.5 1.00
7.5 < d ⩽50 0.85
d > 50 0.75
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•ReliabilityFactor:dependsuponthereliability
thatisusedinthedesignofcomponent.For
50%reliabilitythereliabilityfactorisone.To
ensurethat50%ofthepartswillsurvive,the
stressamplitudesonthecomponentsshould
belowerthanthetabulatedvalueof
endurancelimit.
•Reliabilityfactorisusedforachievingthis
reduction.Reliabilityfactorsbasedona
standarddeviationof8%aregivenintable.
Reliability
R (%)
??????
&#3627408516;
50 1.000
90 0.897
95 0.868
99 0.814
99.9 0.753
99.99 0.702
99.999 0.659
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•ModifyingfactortoaccountforstressConcentration:Itisdefined
as
??????
&#3627408465;=
1
??????
&#3627408467;
&#3627408454;
&#3627408480;&#3627408466;= Endurance limit of a component subjected to fluctuating
torsional shear stresses
According to maximum shear stress theory;
&#3627408454;
&#3627408480;&#3627408466;= 0.5&#3627408454;
&#3627408466;
According to distortion energy theory;
&#3627408454;
&#3627408480;&#3627408466;= 0.577&#3627408454;
&#3627408466;
For axial loading; &#3627408454;
&#3627408466;&#3627408462;= 0.8&#3627408454;
&#3627408466;
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Reversed Stresses -Design for Finite and Infinite life
•Designproblemsforcompletelyreversedstressesaredividedinto
twogroupsasdesignforfiniteanddesignforinfinitelife.
Design for Infinite life
•Whenthecomponentistobedesignedforinfinitelife,the
endurancelimitbecomesthecriterionoffailure.
{Theamplitudestressinducedinsuchcomponents}<{endurancelimit
in-ordertowithstandinfinitenumberofcycles}.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•Suchcomponentsaredesignedwiththehelpof
followingequations;
??????
&#3627408462;=
??????&#3627408466;
(&#3627408467;&#3627408480;)
& ??????
&#3627408462;=
??????&#3627408480;&#3627408466;
(&#3627408467;&#3627408480;)
•Where(??????
&#3627408462;)&(??????
&#3627408462;)arestressamplitudesinthe
componentand&#3627408454;
&#3627408466;and&#3627408454;
&#3627408480;&#3627408466;arecorrectedendurance
limitsinreversedbendingandtorsionrespectively.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Design for finite life
•ForsuchcaseS-Ncurveisused.Arepresentativecurveisshown
infigbelow,whichisvalidforsteels.
•ItconsistsofastraightlineABdrawnfrom(0.9&#3627408454;
&#3627408482;&#3627408481;)at10
3
cycles
to(&#3627408454;
&#3627408482;&#3627408481;)at10
6
cyclesonalog-logpaper.
•Designprocessforsuchproblemsisasunder
–LocatepointAwithco-ordinates[3,&#3627408473;&#3627408476;&#3627408468;
100.9&#3627408454;
&#3627408482;&#3627408481;]since&#3627408473;&#3627408476;&#3627408468;
10(10
3
)=3
S K Chand (Assistant Professor)
Government Engineering College, Raipur

̶LocatepointBwithco-ordinates[6,&#3627408473;&#3627408476;&#3627408468;
10&#3627408454;
&#3627408466;]since
&#3627408473;&#3627408476;&#3627408468;
1010
6
=6
̶LinejoiningA&Bisusedasacriterionoffailureforfinite-life
problems.
̶DependinguponthelifeNofthecomponent,drawaverticalline
passingthrough&#3627408473;&#3627408476;&#3627408468;
10&#3627408449;ontheabscissa.ThislineintersectsABat
pointF.
̶DrawalineFEparalleltotheabscissa.TheordinateatpointEi.e.
&#3627408473;&#3627408476;&#3627408468;
10&#3627408454;
&#3627408467;,givesthefatiguestrengthcorrespondingtoNcycles.
❖Thevalueof(&#3627408454;
&#3627408467;)obtainedbyaboveprocessisusedfordesign
calculations.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Fig.: S-N curve
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Cumulative Damage in Fatigue
(Miner’s Equation)
•Incertainapplications,themechanicalcomponentis
subjectedtodifferentstresslevelsfordifferentpartsofthe
workcycle.
•ThelifeofsuchcomponentisdeterminedbyMiner’s
equation.
supposeacomponentissubjectedtocompletelyreversed
stresses(??????
1)for(&#3627408475;
1)cycles,(??????
2)for(&#3627408475;
2)cyclesandsoon.Let&#3627408449;
1
bethenumberofstresscyclesbeforefatiguefailure,onlyifthe
alternatingstress(??????
1)isacting.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Onestresscyclewillconsume(
1
&#3627408449;1
)offatiguelifeandsincethere
are&#3627408475;
1suchcyclesatthisstresslevel,theproportionatedamage
offatiguelifewillbe(
&#3627408475;
1
&#3627408449;
1
).Similarly,theproportionatedamageat
stresslevel(??????
2)willbe(
&#3627408475;2
&#3627408449;
2
)andsoon.Addingthese,weget
(
&#3627408475;1
&#3627408449;
1
)+ (
&#3627408475;2
&#3627408449;
2
) + ……. + (
&#3627408475;&#3627408485;
&#3627408449;
&#3627408485;
) = 1
Above equation is known as Miner’s equation.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•Attimesthenumberofcycles&#3627408475;
1,&#3627408475;
2,……..Atstresslevels??????
1,
??????
2,……..areunknown.Supposethat??????
1,??????
2……areproportionsof
thetotallifethatwillbeconsumedbythestresslevels??????
1,??????
2……..
etc.
•LetNbethetotallifeofthecomponent,then
&#3627408475;
1= ??????
1&#3627408449;&#3627408475;
2= ??????
2&#3627408449;
•UsingtheseinMiner’sequation
??????1
&#3627408449;1
+
??????2
&#3627408449;2
+……
??????&#3627408485;
&#3627408449;&#3627408485;
=
1
&#3627408449;
Also ??????
1+??????
2+??????
3…..+??????
&#3627408485;=1
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Soderberg, Gerber and Goodman Lines
•Whenacomponentissubjectedtofluctuatingstress
thereismeanstress(??????
&#3627408474;)aswellasstress
amplitude(??????
&#3627408462;).
•Meanstresscomponenthaseffectonfatiguefailure
whenitoccursincombinationwithalternating
component.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

S K Chand (Assistant Professor)
Government Engineering College, Raipur

Fatiguediagramforgeneralcaseisshowninfigureabove;Inthis
diagram
1.MeanStress(??????
&#3627408474;)isplottedonabscissa
2.Stressamplitude(??????
&#3627408462;)isplottedonordinate
3.Magnitudeofforceactingonthecomponentdeterminesthe
valuesofmeanstressandstressamplitudes.
4.Whenthestressamplitude(??????
&#3627408462;)iszero,theloadispurelystatic
andthecriterionoffailurebecomes&#3627408454;
&#3627408486;&#3627408481;or&#3627408454;
&#3627408482;&#3627408481;andtheselimits
areplottedonabscissa.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

5.Whenthemeanstress(??????
&#3627408474;)iscompletelyzero,thestressis
completelyreversingandthecriterionoffailureis
endurancelimit(&#3627408454;
&#3627408466;)plottedonordinate.
6.Whenthecomponentissubjectedtobothmeanstress(??????
&#3627408474;)
andstressamplitude(??????
&#3627408462;),theactualfailureoccursat
differentfailurepointsasshowninfigure.
7.Thereexistsaborder,whichdividessaferegionfromunsafe
regionforvariouscombinationsof(??????
&#3627408462;)&(??????
&#3627408474;).
S K Chand (Assistant Professor)
Government Engineering College, Raipur

8.Variouscriterionsareproposedforconstructionof
borderlinedividingsafezoneandfailurezone.They
include
a)GerberLine:Itisaparaboliccurvejoining&#3627408454;
&#3627408466;ontheordinate
to&#3627408454;
&#3627408482;&#3627408481;onabscissa.
b)SoderbergLine:Itisastraightlinejoining&#3627408454;
&#3627408466;onordinateto
&#3627408454;
&#3627408486;&#3627408481;onabscissa.
c)GoodmanLine:Itisastraightlinejoining&#3627408454;
&#3627408466;onordinateto&#3627408454;
&#3627408482;&#3627408481;
onabscissa.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Discussions……
•Gerberparabolafitsthefailurepointsoftestdatainthebest
possibleway.
•Goodmanlinefitsbeneaththescatterofthisdata.
•Gerberparabola&Goodmanlineintersectat(&#3627408454;
&#3627408466;)onordinate
to(&#3627408454;
&#3627408482;&#3627408481;)onabscissa.
•FromdesignconsiderationsGoodmanlineismoresafeasit
liescompletelyinsidetheGerberparabolaandinsidethe
failurepoints.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•Soderberglineismoreconservativefailurecriterionandthereisnoneedto
considerevenyieldinginthiscase.
•EquationofSoderberglineisgivenby,
??????
&#3627408474;
&#3627408454;
&#3627408486;&#3627408481;
+
??????
&#3627408462;
&#3627408454;
&#3627408466;
=1
•EquationofGoodmanlineisgivenby,
??????
&#3627408474;
&#3627408454;
&#3627408482;&#3627408481;
+
??????
&#3627408462;
&#3627408454;
&#3627408466;
=1
•Goodmanlineiswidelyusedasthecriterionoffatiguefailurewhenthe
componentissubjectedtoboth??????
&#3627408474;&??????
&#3627408462;.
•GoodmanLineissafeasitiscompletelyinsidethefailurepointsoftestdata.
•Equationofstraightlineissimpleascomparedwithequationofparabolic
curve.
•Ascalediagramisnotrequired;aroughsketchisenoughforconstructionof
fatiguediagram.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

Modified Goodman Diagrams
Componentssubjectedtofluctuatingstressesaredesignedby
constructingmodifiedGoodmanDiagram.Fromdesign
considerationsproblemsareclassifiedintotwocategories:
1.Componentssubjectedtofluctuatingaxialorbending
stresses;
2.Componentssubjectedtofluctuationtorsionalshear
stresses.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

1. Components Subjected to Fluctuating Axial or
Bending Stresses Figure
Fig.: Modified Goodman diagram for axial and bending stressesS K Chand (Assistant Professor)
Government Engineering College, Raipur

•Goodmanlineismodifiedbycombiningfatiguefailurewith
yieldingfailure.
•Inthis,theyieldstrength(&#3627408454;
&#3627408486;&#3627408481;)isplottedonbothaxes,anda
yieldlineCDat45
0
toabscissaisconstructedtojointhese
pointstodefinefailurebyyielding.
•LineAFisconstructedtoJoin(&#3627408454;
&#3627408466;)onordinatewith(&#3627408454;
&#3627408482;&#3627408481;)on
abscissai.e.GoodmanLine.
•PointofintersectionoflinesAF&CDis‘B’.
•AreaOABCrepresentstheregionofsafetyforcomponents
subjectedtofluctuatingstresses.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•RegionOABCiscalledModifiedGoodmanDiagram.
•InthisABistheportionofGoodmanlineandBCistheportion
ofyieldline.
•LineOEwithslopetan??????isconstructedforproblemsolving
processas
tan??????=
??????&#3627408462;
??????
??????
;
We know that
??????&#3627408462;
????????????
=
??????&#3627408462;/??????
????????????/??????
So tan??????=
??????
&#3627408462;
????????????
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•Magnitudesof??????
&#3627408462;&??????
&#3627408474;aredeterminedbymaximumand
minimumforceactingonthecomponent.Similarlywehave
tan??????=
&#3627408448;
&#3627408463;&#3627408462;
&#3627408448;
&#3627408463;??????
•LinesABandOEintersectatpoint‘X’whichindicatesthe
dividinglinebetweensaferegionandtheregionoffailure.
•Co-ordinatesofpointX(&#3627408454;
&#3627408474;,&#3627408454;
&#3627408462;)representlimitingvaluesof
stressesusedtocalculatethedimensionsofthecomponent.
•Permissiblestressesarecalculatedas
??????
&#3627408462;=
??????
&#3627408462;
&#3627408467;&#3627408480;
??????
&#3627408474;=
??????
??????
&#3627408467;&#3627408480;
S K Chand (Assistant Professor)
Government Engineering College, Raipur

2.Components Subjected to fluctuating torsional shear
stresses
Fig.: Modified Goodman Diagram for Torsional Shear Stresses
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•Inthistorsionalmeanstressisplottedonabscissawhilethe
torsionalstressamplitudeonordinate.
•Thetorsionalyieldstrength(&#3627408454;
&#3627408480;&#3627408486;)isplottedonabscissaand
theyieldlineisconstructedwhichisinclinedat45
0
to
abscissa.
•Uptoacertainpoint,torsionalmeanstresshasnoeffecton
torsionalendurancelimit,soalineisdrawnthrough&#3627408454;
&#3627408480;&#3627408466;on
ordinateandisparalleltotheabscissa.
S K Chand (Assistant Professor)
Government Engineering College, Raipur

•PointofintersectionofthislinewiththeyieldlineisB.Area
OABCrepresentsregionofsafety.
•Itisnotnecessarytoconstructfatiguediagramforfluctuating
torsionalshearstressesaslineABisparalleltoX-axis.
•Afatiguefailureisindicatedif,??????
&#3627408462;=&#3627408454;
&#3627408480;&#3627408466;andastaticfailureis
indicatedif??????
&#3627408474;&#3627408462;&#3627408485;=??????
&#3627408462;+??????
&#3627408474;=&#3627408454;
&#3627408480;&#3627408486;
•Permissiblestressesare??????
&#3627408462;=
??????&#3627408480;&#3627408466;
&#3627408467;&#3627408480;
and??????
&#3627408474;&#3627408462;&#3627408485;=
??????&#3627408480;&#3627408486;
&#3627408467;&#3627408480;
S K Chand (Assistant Professor)
Government Engineering College, Raipur

S K Chand (Assistant Professor)
Government Engineering College, Raipur
Tags